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Introduction

Digitizing pathology requires biomedical informatic tools 
which could facilitate storage and delivery of visual data 
which pathologists usually observe via a light microscope. The 
current challenge is that conventional image file systems cannot 
support the wide range of functionalities required for reading 
and writing of extremely large images. Over the last decade, 
the presence of whole‑slide images (WSIs) in digital pathology 
drives the development of various open and proprietary file 
formats and tools. In 2013, introduction of OpenSlide[1] marks 
the establishment of mainstream file formats, which has been 
widely adopted to store histopathological images, and becomes 
a de facto standard in digital pathology. Nevertheless, to our 
knowledge, none of the files readable by OpenSlide and other 
file formats offer ways to modify existing files and create a 
new one. A  typical uncompressed WSI with full resolution 
can range between 1 and 20 GB in file size,[2,3] and a typical 
compressed WSI may easily take 1 GB of storage.[4] The 

monstrous file size makes them relatively slow to process 
using conventional techniques. This tremendously increases 
computational burden and causes difficulties in providing 
holistic features for intelligent software. Thus, currently 
there are still limitations to modify WSIs. It remains to be a 
technical bottleneck obstructing data scientists to fully exploit 
the information and potentials in these images.[5]

The existing solutions separate a WSI into a number of 
smaller tiles using read‑only libraries, e.g., OpenSlide[1] or 
Bio‑Formats,[6] before processing by conventional image 
processing tools and libraries, e.g., OpenCV and Sci‑kit 
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image.[7‑11] Due to extremely large file size and image 
dimension, it is difficult to efficiently access WSIs while 
maintaining a decent reading and especially modifying speed. 
Furthermore, these images have different proprietary formats 
created by different WSI scanner vendors,[1] e.g., Aperio 
(.svs, .tif) and Hamamatsu (.vms, .vmu, .ndpi). Each vendor 
provides a proprietary software to view the WSIs generated by 
its own scanners. The existence of proprietary file formats and 
software for viewing and analyzing presents three problems. 
First, the file formats directly obstruct free data sharing and 
curation of open data in this domain. Second, the proprietary 
viewing and analysis software prevents the development of 
general analysis pipelines which can be modified for different 
purposes. They also cannot be extended by existing open 
source image processing libraries. Third, the ad hoc solutions 
cannot support easy reuse of existing annotations and the 
interoperation between analysis software.[12,13] Large image 
processing lacks an universal and comprehensive solution.

In this paper, we present libMI, an open source multiscale 
image library for manipulating WSIs. It is compatible with all 
proprietary WSI file formats and can read, write, and modify 
extremely large multiscale images at any resolutions. It also 
supports both pixel‑wise geometrical and semantic annotations, 
e.g., regional boundaries and cancer grading in histopathological 
images. Along with the library, we present an open format 
called modifiable multiscale image  (MMSI) to store large 
images based on SQLite with the library to access this format. 
Seamlessly working with libMI, the novel format supports 
efficient regional modification of extremely large images without 
the necessity of updating the entire image or cutting the image 
to tiles. The library works as a robust and efficient abstract 
layer for the proposed data format, and this is the first efficient 
implementation of reading and writing WSIs, thus can be used 
to enhance performance of relevant libraries or standards.[14‑16] 
Note that the library is not limited to WSIs but also capable to 
deal with large images in other domains, such as satellite and 
high‑resolution panoramic images. The library and file format 
focus on a frequently encountered problem in image analysis, 
especially those artificial intelligent (AI) systems of computer 
vision in all domains.

Materials and Methods

The libMI library
LibMI was designed to read, write, modify, and annotate the 
WSI files. It treats each WSI file as a libMI project, which 
includes original image, labeling matrix, labeling table, and 
meta‑data, as shown in Figure 1. The mentioned objects would 
be saved as a folder with relevant files in it to provide portability 
and interoperability. Currently, we are using OpenSlide to read 
the image data from various proprietary digital slides, and 
further, modification can be made to support other large image 
formats such as DICOM, while hiding the working details of 
complex low‑level systems, such as the organization of the data 
structure and the algorithms to process these data from the user.

The library stores all important information in a single JSON 
file, which is a lightweight, text‑based, language‑independent 
data‑interchange format for the portable representation of 
structured data.[17] This file contains all parameters needed to 
process the image, as well as image meta‑data which are the 
properties of the original WSI file. Most vendors provide WSI 
files that contain various properties, such as the number of 
down‑sampled layers, available z‑stack layers, and scanning 
resolution. LibMI provides public Application Programming 
Interface (APIs)   to access existing properties and add new 
properties, which can be useful when new meta‑data must 
be saved.

The labeling matrix is stored in the MMSI open format that 
we proposed in this paper and is managed by our underlying 
library, which is based on the standardized SQLite schema. The 
matrix has the same dimension as the main image, with each 
pixel in the matrix describing which region each pixel belongs 
to with a unique ID number. Pixels with the same value can 
be recognized as being in the same region even though they 
may not be connected.

Labeling table contains the definition of each matrix region 
which is linked by ID number. Since there could be billions of 
different regions, the labeling table is also divided into smaller 
sections, compressed by the DEFLATE algorithm, and saved 
as blobs in SQLite. The blobs are dynamically created when 
needed to save disk space. The possible value in the labeling 
table is up to 255 for every region ID.

Intuitively, the proposed mechanism that incorporates MMSI 
labeling matrix with labeling table may seem to be redundant. 
Nevertheless, it is proposed to provide both efficiency and 
flexibility since MMSI matrix is strictly structured for read and 
write speed, and labeling table allows changes in the number 
of categories and addition in the description of each region. 
The combination of the labeling matrix and the labeling table 
provides the capability to annotate regions of any shape on the 
image and to give each region a corresponding label. Since 
the files in libMI projects are all standardized, including only 
SQLite and JSON, it is compatible with libraries or tools to 
directly access the project’s data without the libMI library.

The modifiable multiscale image file format
Since existing file formats cannot accommodate dynamically 
changing and complex data as needed in the WSIs, we propose 
MMSI which is an open file format to store extremely large 
images. It works with libMI library to store labeling matrices 
to support pixel‑wise annotation. It can also store the WSI 
files to give high‑efficiency read, write, and modify access of 
these images. MMSI stores images as a tile‑based pyramidal 
structure, containing several layers with different sizes. The 
lowest layer has the same dimension as the original image, 
and the following adjacent layer has half of both the width 
and height of the previous layer. Every 2 × 2 tiles in one layer 
can be directly mapped to a single tile in the upper layer as 
depicted in Figure 2a. Each layer is divided into tiles with the 
method as shown in Figure 2b. Each single tile is stored as a 
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blob in SQLite (https://www.sqlite.org/). MMSI can use PNG 
or JPG format as the internal compression method, which is 
selected by the user.

Currently, the ability of MMSI format to partially modify large 
images is only used to make pixel‑wise annotation, which 
is the main feature provided by libMI. Actually, this ability 
can benefit any process that requires modifications of data in 
large images, including general image preprocessing, noise 
reduction, image enhancement, and color value correction.

Underlying algorithms of modifiable multiscale image
Forward updating and backward updating
To efficiently read and modify the images, we utilize the concept 
of two‑dimensional segment tree and lazy propagation to 
minimize the calculation complexity. Each tile in the pyramid 
can be treated as a node on the tree, and each node has up to 
four children. Reading and modifying the tiles are the same as 
making queries and modifications. In this way, we can guarantee 
the upper limit of the number of tiles visited in each operation.

Forward updating and backward updating are the two essential 
operations in the processing algorithms. The former one means 
passing the modification from one node to its children and 
resetting the lazy value, while another one means passing 
the modification from the node’s children to itself. The time 
complexity of both operations is O (1).

Reading and modifying the image
Since WSIs are very large, it is impossible to load the whole 
image into the memory, so only parts of the image would 

be accessed by the library. In different situations, one may 
need to get a thumbnail of the whole image or get detailed 
information in a small region. The resolution of region of 
interest  (ROI) varies significantly in these two cases, but 
the actual resolutions the users need are limited by viewing 
hardware – computer displays. The concept of pyramid image 
is exploited to minimize the amount of data needed to read 
from hard disks.

For each reading or modifying operation, two input parameters 
are required: A ROI to operate, and the actual resolution 
needed.  Then, the appropriate downsample ratio (DSR) will 
be automatically calculated. Each layer has its own DSR, and 
the algorithm selects the preferred layer from them according 
to the following criterion: the layer with the highest DSR but 
still lower than the one requested by the user. In this way, we 
could get the output image with virtually no quality loss and 
guarantee the complexity to be minimized.

Reading and modifying arbitrary regions of the labeling matrix 
are the two main operations provided by the MMSI processing 
library. After selecting the preferred layer, the system starts 
from the top layer which has the lowest resolution. Forward 
updating is applied to every tile in the top layer. Iterating 
through each above the preferred layer, both operations would 
have the linear complexity of O (4 n/3). Figure 3 shows the 
schematic diagram.

In both operations, forward updating needs to be applied to the 
lazy valued tiles before accessing matrix data in the ROI. All 
lazy valued tiles which are in the ROI and above the preferred 

Figure 1: The libMI project organization. Each project contains three components: (1) Whole‑slide image data which include the original whole‑slide 
image file and the labeling table stored in an SQLite file, (2) annotations which include geometrical annotations and pixel‑wise semantic annotation 
labeling matrix stored in an modifiable multi‑scale image file, and (3) related data which include the image meta‑data stored in a JSON file

Figure 2: Tiling mechanism of modifiable multiscale image. (a) 2 × 2 tiles in a higher layer can be directly mapped to one tile in the lower layer. (b) 
The schematic diagram of tiling method of a layer in the pyramid

ba
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layer as the colored regions as shown in Figure 3a will be 
updated. Then, according to the type of requested operation, 
the algorithm will either read image data from the preferred 
layer or overwrite image data in the preferred layer.

Modifying operation requires extra steps. The mechanism of 
lazy propagation can only guarantee that the modifications 
applied to higher layers are passed to lower layers. To update 
modifications in the opposite direction, backward updating is 
applied to all tiles in the green regions layer by layer from the 
bottom to the top after red regions as shown in Figure 3b have 
been modified in each modifying operation.

The caching mechanism
The bottleneck between the memory and the SQL database is 
caused by intensive compression and read and write operations. 
To alleviate the bottleneck, libMI records the times that each 
tile has been visited and uses a priority queue to determine 
which tile should be removed from cache, according to the 
Least Frequently Used Strategy. Size of the cache can be 
changed at runtime via libMI API to adjust the balance between 
memory occupation and processing speed.

Parallel processing
LibMI supports parallel processing in each operation. Unlike 
OpenSlide and Bio‑Formats that require developers to 
use multithreads explicitly by themselves, libMI hides all 
implementation details from users and allows them to access 
the file in a serial manner, as well as gain benefit from a parallel 
processing mechanism provided by libMI.

Results

Overview
The proposed library, libMI, is capable of manipulating extremely 
large images and compatible with all OpenSlide‑compatible 
WSI files,[1] regardless of hardware limitations. It supports 
instantaneous reading, writing, and modifying image data of 
any region in any resolution without being forced to cut image 
into tiles or update an entire image and also recording pixel‑wise 
geometrical and semantic annotations, such as cancer subtypes or 
gradings. It is written in C++ and also officially provides public 
standardized programmatic APIs for Python. We analyzed the 

upper limit of time complexity in each operation, which will take 
no more than 800 ms in normal scenarios when the processing 
resolution does not exceed 10 megapixels, which is more than 
resolution needed to fill 4K computer displays at 8.3 megapixels. 
LibMI could be used on different platforms including Linux, 
macOS, and Windows. Along with the libMI library, MMSI is 
the open format we proposed which is capable of storing any 
kind of large images with any resolution. LibMI and MMSI are 
both free and open source. The proposed open data format is built 
on other open formats including SQLite for the storage of large 
multiscale images and JSON for accompanying information 
about the WSI; thus, it can be accessed via not only libMI but 
also other tools as well. More information about the guideline 
and the openness is at libMI documentation: https://bioai.gitlab.
io/libMI‑docs/.

Performance
The library is tested on an Intel Core i7‑9750H CPU 
(2.60 GHz) with 16 GB RAM and 1 TB SSD under Windows 
10 Operating System. We select four WSIs from The Cancer 
Genome Atlas (TCGA) with different dimensions to show the 
performance of MMSI processing different file sizes.[18] Table 1 
shows the files used and their sizes, including the original 
WSI file, the file after converting to MMSI with JPG and 
PNG internal compression method, respectively, and the total 
size of all image tiles exported from the WSI saved in PNG 
format. It shows that MMSI using JPG compression method is 
slightly larger than the original file, while MMSI using PNG 
compression method is significantly larger. Therefore, MMSI 
using JPG is more suitable to store WSIs for read‑only access 
after preprocessing, and MMSI using PNG is more suitable 
to store pixel‑wise annotation data as these data are easier 
to compress. The time spent to convert a WSI into MMSI is 
listed in Table 2. When converting, image data are read and 
uncompressed by OpenSlide and then compressed again and 
written into MMSI tile by tile.

Figure 4 shows the relationship between the required resolution 
and processing time of both the reading and modifying 
operations accessing an MMSI file using PNG compression 
with a typical WSI dimension (80,000, 80,000). It shows the 
performance when running with cache size of 4000 tiles, or 

Figure 3: Schematic diagram of a reading or modifying operation. (a) Region of interest in the pyramid structure. (b) Region of interest in the preferred 
layer. (c) Tiles in region of interest needed to be accessed in this operation. (d) Tiles in region of interest but irrelevant to this operation

dcba
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1 GB of RAM. In normal circumstances where the number 
of pixels processed does not exceed 10 megapixels, the 
processing time is at most around 800 ms. Note that in some 
circumstances, the processing time of reading operations can 
exceed that of modifying ones. It is because of the utilization 
of lazy propagation so that modifications applied do not take 
effect immediately, while the results are still guaranteed to be 
correct. In these experiments, reading or modifying regions 
are randomly selected, and in real‑world scenarios, the regions 
are likely to be continuous,[19] so the cache mechanism will be 
utilized to gain even higher performance.

Besides the capability of efficiently modifying WSIs, which 
is not supported by any other tools, libMI can also achieve 
higher performance when providing read‑only access to 
WSIs compared to congeneric software. The library is tested 
to perform read‑only tasks on the four WSI files from TCGA, 
and the processing time is compared with other two WSI 
reading libraries: OpenSlide and Bio‑Formats.[1,6] We randomly 
generated 100 reading requests for each WSI file and tested 
the speed using libMI to read MMSI files converted from 
proprietary files, as well as using OpenSlide and Bio‑Formats 
to read these original files. We tested the performance of MMSI 
with different compression methods, different cache sizes, and 
different number of threads.

The average reading speed for each WSI file is recorded 
in Tables 3 and 4. The result shows that MMSI using PNG 
is 18.237  times faster than OpenSlide and 32.473  times 
faster than Bio‑Formats in average, and MMSI using JPG is 
40.621 times faster than OpenSlide and 70.921 times faster 
than Bio‑Formats in average, while doing the same reading 
job. LibMI and MMSI together have gained significant speed 
advantage over congeneric libraries and file formats.

Use Case I: Applying conventional image operations on 
whole‑slide images
In medical image processing, thresholding algorithms could 
generate a binary image according to a source image and a 

given threshold. It is one of the essential operations used to 
analyze the image data because it can effectively separate the 
foreground from the background. Further, color correction 
or normalization is another algorithm that is often applied to 
microscopic images to standardize the color representation. 
This example uses the Otsu algorithm for thresholding and 
histogram matching method for color correction.[20,21] Sample 
WSIs come from TCGA,[18] as shown in Figure 5.

For thresholding, the example program iterates through tiles of 
the image using libMI library to obtain the intensity distribution 
of the image and to calculate the threshold and then iterates 
again to apply thresholding to the source image. The resulting 
image is stored in the MMSI format, and a thumbnail from a 
downsampled layer is obtained through libMI library.

For color correction, the gist is similar. The program first iterates 
both the source and target images to obtain the histogram and 
then iterates the target image again to apply color correction, 
store the result in MMSI format, and get the final thumbnail.

For normal images, these operations would not raise technical 
issues. However, for WSI, the operation must be applied to a 
small part of an image at a time due to hardware limitations. 
With libMI, developers can easily access image data of the 
WSIs tile by tile through the API of libMI library without 
any preprocessing and conveniently write the result image as 
another WSI file for further operations.

Usage Case II: Freehand pixel‑wise annotation
Pixel‑wise reading and writing annotations are one of the 
major features proposed by libMI. This allows annotators to 
add freehand annotations and image processing algorithms 
to perform image segmentation. Figure 6 shows the result of 

Table 1: Whole‑slide images files used in performance testing and their sizes in megabytes

ID File name Original MMSI (JPG) MMSI (PNG) Raw PNG
1 TCGA‑BP‑5201‑01Z‑00‑DX1 337 557 7649 7640
2 TCGA‑BP‑4771‑01Z‑00‑DX1 806 966 12,173 12,136
3 TCGA‑B0‑5098‑01Z‑00‑DX1 1034 1346 16,089 15,998
4 TCGA‑BP‑4176‑01Z‑00‑DX1 1174 1496 18,450 18,168
MMSI: Modifiable multiscale image

Table 2: Time spent to convert whole‑slide images into 
modifiable multiscale images in seconds  (s)

ID File name MMSI (JPG) MMSI (PNG)
1 TCGA‑BP‑5201‑01Z‑00‑DX1 534 664
2 TCGA‑BP‑4771‑01Z‑00‑DX1 753 1036
3 TCGA‑B0‑5098‑01Z‑00‑DX1 1258 1802
4 TCGA‑BP‑4176‑01Z‑00‑DX1 1082 1477
MMSI: Modifiable multiscale image

Figure 4: Processing time of libMI with cache size 16,000. X-axis is the 
requested resolution (megapixels) and Y-axis is the processing time (ms)
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two consecutive writing operations which create overlapping 
freehand regions. The fact that libMI API allows developers 

to access the labeling matrix at any region and resolution 
makes pixel‑wise modifications of labeling matrix possible. 
Intuitively, the modifications are made at the level where 
the annotator is currently viewing, and the modifications 
will be passed to other levels with different resolutions 
automatically. In the overlapping area of two annotations, 
the newer annotations would overwrite the former ones, for 
example  (a) would be overwritten by the latter one  (b) in 
Figure 6. This example has demonstrated that the library is able 
to automatically choose the proper layer to satisfy the accessing 
resolution and pass the modifications between different layers.

Code availability
Both the libMI library and MMSI open format are freely 
available at https://gitlab.com/BioAI/libMI under GNU 
General Public License v3.0, and the documentation for both 
libraries is available at https://bioai. gitlab.io/libMI‑docs/.

Figure  5: Whole‑slide image processed by conventional algorithms 
with assistances from libMI.  (a and b) Source and result image in 
thresholding, (c‑e) source image, target image, and result image of color 
correction, respectively

dc

ba

e

Table 3: Average processing speed in megapixels and equivalent megabytes with different cache sizes

WSI ID

Cache

1 2 3 4

PNG JPG PNG JPG PNG JPG PNG JPG
0

MP/s 273.67 288.26 222.50 410.84 242.82 512.50 226.30 496.30
MB/s 1094.70 1153.04 889.99 1643.37 971.28 2050.00 905.20 1985.20

1GB
MP/s 389.45 925.91 569.69 1419.40 740.15 1291.23 534.89 1382.45
MB/s 1557.79 3703.64 2278.75 5677.60 2960.61 5164.92 2139.57 5529.81

2GB
MP/s 534.82 979.34 645.73 1589.59 903.00 1497.12 893.28 1458.06
MB/s 2139.29 3917.34 2582.92 6358.37 3612.00 5988.47 3573.13 5832.23

4GB
MP/s 630.23 1003.07 813.11 1729.14 1074.34 1629.58 1226.28 1608.21
MB/s 2520.91 4012.26 3252.42 6916.58 4297.37 6518.32 4905.10 6432.83

MP/s: Megapixels, MB/s: Megabytes, WSI: Whole‑slide images

Table 4: Average processing speed in megapixels and equivalent megabytes with different thread numbers

Number of threads 1 2 4 8

Method WSI ID MP/s MB/s MP/s MB/s MP/s MB/s MP/s MB/s
MMSI (PNG) 1 120.83 483.33 214.24 856.95 395.04 1580.18 630.23 2520.91

2 212.63 850.53 346.30 1385.22 671.24 2684.94 813.11 3252.42
3 250.97 1003.89 485.30 1941.20 726.84 2907.35 1074.34 4297.37
4 238.58 954.30 365.88 1463.51 660.27 2641.08 1226.28 4905.10

MMSI (JPG) 1 231.51 926.03 368.04 1472.18 872.20 3488.78 1003.07 4012.26
2 337.04 1348.18 688.40 2753.60 1233.98 4935.93 1729.14 6916.58
3 407.96 1631.84 782.38 3129.52 1307.79 5231.14 1629.58 6518.32
4 375.96 1503.84 659.43 2637.72 1393.99 5575.98 1608.21 6432.83

OpenSlide 1 10.81 43.24 20.82 83.28 37.55 150.18 50.51 202.04
2 9.70 38.82 17.69 70.75 30.22 120.88 42.68 170.73
3 11.97 47.88 21.73 86.94 33.92 135.67 46.54 186.16
4 12.22 48.88 17.14 68.57 30.27 121.06 40.76 163.06

Bio‑Formats 1 5.49 21.98 11.49 45.94 19.61 78.45 24.32 97.28
2 4.15 16.60 8.39 33.57 15.74 62.95 21.37 85.48
3 4.22 16.88 7.59 30.38 14.82 59.26 20.83 83.34
4 4.99 19.94 9.25 36.99 16.88 67.54 22.09 88.34

MP/s: Megapixels, MB/s: Megabytes, WSI: Whole‑slide images, MMSI: Modifiable multi‑scale image
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Discussion

Since there are no strict definitions of extremely large image, 
except its dimension, the description of types of image array 
which MMSI file format can support should be clarified. 
In theory, the dimension of extremely large images can be 
indefinitely large; however, different aspects of hardware 
limitations which establish a working environment which 
software should follow include disk read/write speed, 
memory size, graphic‑processing unit processing throughput, 
and computer displays. In usual, we consider an image file 
larger than 6 GB when uncompressed, which is  (40,000, 
40,000) dimension with 32‑bit pixels, as an extremely large 
image. As an anchor, we suggest consideration of displayable 
pixels which will generally reflect the display resolution at a 
given displaying cycle (image frame). The current reference 
we adopt is 4 K resolution, approved by The International 
Telecommunication Union (ITU), which has the processing 
resolution around 8.3 megapixels. Another aspect to consider 
is image bit‑depth which has industry standard at 8‑bit, 16‑bit, 
and 24‑bit per channel. To preserve compatibility with existing 
viewing tools and data format when parts of extremely large 
image are requested to be viewed, both libMI and MMSI could 
store image with higher bit depth at 64‑bit for one pixel, so 
the color model can be either grayscale, true‑color with alpha 
channels, or other widely used color models, e.g., ARGB, HSV, 
and CIE L*a*b*. The production of extremely large images 
can be made through two approaches. First, taking several 
normal‑sized images and stitching them together such as 
those from WSI scanners or aerial imaging. Second, the image 
produced from a very high‑resolution image sensor. In either 
case, images saved should not only be small but also highly 
accessible so that they can be utilized efficiently.

The current version of libMI has achieved decent performance. 
We believe that the performance could be improved if the 
following limitations are addressed. The first is the reading 
and writing bottleneck. The libMI performance relies on fast 
disk reading and writing speed, and most of the processing 
time was taken by these operations. This problem is currently 
being addressed by a caching mechanism in libMI. The 

second is the compression time. In the cases that many 
sequential compression tasks are needed, the performance 
of the library may be affected. This problem is addressed 
by parallel processing mechanism in libMI. Finally, the 
performance of the library can benefit from better hardware 
with superior disk response time and read/write speed. LibMI 
uses the PNG lossless compression by default to avoid image 
quality deterioration after multiple modifying operations. 
Nevertheless, the JPEG lossy compression can also be utilized 
if only one‑off modification is required to minimize the WSI 
file size.[22]

Previous works in pathology have shown the potentials and 
possibilities of WSIs in automatic screening, diagnosis, and 
treatment planning of cancer patients.[7,23] The centralized 
large‑scale biomedical repositories hosting WSIs such as The 
Cancer Genome Atlas Project (TCGA) and Genotype‑Tissue 
Expression Project  (GTEx) have emerged,[18,24] and the 
performance of the repository distributing images to clients 
could be improved by letting viewers only access parts of 
WSIs without transferring entire files. Furthermore, efforts 
to tie nonimaging information in digital images have been 
made in numerous competitions, e.g., CAMELYON, TUPAC, 
and ICIAR.[25‑27] In those competitions, evaluations and 
developments of new and existing algorithms for automatic 
detection of cancer metastases in hematoxylin and eosin‑stained 
WSIs were proposed. Not losing the medical meta‑data along 
the way could benefit further analysis in the future.

LibMI and MMSI may be implemented in all computational 
environments: Cloud servers and local machines. Currently, 
there are a number of WSI‑compatible tools available for 
utilization including OpenHI, ASAP, QuPath, Cytomine, 
OpenSeadragon, and SlideJ.[12,13,28‑31] These frameworks are 
successful implementations of computational pathology to 
support visualization, annotation, and further pathological 
analysis. Unfortunately, many of them were being forced to 
only support proprietary WSI file formats since the free and 
open ones are not available. Extending the read/write engine 
of the mentioned framework to include libMI would allow the 
image, annotations, and associated clinical data to be saved in 
a single unified file. Pathological e‑learning resource database 
such as the Stanford Tissue Microarray Database and the 
“digital lung pathology” could be upgraded by adopting libMI 
as well.[32,33] This would allow them to overcome the current 
shortcomings such as fixed magnification and limited number 
of views. In implementation, there are no limits to how the 
proposed library and file format could be utilized.

LibMI also helps to save time and disk space in machine 
learning tasks which include WSIs. The conventional 
preprocessing method of WSI is to extract patches  –  fixed 
size small image tiles – which has the same dimensions as the 
input of analysis models; then, the annotation will be generated 
according to the tiles, e.g., image segmentation. This results 
in redundant disk space consumption. With the decent reading 
speed, libMI enables these machine learning algorithms to read 

Figure 6: The procedure of doing freehand pixel‑wise annotation in libMI. 
The test program writes two freehand annotations (a and b) to two different 
lower layers in the modifiable multiscale image pyramidal structure and 
read the result (c) from a higher layer (DSR is downsample ratio)

c

b

a
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image data from the WSIs directly during training, as well as 
pixel‑wise annotation data. The functionality of pixel‑wise 
annotation can also avoid the time consumed on converting 
soft overlay annotations. The only information that needs to 
be stored is the position of each patch, which is rather small 
compared to image data.

Conclusions

Currently, no tools are available for some essential operations 
in WSIs, especially to partially modify WSI in a subregion at 
different accessing levels. The combination of libMI library 
and MMSI file format resolves the problems since they 
provide simplified access to the complex file organization such 
as multiscale image and accompanying data. Furthermore, 
since the libMI project organization and MMSI file format 
are standardized and open, it can be accessed by anyone with 
other tools. To our knowledge, no open format is currently 
in use and can support efficient storage and modification of 
extremely large images. Therefore, libMI encourages the 
sharing of intermediate and final analysis results. In addition, 
libMI can significantly reduce the time complexity of large 
image modifications because of partial file modification and 
efficient updating algorithms, unlike other open image file 
formats such as BigTIFF, which requires the entire file to 
be rewritten. The performance and efficiency of libMI are 
further enhanced by characteristics of SQLite, compression 
algorithm, cache mechanism, and parallel processing, resulting 
in higher reading efficiency compared to congeneric software 
or libraries. With the mentioned advantages, libMI enables 
easier sharing, modification, and writing of large image data.

Since libMI is compatible with existing proprietary WSI 
formats, it can be integrated to existing systems without 
compatibility problems. Building analysis pipelines on libMI 
should be more straightforward since there is no need for 
complex preprocessing which transforms large images into 
smaller patches and keeping them in separated files. LibMI 
can promote the development of automated pipelines and 
the application of artificial intelligence in various domains, 
especially in pathology, since analyzing histopathological 
images is the key to assist automated diagnosis.
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