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Monoclonal antibodies (mAbs) are an important class of therapeutics used to treat cancer,
inflammation, and infectious diseases. Identifying highly developable mAb sequences
in silico could greatly reduce the time and cost required for therapeutic mAb development.
Here, we present position-specific scoring matrices (PSSMs) for antibody framework
mutations developed using baseline human antibody repertoire sequences. Our analysis
shows that human antibody repertoire-based PSSMs are consistent across individuals
and demonstrate high correlations between related germlines. We show that mutations in
existing therapeutic antibodies can be accurately predicted solely from baseline human
antibody sequence data. We find that mAbs developed using humanized mice had more
human-like FR mutations than mAbs originally developed by hybridoma technology.
A quantitative assessment of entire framework regions of therapeutic antibodies revealed
that there may be potential for improving the properties of existing therapeutic antibodies
by incorporating additional mutations of high frequency in baseline human antibody
repertoires. In addition, high frequency mutations in baseline human antibody repertoires
were predicted in silico to reduce immunogenicity in therapeutic mAbs due to the removal
of T cell epitopes. Several therapeutic mAbs were identified to have common, universally
high-scoring framework mutations, and molecular dynamics simulations revealed the
mechanistic basis for the evolutionary selection of these mutations. Our results suggest
that baseline human antibody repertoires may be useful as predictive tools to guide mAb
development in the future.

Keywords: monoclonal antibodies, antibody therapeutics, antibody repertoires, deep sequencing, protein stability,
affinity maturation, somatic hypermutation, developability
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INTRODUCTION

Monoclonal antibodies (mAbs) are now ubiquitous as
therapeutics, with over $100 billion in sales worldwide in 2020
(1) and applications ranging from oncology (2) and
inflammation (3) to infectious diseases (4). mAbs are
engineered not only to have potent and specific binding to a
given target but also to have favorable drug properties, including
in vivo stability, manufacturability, immunogenicity, solubility,
and polyspecificity (5). Identifying highly developable mAb
sequences in silico could greatly reduce the time and costs of
therapeutic mAb development.

Antibody sequences sourced from baseline human antibody
repertoires could inform our ability to engineer therapeutic
mAbs by ‘borrowing’ consensus mutations (6, 7). This premise
rests on the successful use of sequence conservation in protein
engineering for improving the functional properties of enzymes
(8–10), nanobodies (11), and membrane proteins (12).
Antibodies in particular contain great potential for sequence
optimization because every human body contains an estimated
1011 B cells with highly diverse antibody sequences (13),
providing a rich space from which to glean important insights
that could be used to guide future engineering efforts.

Using sequence conservation for improving antibody
properties was first explored by Steipe et al. (14), who used
known antibody sequences from the Kabat Database (15) to
identify consensus positions within mouse VK repertoires.
Mutation to the amino acids at these consensus positions
resulted in improved thermodynamic stability for the majority
of the antibody sequences tested. However, the power of any
sequence-based method relies on the size of the database. It is
now possible to sequence tens of millions of antibodies from a
single individual. Studies evaluating such human antibody
repertoires have focused on cataloging the immune response to
vaccination or infection (16–19). Recently, the Great Repertoire
Project conducted the most extensive attempt to sequence entire
baseline human antibody repertoires to date, acquiring a total of
364 million antibody sequences by sequencing full Leukopaks
from ten healthy, HIV-negative adults (20).

We revisited the idea that sequence conservation predicts
developable antibody sequences using this much more
comprehensive database of baseline human antibody
sequences, applied towards the analysis of FDA-approved
mAbs. Specifically, we sought to answer the following
questions: (i.) are there mutations from germline (GL)
sequences that are highly prevalent in baseline human
antibody repertoires and if so, are these also found in FDA-
approved mAbs, given the generally favorable developability
properties of these mAbs?; and more broadly (ii.) can sequence
information alone predict more developable from less
developable mAbs? We restricted our analysis to the
framework regions (FRs) of the variable heavy (VH) domain as
antibody FRs impact in vivo stability, solubility, and
immunogenicity (6) while also contributing significantly
less than complementarity determining regions (CDRs) for
binding antigen. We also explored some of the dynamics of
peptide-MHC-II interactions using computational binding
Frontiers in Immunology | www.frontiersin.org 2
predictions (21), as the MHC-II peptide epitope contained
within antibodies and other protein drugs has been recognized
as an important component of clinical success (22, 23). As a
result, sequence information for FR regions can be applied to a
broad array of antibodies with varying applications.

In this study, we present position-specific substitution profiles
(PSSM for position-specific scoring matrix) for antibody FR
mutations using the most complete dataset of baseline
antibody repertoire sequences to date (20). We show that
antibody repertoire-based PSSMs are consistent across subjects
and produce high correlations between GL VH genes with
expected differences based on sequence similarity and familial
relationships. Our analysis shows that mutations in existing
therapeutic antibodies can be accurately predicted solely from
repertoire sequence data. We then quantitatively assessed entire
FRs of these therapeutic antibodies and compared them to their
baseline human repertoire counterparts. These data suggest that
there may be potential for improving existing therapeutic
antibody properties through incorporation of additional
mutations of high-frequency in human repertoires. In addition,
we found that high frequency repertoire mutations tended to
reduce the affinity of germline-encoded peptides that bound to
MHC-II epitopes. Several therapeutic mAbs have common,
universally high scoring FR mutations, and simulations
revealed a mechanistic basis for the favorable drug properties
of some mutations. Overall, our results suggest that human
antibody repertoires are useful as predictive tools that will
facilitate engineering mAbs by improving drug-like properties.
METHODS

Selection of Human Repertoire
Antibody Sequences
In our analysis, we considered only the FR regions of
immunoglobulin G (IgG) VH antibody segments. IgM
sequences are the other common isotype included in the
database but were ignored because they typically have low
levels of mutation due to their role in the early stages of the
immune response (24). D and J segments were excluded since
these segments are highly variable, which would inhibit our
ability to achieve significant coverage of all possible mutations at
these positions.

Out of the 51 total VH genes in the Great Repertoire Project
database (20) (https://github.com/briney/grp_paper)
(data accessed November 2020), we analyzed 25 VH genes that
represented inferred precursors for the human/humanized FDA-
approved mAbs that we were able to collect sequences for.
Additionally, these 25 VH genes represent many of the most
common VH genes in this dataset. A minimum of 100,000
repertoire IgG variable heavy segments were extracted from
the database and analyzed for each GL. The cutoff value of
100,000 was deemed necessary for the creation of reliable scoring
matrices and was determined by a random subsampling analysis
where score differences were compared across multiple sampling
depths (Figure S1). It should be noted that the resulting
September 2021 | Volume 12 | Article 728694
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compiled sequences span several different alleles within each GL
gene, though these differences are later reconciled by adjusting
the scoring matrices to remove this bias, as described in detail in
a subsequent section. All GL VH genes excluded from this
analysis are in Table S1. GL VH genes were excluded either
due to low sequence counts or if no FDA-approved mAb
precursors were represented in the panel.

Selection of FDA-Approved
Antibody Sequences
FDA-approved antibodies included in the analysis were selected
according to three criteria: (i.) the sequences had to be human/
humanized antibodies (name ending in -umab), (ii.) the
sequences had to be available in the DrugBank database (25) at
the time of sequence collection (accessed October 28th 2020),
and (iii.) the Great Repertoire Project database (20) had to
contain more than 100,000 sequences from the same inferred
GL gene. It is critical that the analyzed antibody is human/
humanized since this allows for the antibody to be matched to
human GL genes.

In addition, to determine whether we can effectively identify
developability issues in antibodies, we selected sequences for a
second panel of engineered antibodies that were determined to
have biophysical properties that fall outside of historically
accepted limits. We used data from Jain et al. (5), which
identified 12 biophysical properties that were indicative of an
antibody’s likelihood of progressing through all three stages of
FDA approval. From this dataset, we selected all antibodies that
were found to have two or more biophysical properties that fell
outside of the described acceptable ranges. In addition, the
antibodies had to be human/humanized and the Great
Repertoire Project database had to contain at least 100,000
sequences in the repertoire database from the same inferred
GL gene. IMGT BlastSearch v1.2.0 (26) was used to infer the GL
gene for the VH sequence of each of the analyzed FDA-approved
antibodies, and the hit with the lowest E value was assigned as the
GL VH gene. As described below, position-specific scoring
matrices (PSSMs) for each of the 25 GL genes were then
constructed (Table S1).

Generation of Position-Specific Scoring
Matrices for Human VH Genes
A multiple sequence alignment was performed on each set of
sequences derived from a common GL gene using a lightweight
version of the MAFFT algorithm (27) designed for large numbers
of similar sequences and using the FFT-NS-2 progressive
alignment method in low-memory mode with the gap opening
penalty set to max (5.0). All other alignment parameters were set
to default. Each alignment file was collapsed into a single table of
mutational counts by tallying the number of observations of each
amino acid at each position in the sequence. This count output
was modified to remove instances of insertions, indicated by
positions that contained under 10% occupancy (i.e., more than
90% gaps). In addition, individual counts of wild-type (WT) and
allelic variants were removed (Table S4). Amino acid
substitutions with zero counts were replaced with a
pseudocount of one to circumvent an undefined score (acting
Frontiers in Immunology | www.frontiersin.org 3
as a lower bound for scores). Then, the tables were manually
aligned to IMGT human GL VH FR reference sequences (26) to
associate each column of the count table with a real position in
the FR sequence.

The counts for all amino acid substitutions within the FR
regions were log transformed into a score via the following
equation:

Sij = log1:26 a � Nij

SY
j=ANij

 !
(1)

Here Sij is the score of amino acid substitution j at position i
and a is a VH-specific constant (Range: 726-2228, s.d.: 320) that
centers the mean of the score distribution for VH-specific FR
mutations at zero. For comparisons across GL families, this a
normalization term results in a max difference of 4.9 between GL
with a difference of <1.0 at 1 s.d. Nij is the count of amino acid
substitution j at position i, the sum of which, over all amino acids
from alanine (A) to tyrosine (Y), is equal to the total number of
sequences without gaps in the multiple sequence alignment at
that position. We used a log base of 1.26 to adhere to previous
convention used by Dayhoff et al. for log-odds matrices (28).
PSSMs for the 25 analyzed GL VH genes can be found in
Data S1. This same protocol was then applied to the FDA-
approved antibody sequences, which were first aligned to their
corresponding GL sequences and then nonsynonymous FR
mutations and their respective scores were recorded.

Generation of Framework Scores for
Individual Antibody Sequences
We then derived an overall FR region score that we term an “FR
score”, a metric which can be used to compare sequences of
antibodies with different numbers of mutations across different
GL VH genes. We assumed that each FRmutation has an additive
effect and is independent of one another (no epistatic interactions).
With this assumption, the FR score is then defined as:

FR =

1   for  m = 0

∑mk=1Sijk
c0m + c1m2   for  m > 0

8><
>: (2)

where Sijk is the score of the k
th sequential FR mutation of amino

acid substitution j at position i as determined by Eqn. 1. The sum
of m (the number of FR mutations) mutation scores is
normalized by constants c0 and c1 which are specific to that
GL gene (Table S3), derived from a least squares regression. The
denominator of the FR score is a normalization constant which
gives an estimate of a typical score of a randomly sampled Ab
from the repertoire with the same number of FR mutations
(Figure S6). The FR score as derived gives an estimation of how
different an antibody’s framework mutations are as compared to
baseline human repertoire antibodies. As such, if an antibody has
framework mutations with scores similar to what we would
expect of a human antibody with an equivalent number of
mutations, this ratio becomes one. Thus, we assign all
antibodies with no framework mutations an FR score of one.
September 2021 | Volume 12 | Article 728694
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Prediction and Analysis of MHC-II Peptide
Epitope Affinity
MHC-II peptide epitope affinity prediction was carried out for a
set of 38 representative HLA-DRB1 alleles (21) using
netMHCIIpan 4.0 (29). Predictions were performed using
15-mer peptide scans for each peptide containing mutations
with an associated PSSM, and the netMHCIIpan flag -BA was
selected to obtain predicted MHC-II binding affinities.
Predictions were also carried out for germline (GL) peptides
using the same settings, for the 38 representative HLA-DRB1
alleles. Next, netMHCIIpan predictions for FDA-approved mAb
peptides were matched to GL peptides and their own binding
predictions. To track affinity changes from high affinity GL
peptides, peptides matching a germline peptide with peptide:
MHC-II KD < 1,000 nM were assigned to three different bins
based on the ratio of (mutated peptide KD/GL peptide KD). This
was done for KDs predicted for the same allele. Three bins were
created: KD fold-change < 0.5, 0.5 ≤ KD fold-change ≤ 2, and KD

fold-change > 2. We also considered the total set of peptides
matching any high affinity GL peptides (KD < 1,000 nM), and the
total set of peptides matching any low affinity GL peptide (KD >
1,000 nM). Next, PSSM values were averaged by DRB1 allele and
KD group using standard mean. This was done to reduce
redundancy, since the same peptide can have different affinities
for different HLA-DRB1 alleles and thus be in different KD

groups at the same time. As a result, average PSSMs per DRB1
and KD group take into account peptide contributions based on
differential DRB1 binding. Next, PSSM distributions were
compared between KD bins using a Welch Two Sample t-test,
and p-values were adjusted for multiple comparisons using the
Benjamini-Hochberg method. All data processing steps were
carried out in R.

Molecular Dynamics Simulations
Molecular dynamics (MD) simulations were carried out using
the GROMACS 2021 (30, 31) MD engine and the TIP3P (32) and
AMBER99SB-ILDN (33) force fields to explicitly model water
and the antibodies, respectively. Simulations were initiated from
crystal structures of the following antibodies: Atezolizumab
(PDB code 5X8L) (34), Daratumumab (PDB code 7DUN) (35),
and Omalizumab (PDB code 4X7S) (36), with all antigens/
ligands removed beforehand. Additional simulations were
performed with a single germline reversion mutation
incorporated into each mAb sequence (A54S for Atezolizumab
and Omalizumab, and F103Y for Daratumumab), using Visual
Molecular Dynamics (VMD) (37). Counterions in the form of
Na+ or Cl-, also described by the AMBER99SB-ILDN force field,
were added to the systems as needed to neutralize any net charge.
Each system contained between 67,000 and 94,000 atoms.

The initial coordinates for each system were minimized for a
maximum of 5,000 steps using a steepest descent energy
minimization. This was followed by 0.5 ns each of NVT and
then NPT equilibration simulations performed at 310 K using
the Bussi−Donadio−Parrinello thermostat (38), and at 1.0 bar
using the Berendsen barostat (39) (same temperature and
thermostat) for the NPT simulations. The time constant for
Frontiers in Immunology | www.frontiersin.org 4
coupling in both the NVT and NPT simulations was 0.1 ps. NPT
production simulations were then performed at the same
temperature and pressure and using the same thermostat and
Parrinello-Rahman barostat (40). Particle mesh Ewald (PME)
summations (41) were used to calculate long-range electrostatic
interactions with a cutoff of 1.0 nm, and Lennard Jones
interactions were calculated over 1.0 nm and shifted beyond
this distance. Neighbor lists were updated every 10 steps with a
cutoff of 1.0 nm and all simulations utilized full periodic
boundary conditions. Production simulations were carried out
for 0.3 ms each, for a total of 1.8 ms across the six simulations.

Standard GROMACS tools were used to compute the root
mean squared deviation (RMSD) of the antibodies from their
respective energy-minimized structures as a function of
simulation time. For all RMSD plots, data was plotted every
10th frame. We also computed the root mean squared fluctuation
(RMSF) of the heavy chains of the antibodies over the last half
(150 ns) of the simulations, during which time all six simulations
were deemed converged based on RMSD. All simulation images
were rendered in VMD.

Statistical Calculations
Unless otherwise noted, all p-values were calculated using
Welch’s t-test. Correlations were analyzed using a Pearson
product-moment correlation coefficient. Hierarchical clustering
for GL comparisons was performed using SciPy in Python
(www.scipy.org) using the unweighted pair group method with
arithmetic mean (UPGMA).
RESULTS

Generation of Unbiased Framework
PSSMs From Antibody Repertoires
We created an efficient method to score the set of individual FR
mutations in an FDA-approved mAb, which is shown
schematically in Figure 1 and is carried out as follows. First,
we identified the set of human or humanized FDA-approved
mAbs for which sequences were available in the DrugBank
database (25). From this list, we used IMGT BlastSearch (26)
to infer a GL VH gene for each mAb (Table S1). We restricted
our analysis to the FR positions of VH only (IMGT Numbering
FR16/24/25-26 depending on the VH; FR39-55; FR66-104), as
the Great Repertoire Project reported only heavy chain
sequences. Additionally, we considered only IgG sequences, as
IgM sequences typically have low levels of mutation due to their
role in the early stages of the immune response (23).

The collected IgG sequences from the Great Repertoire
Project come from the eight individuals available on GitHub
(accessed November 2020); our analysis of this dataset shows
that the extent to which a B cell population is mutated varies
widely across VH genes and individuals (Tables S2 and S3,
respectively). Our expectation is that this dataset is composed of
a minimally-biased representation of the baseline human
antibody repertoire that includes both naïve and mature B cell
sequences contained in the peripheral circulation. This
September 2021 | Volume 12 | Article 728694
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expectation is informed by an analysis of the dataset, which
reveals an average mutation frequency per position of 9.8%.
Additionally, we analyzed the entire set of IgG sequences for
synonymous (dN) and synonymous (dS) substitutions. Taking
the ratio of the total number of substitutions for each of these we
observe an overall dN/dS ratio of 2.87, indicating that these
sequences have undergone targeted mutagenesis and selection.
Further evidence for mature B cell sequences exposed to antigen
is found in comparison of mutation rates for IgG vs. IgM
sequences. Of the collected IgG sequences, 17.4% were found
to have >98% nucleotide identity with their corresponding
germline precursor and 3.3% are unmutated. These numbers
are considerably lower than those of the collected IgM sequences,
for which 54.6% were found to have >98% nucleotide identity
with their corresponding germline precursor and 14.0% are
unmutated (Table S3). Another piece of evidence for this
repertoire including B cells exposed to antigen result from
examination of the mutational rate of the CDRs relative to FR.
The frequency of mutation by position is plotted in Figure S2
and shows an average mutation frequency of 18.8% in the CDRs
versus 7.4% in the FRs.

We aligned a set of relevant IgG sequences by multiple
sequence alignment (27) in order to generate a FR position-
specific scoring matrix (PSSM) for each GL VH gene considered
(see Methods). For each FR position, we counted the number of
sequences observed to have a mutation at this position and log-
transformed this frequency to a score term. This scoring term has
one adjustable parameter per GL VH gene such that the mean
score for a randomly selected mutation would be zero. According
to how we defined this scoring term (seeMethods), higher scores
represent more commonly observed amino acid mutations and
the gross majority of scores range between -10 and 10.

One complication arising from statistical analysis of antibody
mutations is that humans possess significant allelic diversity in
VH genes, even in FR regions. For example, consider VH3-9
which has a T99M FR allelic variation (Table S4). In generating a
PSSM at position 99, one could identify the appropriate allele for
each patient (either T or M) and then generate separate PSSMs
for each allelic variation. Alternatively, we chose the simpler
Frontiers in Immunology | www.frontiersin.org 5
approach of removing all allelic variants from our PSSM since
these only affect a small minority of possible substitutions.

The actual number of IgG GL VH-specific sequences in the
Great Repertoire Project database varies tremendously, from
around 2,500 sequences (VH1-45) to more than 2 million
sequences (VH3-7). Given this range, we asked what number of
sequences would be sufficient for accurate recapitulation of GL
PSSMs. We chose to perform this analysis on VH5-51 by
subsampling between 1,000 and 300,000 sequences. For each
mutation, we computed the absolute difference between the score
derived from the full dataset (~700,000 sequences) and the score
from the subsample. Increasing the number of sequences from
1,000 to 25,000 led to increasing agreement with the full dataset,
with essentially no difference observed in the median
displacement at or above 25,000 sequences for the large
majority of scores (i.e., scores greater than -15) (Figure S1).
However, minor differences in displacement at 2s (95%) were
observed between 25,000 and 100,000 sequences. Thus, we
conservatively restricted our analysis of GL VH segments to
those with 100,000 or more IgG sequences present in the Great
Repertoire Project database. The GL VH genes analyzed and
resulting sequence counts are denoted in Table S1.

We then asked whether mutation frequencies would be highly
correlated between individuals and if the site-specific preferences
would be repeatable. To test this, we generated patient-specific
VH3-23 PSSMs for all 8 individuals for which data was available
which contained the same VH3-23*01 allele. The VH3-23 GL was
selected to ensure that a sufficient number of sequences was
available for generating these PSSMs. We observed a high degree
of correlation between patient scores with correlation coefficients
between 0.86 and 0.91 for all pairwise comparisons (Figure 2).
We then repeated our analysis considering only amino acid
mutations encoded by 1-nucleotide (nt) substitution, as these
points contain the highest sequence coverage in our dataset and,
therefore, are presumably most accurate. The results were
essentially unchanged, with pairwise correlation coefficients
between individuals ranging between 0.84 and 0.92
(Figure S3A). These correlation coefficients are only slightly
below the basal noise level (0.93-0.94) calculated by computing
FIGURE 1 | Generation of VH germline position specific scoring matrices. IgG sequences from a specific VH germline are extracted from the repertoire dataset and
aligned. Mutations from germline in VH framework regions are tabulated and then log-transformed into a position-specific score. This score function centers the
population of scores at zero with more frequent mutations indicated by a higher score. Data shown here is for the VH1-2 germline.
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the correlation coefficient between two independent random
samples for each of two patients (Figure S3B). These results
show that GL VH-specific FR mutations are largely repeatable
between individuals. This finding is not new, as Sheng et al.
showed in their analysis that affinity maturation somatic
hypermutation (SHM) seems to produce highly consistent
substitutions for antibody V segments across different donors,
even in the absence of functional selection (16). However, our
independent analysis on a unique dataset corroborates their
results, which together suggest underlying biophysical
mechanisms are responsible for the reproducibility of the
selection of certain amino acid mutations at different FR
positions. These results strongly suggest that the process of
affinity maturation results in replicable frequency distributions
of FR mutations at the amino acid level.

Such replicable frequencies can arise if a given FR mutation is
selected during affinity maturation for a general, antigen-
independent reason. For example, a given FR mutation may
improve the surface density of B cell receptors or could remove
an aggregation-prone patch on the surface of the protein. An
alternative but non-exclusive explanation is as follows. Sequences
from baseline human antibody repertoires tend to be enriched in
mutations which can be generated by a single nucleotide
substitution, while mutations that would require di- or tri-
nucleotide substitutions tend to occur less frequently. This is
because activation-induced cytidine deaminase (AID) primarily
generates single nucleotide point mutations in B cell receptor
sequences during affinity maturation (42), and as this mutational
frequency is ~10-3 per base per generation (43), it is far less
probable that the same codon will be targeted twice or thrice than
once. Consistent with this notion, analysis of our PSSMs shows
that FR mutation scores that are one nucleotide away from the
GL sequence are significantly higher (mean score of 8.42) than
Frontiers in Immunology | www.frontiersin.org 6
those requiring two or three substitutions (mean scores of -2.37
and -8.18, respectively) (Figure S4).

FDA-Approved mAbs Contain Framework
Mutations That Can Be Predicted From
Human Antibody Repertoires
We asked whether FR mutations in FDA-approved mAbs could
be predicted from native antibody repertoires. 39 FDA-approved
human/humanized mAbs were found to have sufficient depth of
coverage (i.e., > 100,000 sequences) in their GL VH family in the
Great Repertoire Project database and were thus subjected to
further analysis (Table 1). While the precise developmental
pathways for all of these FDA-approved mAbs are not publicly
available, it is known that most of the mAbs were discovered
using either hybridoma technology, transgenic mice, or
phage display.

On average, the 39 FDA-approved mAbs have a mean of six
VH FRmutations, and a range from zero to 16 FR mutations. The
degree to which these mutations might align with (and thus may
be predicted by) those found in human antibody repertoires is
difficult to know a priori. On the one hand, the use of phage
display or transgenic mice could result in a sufficiently different
selection environment than what exists during affinity
maturation in human germinal centers, leading to an
altogether different set of FR mutations than are evolved in
human antibody repertoires. On the other hand, the clinical
approval process eliminates any antibodies that may have been
selected ineffectively for drug-like properties and failed in
manufacturing or pre-clinical and clinical trials. The affinity
maturation process may indirectly select for some of the same
qualities of antibodies that have gone through regulatory
approval, including high expression yield, thermodynamic
stability, low non-specific binding, little to no aggregation
FIGURE 2 | Framework scores are repeatable between individuals. Distributions and correlations of patient-specific PSSM scores for the VH3-23*01 germline. Alphanumeric
characters on the y- and x-axes represent de-identified subjects.
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propensity, and low immunogenicity (44, 45). In this latter case,
FR mutations in FDA-approved mAbs could indeed be predicted
by baseline antibody repertoire abundance.

To answer this question, we used our GL VH-specific PSSMs
to score each FR mutation contained in the FDA-approved
mAbs. Strikingly, every one of the 16 GL VH families that
form the set of inferred precursors for these mAbs showed
significantly higher (at 95% confidence level) FR mutation
scores for FDA-approved mAbs relative to the set of all
possible mutation scores (Figures 3A, B, and S5, Table 1).
The statistical significance of this result ranged from a p-value
of 1.8e-5 (VH1-69) to 7.6e-8 (VH3-66) (Figure 3B). However, the
distributions in Figure 3B of the set of all possible mutation
scores do not reflect the number of repertoire antibody FR
mutations with given scores. Indeed, generating random
samples of scores for 1,000 repertoire antibody sequences from
each of these distributions shows that the majority of observed
antibody mutation scores in human repertoires are above 10
(Figure 3C). Plotting the individual mutation scores for the
Frontiers in Immunology | www.frontiersin.org 7
FDA-approved mAbs on top of these new distributions, we see
that the distributions match much more closely, with scores of
the FDA-approved mAbs now slightly below those of the
baseline antibody repertoires (Figure 3C). The slightly lower
scores of the FDA-approved mAbs largely result from the fact
that in each case, there are at least two mutations below a score of
zero, and for the entire dataset of FDA-approved FR mutations
10.3% had a score below zero. These results suggest that while
repertoire datasets can predict mutations in mAb VH FR regions
with reasonable accuracy, as indicated by the large overlap in the
distributions, there is also considerable room for engineering
mAb sequences to mimic baseline human repertoire antibodies
with increased fidelity.

FDA-Approved mAbs Have Lower FR
Scores Than Typical Repertoire Antibodies
Motivated by the previous results, we wondered how the
cumulative effect of all FR mutations for a given FDA-
approved mAb compares to that of baseline repertoire
TABLE 1 | Statistical significance for framework mutations for FDA-approved mAbs.

Germline Gene FDA-approved Antibodies Number of VH

Framework Mutations
p-value Number of Repertoire

Sequences Analyzed

VH1-2 Pembrolizumab 16 7.0E-06 300,000
VH1-3 Vedolizumab 9 4.7E-02 129,913
VH1-46 Benralizumab

Ravulizumab
Burosumab

24 1.1E-06 451,920

VH1-69 Risankizumab
Ixekizumab
Galcanezumab

23 1.8E-05 300,000

VH2-5 Palivizumab 7 5.1E-03 141,372
VH3-7 Secukinumab

Fremanezumab
Durvalumab

10 7.4E-05 2,003,693

VH3-9 Adalimumab
Ofatumumab
Sarilumab

9 7.6E-07 403,612

VH3-23 Pertuzumab
Denosumab
Daratumumab
Avelumab
Dupilumab
Emicizumab
Lanadelumab
Atezolizumab

38 9.3E-07 300,000

VH3-30 Ipilimumab
Erenumab

5 1.3E-04 300,000

VH3-33 Canakinumab
Nivolumab

4 2.1E-02 710,048

VH3-48 Certolizumab pegol 11 2.1E-03 300,000
VH3-66 Omalizumab

Trastuzumab
Eptinezumab

27 7.6E-08 321,361

VH3-74 Efalizumab
Elotuzumab
Atezolizumab

26 7.7E-05 1,355,540

VH4-4 Alemtuzumab 7 2.2E-04 1,003,945
VH4-30-4 Tocilizumab

Necitumumab
11 2.6E-06 160,757

VH5-51 Ustekinumab
Guselkumab

7 2.6E-05 702,327
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antibodies. To assess this, we assumed, for simplicity, that
individual mutations are independent, such that the
cumulative effect of FR mutations is best represented as a sum
of individual mutation scores. Due to the VH-specific centering
parameter included in the score function, individual mutation
scores cannot be directly compared across VH families. To
account for these differences, the score sum was normalized by
a regression function which estimates the typical score sum of a
randomly sampled repertoire antibody from the same VH family
with the same number of FR mutations (Figure S6 and
Table S5). The resulting “FR score” is defined such that a
score of one represents an antibody that has FR mutations
similar to that of a typical repertoire antibody framework
sequence (see Methods). Antibody sequences with no FR
mutations were assigned a pseudo-score of one since the
calculated FR score is otherwise undefined.

We then compared FDA-approved mAbs to repertoire
antibodies using FR scores. A simple random sample with
replacement of 1,000 repertoire antibody sequences across all
GL genes was generated and an FR score for each sampled
antibody was computed (Data S2). As expected, FR scores for the
repertoire antibodies center at a value of one (Figure S7). Next,
FR scores were calculated for all FDA-approved mAbs used in
the analysis above and the results are plotted along with the
repertoire averages in Figure 4A as a function of the number of
FR mutations. All individual mutation scores and FR scores for
FDA-approved mAbs are tabulated in Table S6.
Frontiers in Immunology | www.frontiersin.org 8
Thirty of the 39 FDA-approved mAbs have FR scores below
the baseline repertoire antibody average of one (p-value 1.4e-4).
Figure 4A highlights the five mAbs with the highest and lowest
FR scores. Denosumab and Dupilumab are the two highest
scoring FDA-approved mAbs with FR scores of 1.45 and 1.23,
respectively. Both mAbs have a small set of apolar/polar FR
mutations (A55G, A25G, S40T, A55S), and interestingly, both
mAbs share the same VH3-23 GL and were produced from
transgenic mice. Nivolumab is the lowest scoring FDA-approved
mAb with an FR score of 0.12 and only one mutation requiring a
2-nt change from the GL sequence (A24K: score=2.0).
Emicizumab and Pertuzumab, both from the VH3-23 GL and
both developed using hybridoma technology, also have low FR
scores of 0.32 and 0.26, respectively. However, the low scores of
these mAbs are only somewhat explained by the fact that 14
mutations (out of 17 total) are more than 1-nt away from the GL
codon. The solved complex of Pertuzumab and human
epidermal growth factor receptor 2 (ErbB2 or HER2) (46)
partially reveals the source of Pertuzumab’s low FR score. The
complex is unusual in that FR positions surrounding CDRH2 are
directly contacting ErbB2, including mutations for Y66I, A68N,
D69Q, and N82R. Thus, rare FR mutations are necessary in this
specific mAb for Erb2 recognition.

As shown above, the methods used to develop mAbs can
influence the selective pressure and, therefore, the mutations that
are incorporated into therapeutic mAbs. On average, we find that
the number of FR mutations in FDA-approved mAbs discovered
A

B C

FIGURE 3 | Regulatory approved monoclonal antibodies contain framework mutations predicted from human antibody repertoires. Repertoire-based PSSM scores
(gray) compared to FDA-approved FR mutation scores (colored) for each of four germline genes (Blue: VH1-46, Orange: VH1-69, Green: VH3-23, Red: VH3-66).
Individual scores (A) and distributions with kernel density estimates (B, C) are shown for scores of the entire set of possible substitutions (B) and all FR mutation
scores for a sample of 1,000 repertoire antibody sequences (C). P-values are calculated using single-tailed Welch’s t-test.
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by hybridoma technology is higher than in FDA-approved mAbs
discovered by transgenic mice or phage display (p-value ≤4.6e-5)
(Figure S8). Even though FR scores are independent of number
of FR mutations, we find that mAbs developed using hybridoma
technology scored significantly lower than transgenic mice
(p-value 5.5e-3), although there is not a statistically significant
difference between mAbs developed via hybridoma versus phage
display (p-value 0.13) (Figure 4B). Phage display and transgenic
mice technologies produce mAb FRs with similar FR scores
(p-value 0.29). Thus, for existing mAbs, those produced by
transgenic mice are the most representative of the baseline
human antibody repertoire in terms of their FR mutations.

We next questioned whether FR scores could be used to
diagnose mAb developability issues. Collecting an appropriate
dataset for this analysis is difficult, as there are few databases of
therapeutic antibodies with developability issues available in the
Frontiers in Immunology | www.frontiersin.org 9
publicly accessible literature. As a proxy, we chose to use the set
of “flagged” antibodies originally described in Jain et al. (5). Jain
et al. examined 12 different biophysical properties of a set of
mAbs in various stages of clinical trials, with outliers in any of
these properties considered “flags”. Two or more of these flags
identified a mAb as a developability risk. We compiled all
human/humanized mAb sequences from this analysis that
contained at least two flagged properties and sufficient
repertoire sequence data (39 in total). It should be noted that
five of the flagged Abs that we analyzed have since received FDA
approval and are therefore also contained within the FDA-
approved dataset. FR scores were calculated for flagged mAbs
and compared to our previously described panel of FDA-
approved mAbs (Figures 4C, S9 and Table S7). Six of the
flagged mAbs contained no FR mutations. As with the FDA-
approved mAbs, we see that flagged mAbs also contain
A

B C

FIGURE 4 | FR scores of FDA-approved and flagged mAbs are lower than typical human antibodies. (A) Comparison of FR scores for repertoire Abs and FDA-approved
mAbs. Error bars on FR scores represent 95% confidence intervals. (B) FR scores of FDA-approved mAbs by development method. (C) FR scores of repertoire, FDA-
approved, and flagged mAbs. (ns, p > 0.05, **p < 1e-2, ****p < 1e-4).
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significantly lower FR scores than a population of randomly
selected repertoire Abs (p-value 7.6e-3). However, there is no
statistically significant difference between the distribution means
(p-value 0.37) for regulatory-approved vs. flagged mAbs. Thus,
our FR score is too coarse-grained to differentiate between
antibody groups at such a late stage of development.

Biophysical Basis of Highly Prevalent
FR Mutations
Why is the frequency of a given FR mutation largely repeatable
between individuals? It could be the case that AID preferentially
encodes given FR mutations due to sequence hotspots (42, 47),
with minimal selection of the amino acid sequence. Alternatively,
there may be underlying biophysical bases for the selection of
certain sequences. However, uncovering the rationale for every
FR mutation is challenging as any individual mutation is
pleiotropic, thus impacting many qualities in vivo including
aggregation propensity, proteolytic stability, B cell receptor
expression, antigen-binding affinity, and polyspecificity.
Beyond these traits, it has also been hypothesized that
engineering antibodies with FR regions derived from GL gene-
preferred substitution patterns would result in lower
immunogenicity as these antibodies would more closely reflect
native antibody responses, which are readily recognized by the
immune system (6, 21). As an initial effort, we decided to focus
on two properties which could reasonably explain the molecular
basis behind these high scores: stability and MHC-II peptide
epitope content. These biophysical properties can be addressed
sufficiently using in vitro biochemical assays or in silico.

Other research groups have published the effects of FR
mutations on stability and heterologous expression yields
(Table 2) (48–51). Across these four studies, thermodynamic
stability was measured (as DDG, DT50, DTm) for nine point
mutants. All seven point mutants that required a 1-nt
substitution and had an individual mutation score above zero.
These seven showed neutral or improved stability. Additionally,
the two mutants with the highest mutation scores (VH1-69:
V76L; VH6-1: S74G) also showed the highest thermodynamic
Frontiers in Immunology | www.frontiersin.org 10
stability (measured as DT50). Together, these results hint at a
relationship between stability and repertoire abundance of a
given FR mutation, although the small size of this dataset does
not allow for sufficient statistical power to definitively draw a link
between these factors.

FR mutations could also be selected to decrease the MHC-II
epitope content of a given antibody sequence. Previous research
has shown that unmutated antibody sequences have germline-
encoded peptides that bind to and are presented by MHC-II
proteins. These peptide epitopes are targeted for removal by
SHM during B cell development in vivo (21). We sought to
determine whether individual FR PSSM scores calculated here
correlate with differential peptide:MHC-II binding affinities. To
address this question, MHC-II binding affinities (KD) for all
15-mer peptides in a sliding window (i.e., fragments of 15
consecutive amino acids) sourced from the 39 FDA approved
mAbs were calculated using a custom computational pipeline
(see Methods). For each peptide containing FR mutations,
mutation scores were binned by the KD fold-change from the
corresponding unmutated peptide’s KD. Interestingly, peptides
with > 2 KD fold-change from their unmutated germline peptides
showed higher PSSM scores than mutations with < 0.5 KD fold-
change, and these data were statistically significant. This analysis
suggests that prevalent FR mutations are more likely to decrease
the affinity of mAb peptide fragments for the MHC-II groove
than to increase the peptide:MHC-II affinity at a given mutation
site; these data were consistent with prior reports of human
repertoire antibodies using paired heavy and light chain human
sequence datasets (21) (Figure 5). As expected, mutations with
moderate or no change in binding (0.5 ≤ KD fold change ≤ 2)
showed the highest PSSM scores across all groups because the
majority of mutations do not affect the ~5-8 heavy chain variable
region MHC-II peptide epitopes for a given MHC-II gene.
Strikingly, we found that the high-affinity MHC-II peptide
epitopes showed higher PSSM scores than low-affinity MHC-II
peptide epitopes, and the differences were statistically significant.
Together, these data demonstrate that high-affinity MHC-II
peptide epitopes inside the antibody heavy chain variable
TABLE 2 | Differential stabilities for individual framework point mutants.

VH Gene Mutation (paper) Mutation (IMGT) Minimum nt Score Property* Reference

VH3-23 Q81H Q90H 1 16.1 Mean DTm = 0.0°C‡ (48)
A84P A96P 1 15.1 DT50 = 0.7°C (49)

VH1-69 M48G M53G 2 -1.4 DT50 = 3°C (50)
M48I M53I 1 11.4 DT50 = 2°C
V67I V76I 1 14.6 DT50 = 4°C
V67L V76L 1 19.1 DT50 = 7°C

VH6-1 V72D V69D 2 10.5 320%a, 180%b yield (51)
0.1a, 2.2b kJ/mol stability

S76G S74G 1 26.8 210%a, 150%b yield
3.7a, 3.5b kJ/mol stability

S90Y S88Y 1 4.4 180%a, 230%b yield
-0.1a, 1.4b kJ/mol stability
September 2021 | Volume 12 | Art
‡Mean DTm was calculated over all genotypes presented in Table 3 in ref (48).
*Yield is calculated as a relative percentage to the original antibody sequence.
aAntibody 2C2.
bAntibody 6B3.
icle 728694

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Petersen et al. Repertoires Predict Approved Antibody Sequences
region are preferentially targeted for mutations, in both human
repertoires and in clinically approved mAbs (Figure 5).

Position-Specific Framework Mutation
Scores Are Highly Correlated Between
Germline Families
It has been established that affinity maturation produces antibodies
that have GL-specific substitution patterns (16). What is the exact
correlation of substitutions between GL VH genes? To address this
Frontiers in Immunology | www.frontiersin.org 11
question, we calculated the Pearson correlation coefficient between
each pair of GL PSSMs (Figure 6). Overall, correlation coefficients
were quite high between GL PSSMs, ranging from 0.52 to 0.93.
Hierarchical clustering was performed, revealing that correlations
within subfamilies were higher than those between subfamilies. For
example, all of the VH1 GL members clustered tightly together, as
did those in VH3, and in VH4. The resulting clusters may, to an
extent, be reflective of sequence similarity: GL members within a
subfamily will have a higher pairwise amino acid identity than
between subfamilies, which could skew the results. To account for
this, we also calculated Pearson correlation coefficients only
between GL PSSMs for which a common DNA codon is shared
(Figure S10). As expected, higher correlations were observed
between subfamilies than before, but the overall clustering within
subfamilies was conserved. Thus, FR mutations are largely, though
not wholly, repeatable between GL families and the correlation is
stronger within subfamilies than between subfamilies.

Certain Highly Prevalent FR Mutations Are
Observed Across Many Germline Families
We next looked at ‘universal’ FR mutations, or highly abundant
mutations that are seen across all subfamilies considered. 18
mutations at 14 FR positions were enriched across all GL
members scanned in this work (Table S8). Overall, ‘universal’
mutations were largely chemically similar and/or polar
substitutions at positions predominantly on the protein surface
and distal to the CDRs. ‘Universal’ mutations also tended to be
the WT residue for at least some of the GL families. For example,
serine at FR85 is highly prevalent across GL families and is the
FIGURE 5 | Position-Specific Scoring Matrix (PSSM) distributions for
peptide mutations present in FDA-approved mAbs, binned by peptide:
MHC-II KD changes. Peptides were matched to V-gene germline peptides
after peptide KD prediction. For each group, the mean PSSM scores for
each DRB1 allele with median and interquartile ranges are shown. Peptides
mutated from high affinity germline peptides (KD < 1,000 nM) were grouped
based on KD fold-change from germline. The complete set of high affinity
and low affinity peptides (KD < 1,000 nM) is also shown. Differences
between groups was determined by a Welch Two Sample t-test, and
p-values were adjusted for multiple comparisons. A total of 3,135 peptides
were analyzed. ***p-value < 0.001 for comparisons between all groups,
except when noted. **p-value < 0.01.
FIGURE 6 | Position-specific framework mutation scores are highly
correlated within VH germline gene families. Pearson correlation coefficients
were calculated for each pair of PSSM scores. Germline families are grouped
by hierarchical clustering of Pearson correlation coefficients. Dendrogram
indicates similarity between germline members.
September 2021 | Volume 12 | Article 728694

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Petersen et al. Repertoires Predict Approved Antibody Sequences
WT residue for several VH GL families (VH1-2, VH1-3, VH1-46,
VH1-69, VH5-51).

We noticed a specific mutation (S54A) that shows up in several
FDA-approved mAbs (Pertuzumab, Atezolizumab, Omalizumab,
and Trastuzumab) with high scores across multiple GL VHs
(VH3-23 and VH3-66 with scores of 20 and 17, respectively).
This mutation, which was observed at a frequency of 8.1% in the
analyzed VH3-23 sequences, has also been observed at similar
Frontiers in Immunology | www.frontiersin.org 12
frequencies in another antibody evolution study (19). Figure 7A
shows the predicted scores for the mutation of residue 54 to five
different amino acids (A, C, G, S, and T) across all 25 GL VH genes
studied. We observe that this specific mutation also shows up in
multiple other GL VHs for which there is no corresponding FDA-
approved mAb (VH3-20, VH3-21, VH3-48, VH3-74, and VH3-9,
with scores ranging from 20-21). To understand the mechanistic
basis for S54A selection, we analyzed the four FDA-approved
A
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C

FIGURE 7 | Molecular dynamics (MD) simulations indicate the ‘universal’ FR mutation S54A improves mAb stability. (A) Heatmap of FR scores for the mutation of
residue 54 to different amino acids for each of the 25 germline genes. (B) Change in stability as predicted by PremPS upon introducing the A54S germline-reverted
mutation into the sequences of four FDA-approved mAbs from two different germlines. (C) Root mean square deviation (RMSD) of Atezolizumab with and without the
germline-reverted mutation A54S, referenced to the respective energy-minimized structures, as a function of MD simulation time. (D) Root mean square fluctuation
(RMSF) of individual residues in Atezolizumab with and without the A54S mutation, calculated from the MD trajectories. (E) Energy-minimized structure of Atezolizumab in
white, with regions in green indicating residues that experienced relatively large fluctuations in the MD simulations, as indicated in (D) by square brackets. (F) Zoomed-in
view of region-of-interest (A) from panels (D, E), showing the favorable hydrophobic binding pocket of A54 in Atezolizumab (top) and the stability of surrounding loop
regions (bottom; 15 overlaid snapshots, equally spaced across the entire trajectory). (G) MD simulation snapshot of Atezolizumab with (blue) and without (green) the
germline-reverted mutation A54S, highlighting differences in local secondary structure (top) and relatively large fluctuations in surrounding loops (bottom). A black dashed
line indicates a hydrogen bond.
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mAbs listed above with this S54A mutation. To test for increased
global stability of the mAbs, we utilized the online protein stability
prediction algorithm PremPS (52) to determine the impact of
reverting the alanine at position 54 in each of the four mAbs back
to its identity of a serine in the respective germline sequences
(Figure 7B). The A54S reversion mutation was predicted by
PremPS to decrease mAb stability (calculated as DDG) for all
four mAbs, indicating the forward mutation (S54A) in the mature
FDA-approved sequences was predicted to be stabilizing. In
addition, we see on average a 1.9-fold reduction in peptide:
MHC-II affinity for peptides from FDA-approved mAbs with
this mutation. Thus, in silico methods predict that S54A reduces
the potential for CD4+ T cell immunogenicity and increases global
stability in these four mAbs.

To gain a more mechanistic picture of how the S54A
mutation mediates stability in the mature FDA-approved
mAbs, we performed molecular dynamics (MD) simulations of
Atezolizumab both in its mature form (e.g., with A54) and with
the germline-reverted mutation (e.g., with S54). Production
simulations were performed for 0.28 s in the NPT ensemble,
using the GROMACS-2021 (30, 31) simulation engine and the
AMBER99SB-ILDN (33) and TIP3P (32) force fields to describe
the mAbs and solvent, respectively (see Methods). Figure 7C
shows the root mean square fluctuation (RMSD) of the mature
and mutant forms of Atezolizumab from the respective energy-
minimized crystal structures as a function of simulation time.
The results show the RMSD of the mature mAb was consistently
lower than that of the mutant mAb, indicating increased stability
of the mature mAb due to the S54A mutation, in line with both
our mutation scores and PremPS results.

Increased stability due to the S54A mutation is further
supported by the higher root mean square fluctuation (RMSF) of
residues in the mutant versus mature mAb during the simulations
(Figure 7D). In particular, we observe a distinct region in the VH

where residues in themutantmAb experienced increased flexibility
(decreased stability) during the simulations, namely IMGT-aligned
VH residues 26-72. This region corresponds to a -sheet on which
residue 54 is situated (Figure 7E), indicating the observed changes
in RMSF are directly attributable to this mutation. In the mature
mAb simulation, we observe A54 to be optimally situated within a
hydrophobic pocket formed by the inward-facing side chains of
surrounding residues (Figure 7F, top). Favorable binding
interactions between the methyl group on A54 with these
hydrophobic side chains during the simulation results in
relatively small fluctuations of nearby loops (Figure 7F, bottom),
which includes the CDRH2 loop that is often in direct contact with
antigens. Conversely, substituting a serine into this hydrophobic
pocket leads to S54 having an unsaturated hydrogen bond. The
polar side chain of S54 is observed to rotate freely during the
simulation, forming a hydrogen bond only transiently with a nearby
residue (Figure 7G, top) and causing increased fluctuations in the
nearby loops (Figure 7G, bottom). The decreased motion of the
CDRH2 region due to the S54A mutation is consistent with
previous studies showing Ab rigidification may selectively occur
during affinity maturation for certain GL families upon binding
antigen (53). Future computational studies could test this directly
Frontiers in Immunology | www.frontiersin.org 13
through MD simulations of FDA-approved mAbs in complex with
their cognate antigens. Figure S11 demonstrates this mechanism of
stability due to the S54A FRmutation is the same for VH3-66-based
mAbs as well, underscoring the ‘universal’ nature of this mutation.

We observed a second mutation (Y103F) with even higher
prevalence among human repertoire antibodies. Figure 8A shows
the predicted scores for the mutation across residues with similar
hydrophobic side chains and/or aromatic structures (F, H, M, W
and Y) for all of the 25 GL VH genes studied. Our results show
that this mutation broadly occurs across many of the GL VH
genes, with high scores ranging between 18 and 22. In addition, it
should be noted that 103F is present in several mouse germlines
(VH1, VH9, VH11, VH13) (26), providing evidence that this
mutation should be structurally tolerated particularly for mouse-
derived antibodies. Our collected data gives a frequency of 12% for
the Y103F mutation, which is consistent with the ~15% frequency
found in a prior antibody evolution study (19).

To determine the impact of the Y103F mutation on mAb
stability, we analyzed the single FDA-approved mAb
(Daratumumab) containing this mutation, as well as three
other mAbs identified through an IMGT BlastSearch to have
this mutation. The three non-FDA-approved mAbs included the
anti-influenza FluA-20 Fab from the VH4-61 GL family, the anti-
HIV 17b Fab from the VH1-69 GL family, and the anti-malarial
092096 Fab from the VH1-24 GL. As with the S54A mutation, we
first utilized PremPS to assess the change in mAb stability upon
reversion of the phenylalanine at position 103 in the mature
sequences of these mAbs to its identity of a tyrosine in all of the
respective germlines. Figure 8B shows that this mutation, in
contrast with the S54A mutation, is predicted to be destabilizing
to all four of the analyzed mAbs. This prompted us to explore
this mutation further: why would an antibody repeatably select a
destabilizing mutation during affinity maturation, particularly
one far away from the binding site?

To address this question, we performed MD simulations of
Daratumumab both with and without the Y103F mutation.
Production simulations were carried out as described earlier for
the simulations with Atezolizumab and Omalizumab (see also
Methods). Over the converged, second half of the simulation, we
observe the RMSD of the mature antibody to be consistently
higher than that of the mutant mAb (Figure 8C), suggesting this
mutation is indeed destabilizing. This result aligns with our
PremPS results but still contradicts our mutation scores.

Decreased mAb stability due to the Y103F mutation is also
evidenced by the decreased RMSF values of residues in the
mutant versus mature mAb, averaged over the converged
portion of the simulations (Figure 8D). The largest RMSF
differences are observed for IMGT-aligned VH residues 19-80.
This region corresponds to FR2, CDR2 and FR3 and directly
contacts the Y103F mutation, which is situated between the VH

and VL domains of the antibody Fab (Figure 8E). In the
simulation of the mutant mAb, the tyrosine is observed to
form consistent hydrogen bonds with neighboring residues,
whereas the phenylalanine in the simulation with the mature
mAb is unable to do so (Figures 8F, G, top). Consistent
hydrogen bonds formed by Y103 essentially lock the tyrosine
September 2021 | Volume 12 | Article 728694
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into place, leading to relatively small fluctuations in surrounding
loops during the simulation (Figure 8G, bottom). Conversely,
large fluctuations in neighboring loops are observed in the
simulation with the mature mAb (Figure 8F, bottom).

Overall, our simulations support the PremPS result that
Y103F destabilizes the structure of Daratumumab, which
indicates that the effects of this particular mutation may be
much more context specific. However, due to the mutation’s
Frontiers in Immunology | www.frontiersin.org 14
unique location at the intersection between the VH and VL

domains of the antibody, we hypothesize that Y103F may
facilitate a favorable conformational transition of the antibody
upon antigen binding. This could explain the high prevalence
with which this mutation is observed in baseline human antibody
repertoires, but would require data on the light chain sequences
of the antibodies to make more firm conclusions. Regardless, the
negative impact of the Y103F mutation on the stability of
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FIGURE 8 | MD simulations indicate the ‘universal’ FR mutation Y103F decreases mAb stability. (A) Heatmap of FR scores for the mutation of residue 103 to
different amino acids for each of the 25 germline genes. (B) Change in stability as predicted by PremPS upon introducing the F103Y germline-reverted mutation into
the sequence of Daratumumab and three other human mAbs found to have the F103Y mutation. (C) Root mean square deviation (RMSD) of Daratumumab with and
without the germline-reverted mutation F103Y as a function of MD simulation time. (D) Root mean square fluctuation (RMSF) of individual residues in Daratumumab
with and without the F103Y mutation. (E) Energy-minimized structure of Daratumumab in white with highly fluctuating regions in green, as indicated in (D) by square
brackets. (F) Zoomed-in view of region-of-interest from panels (D, E), highlighting the reduced hydrogen bonding capabilities of F103 in Daratumumab (top), leading
to increased fluctuations in surrounding loop regions (bottom). (G) MD simulation snapshot of Daratumumab with the F103Y mutation, highlighting the strong
hydrogen bonding capacity of Y103 (top), leading to reduced fluctuations in surrounding loops (bottom).
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Daratumumab suggests it may be important to consider a wide
variety of mutations - whether frequently observed or not - when
analyzing or engineering new therapeutic antibodies.
DISCUSSION

In this work, we generated PSSMs using repertoire sequences
from 25 GL genes. We used these scores to assess framework
mutations of FDA-approved therapeutic antibodies and to
determine the degree of similarity with human antibody
sequences. We found that mutations in FDA-approved
antibodies are also common in human antibody repertoires.

To understand why high frequency repertoire mutations are
observed, we analyzed various high-scoring mutations for stability
effects, as we expect thermostability to be a top priority to select for
in both baseline human repertoire antibodies as well as antibody
therapeutics. Due to scant evidence in literature, we were unable to
make firm conclusions about this claim. A comprehensive study of
stability would be necessary to resolve this issue by directly testing
many antibody variants in vitro. The potential for CD4+ T cell
immunogenicity is another critical factor that should be selected for
in baseline repertoire and human-engineered antibodies. Our work
shows that increasing PSSM scores correlate with decreasing
peptide:MHC-II binding affinity, signifying removal of CD4+ T
cell (MHC-II) epitopes and potentially decreasing immunogenicity,
a critical quality in antibody therapeutics. In future therapeutic mAb
development, we speculate that repertoire-based PSSMs could be
utilized as early warning signals that a sequence may have
developability flags or induce an immune response.

The high scoring FR mutation S54A was evaluated in silico and
by simulations, where we found clear evidence supporting the
claim that S54A confers benefits to both stability and reduced
MHC-II peptide epitope content. While we anticipate the factors
investigated (thermostability andMHC-II peptide epitope content)
to be highly correlated with relative repertoire abundance, there are
clearly many other factors to discover. This is made clear by the fact
that some mutations that we would expect to be detrimental to
stability, like Y103F, seem to have high scores. This must be
because they were selected for other benefits not considered in
this study. We expect that future research surrounding human
antibody repertoires will continue to illuminate the poorly
understood selection criteria that are implemented in affinity
maturation with regards to framework mutations.

Our work highlights several important findings of baseline
human antibody repertoires and the dynamics of affinity
maturation that produce them. We found that framework
mutations are remarkably consistent across individuals,
suggesting that affinity maturation is selecting mutations in a
consistent manner. This finding indicates that it may be well-
suited for computational modeling, allowing for accurate
prediction of the types and frequencies of framework mutations
produced in affinity maturation. In addition, our results
independently confirm the notion that mutation profiles are GL-
dependent. We showed that the correlations between mutation
scores of germline family members are much higher than those
Frontiers in Immunology | www.frontiersin.org 15
across families. This analysis denotes that mutational frequencies
are highly dependent on sequence, likely due to AID’s intrinsic
mutational biases. We look forward to future research aimed at
determining the degree to which baseline human antibody
repertoire mutations are dictated by the precursor local
sequence environment.

Previous work on humanization of mouse Abs showed the
importance of FR Vernier positions that scaffold and impact
affinity of specific CDRs. We do find that such Vernier positions
close to CDR1 and CDR2 have increased mutational frequency
relative to other FR positions (Figure S2); future work could
identify the covariation of specific FR and CDR mutations, and
we expect that similar refinements may identify FR mutations
that are context-specific for individual CDRs or, in the case of
Y103F, different light chains.

With the current high costs of and increasing demand for
mAb therapeutics, methods that can infer sequence to function
relationships are very valuable. We speculate that incorporating
high scoring mutations into mAb sequences will further enhance
drug-like properties for existing therapies and could significantly
reduce development costs for future mAbs.
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