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Abstract

The Anthropocene epoch is partly defined by anthropogenic spread of crops beyond their

centres of origin. At global scales, evidence indicates that species-level taxonomic diversity

of crops being cultivated on large-scale agricultural lands has increased linearly over the

past 50 years. Yet environmental and socio-economic differences support expectations that

temporal changes in crop diversity vary across regions. Ecological theory also suggests that

changes in crop taxonomic diversity may not necessarily reflect changes in the evolutionary

diversity of crops. We used data from the Food and Agricultural Organization (FAO) of the

United Nations to assess changes in crop taxonomic- and phylogenetic diversity across 22

subcontinental-scale regions from 1961–2014. We document certain broad consistencies

across nearly all regions: i) little change in crop diversity from 1961 through to the late

1970s; followed by ii) a 10-year period of sharp diversification through the early 1980s; fol-

lowed by iii) a “levelling-off” of crop diversification beginning in the early 1990s. However,

the specific onset and duration of these distinct periods differs significantly across regions

and are unrelated to agricultural expansion, indicating that unique policy or environmental

conditions influence the crops being grown within a given region. Additionally, while the

1970s and 1980s are defined by region-scale increases in crop diversity this period marks

the increasing dominance of a small number of crop species and lineages; a trend resulting

in detectable increases in the similarity of crops being grown across regions. Broad similari-

ties in the species-level taxonomic and phylogenetic diversity of crops being grown across

regions, primarily at large industrial scales captured by FAO data, represent a unique fea-

ture of the Anthropocene epoch. Yet nuanced asymmetries in regional-scale trends suggest

that environmental and socio-economic factors play a key role in shaping observed macro-

ecological changes in the plant diversity on agricultural lands.
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Introduction

A major line of scientific evidence defining the Anthropocene epoch–the period of Earth’s his-

tory defined by the dominance of humans–is the human-caused changes in Earth’s biodiversity

and biogeography. While there are multiple dimensions to changes in biogeography in the

Anthropocene [1], changes in the human-mediated spread of crops beyond their regions of

domestication into other parts of the world are central to these arguments [2, 3]. Some of the

most prominent shifts in crop biogeography occurred during the “Columbian Exchange”: a

major interchange of commercially important plant species during in the 15th and 16th centuries

between the Old and New Worlds [4–6]. Yet more recently since the 1950s, global-scale analyses

indicate that there have been major influxes (and subsequent domination) of crops into the

food supplies, diets, agricultural economies, and farmlands in many parts of the world [3, 7, 8].

Global-scale assessments of the changes in crop diversity over recent decades have largely

reported linear increases in the crop diversity (and evenness) associated with global diets and

agricultural economies, with these patterns being key for understanding trends in food pro-

duction, consumption, and trade [3, 7–9]. Yet while these patterns are certainly notable cf. Fig

2 in [7], there is reason to expect that the timing and rate of change in the diversity profiles of

croplands has also differed drastically among regions. Specifically, agricultural trade liberaliza-

tion and structural adjustment programs throughout the 1980s incentivized the production

and export of a few select crops or genotypes, with major impacts on crop selection and man-

agement at the regional- or country-level e.g. [10, 11, 12]. Such programs overwhelmingly

impacted developing regions, leading to the expectation that patterns of crop diversification

over the past 50 years have likely differed drastically among regions. At the same time, climatic

limitations to growing certain crops in higher latitudes also has likely led to less drastic or

immediate shifts in agricultural diversity in these regions, as compared to lower latitudes e.g.

[13]. To date, however, patterns of crop diversification have not been evaluated through

regional comparisons of crop diversity change through time.

Furthermore, existing global evaluations of crop diversity have primarily focused on taxo-

nomic diversity–measured as crop species richness–across global scales [3, 7]. Yet these analy-

ses may overlook shifts in the evolutionary profiles of croplands. Ecological theory and

research suggests that crop evolutionary diversity–referred to in the ecological literature and

hereafter as “phylogenetic” diversity–would provide more mechanistic insights and predic-

tions into the sustainability and functioning of agricultural systems, including net primary

production, and resistance or resilience of crops to pests, pathogens, or environmental change

[14–16]. However to date there remain no analyses evaluating if changing composition of agri-

cultural commodity groups (or species) has resulted in commensurate changes in phylogenetic

diversity.

On one hand, the aggressive expansion of a relatively small number of plant crop lineages

at the expense of others in certain parts of the world–including oil crops and western cereals

such as wheat and maize or other crops within the Poaceae or Fabaceae–suggest that fewer

plant evolutionary lineages now makeup agricultural lands [7, 17]. This increasing dominance

of a small number of commodity groups would lead to expectations of strong temporal

declines in crop phylogenetic diversity globally. Yet on the other hand, the potential for differ-

ent regions, especially in the tropics, to cultivate and produce an evolutionary diverse range of

crops would suggest metrics of phylogenetic diversity has in fact increased drastically over the

past 50 years, with patterns differing among regions.

Hypothesized changes in crop taxonomic- and phylogenetic diversity within regions (i.e.

crop α-diversity), also leads to expectations of shifts in crop diversity among regions (i.e. crop

β-diversity). Specifically, if detected, systematic increases in crop α-diversity are likely to
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correspond to declines in crop β-diversity among regions, since increasing crop diversity on

farms within one region will necessarily increase the likelihood of observing similar crops on

farms within other regions. This is particularly the case when new crops are being introduced

from other regions, and not being derived through in situ crop diversification. Such patterns

would indicate increasing homogenization of croplands worldwide, which would have major

implications for agricultural sustainability worldwide. In particular, under conditions of

declining crop β-diversity globally, theory and observation would predict increasing crop sus-

ceptibility to pest and pathogen outbreaks, or climatic change, at global scales [7].

Here, we employ crop production data from the Food and Agricultural Organization

(FAO) [18] from 1961–2014, available for 161 plant-based commodity groups (Table A in S1

File), across 22 FAO-recognized subcontinental regions, in order to address the following

questions: 1) Do agricultural regions show differing patterns of crop taxonomic and phyloge-

netic diversification through time? 2) Are changes in crop taxonomic and phylogenetic diver-

sity predicted by agricultural expansion alone? 3) Do changes in crop taxonomic diversity

result in commensurate change in the phylogenetic diversity of crops through time? And

finally 4) how do changes in crop diversity within regions (i.e. crop α-diversity) impact the dif-

ferences in crop diversity among regions (i.e. crop β-diversity)?

Materials and methods

Crop species identification and abundance estimates

Our analysis was based on crop production data from the Food and Agricultural Organization

(FAO) from 1961–2014, which is reported for 161 plant-based commodity groups (Table A in

S1 File) [18]. We extracted data on the area harvested (in ha) across 22 FAO-recognized sub-

continental regions, as well as an overall global estimate. Complete data on area harvested

(n = 54 years) was available for all 161 FAO commodity groups in all regions except for Central

Asia (where data dates from 1992–2014, n = 23 years; S2 File).

Our analysis employed diversity metrics that relied on species-level taxonomy, by following

a two-step process to identify the crop species associated with each commodity group.

(Although genetic diversity is a critical aspect of agricultural diversity, it is not possible to

account for cultivar or landrace level diversity empirically since the FAO does not report data

beyond the species level.) First, we used FAO commodity group codes, in conjunction with the

FAO Commodity List tool (www.fao.org/economic/ess/ess-standards/commodity), to identify

the crop species the FAO associates with each group (Table A in S1 File). Second, the final list

of crops for each commodity group was cross-referenced with the Taxonomic Name Resolu-

tion Service v. 4.0 [19], to correct inconsistencies and remove synonyms. Through this process

we removed four FAO commodity groups that were not associated with any specific crop spe-

cies, or associated with non-plant species. Our analysis thus relied on 157 commodity groups

associated with 337 unique crop species across 233 genera and 77 families (Table A in S1 File).

Since FAO does not differentiate harvested area associated among species within commod-

ity groups, diversity in each region-by-time combination was calculated assuming only one

species per commodity group. While this approach may underestimate diversity in some

instances, the only viable alternative–assuming all species within a group are present within a

region–would present a stronger bias (e.g. the “Vegetable, Fresh nes” group contains 27 spe-

cies; Table A in S1 File). We used area harvested as our estimate of species abundance.

Measuring taxonomic crop alpha (α-) diversity

For each region-by-year combination we calculated the diversity of crops within a region (i.e.

crop alpha (α-)) as both i) species richness (SR), or simply the number of crops present within
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a given region within a given year, and ii) Simpson’s diversity index (SD). The latter (SD) was

calculated using the ‘vegan’ R package [20], and in short, is a metric in community ecology

that accounts for both SR and the abundance of species when quantifying α-diversity. This

index ranges from 0–1, such that an SD value of 1 represents “infinite diversity” and an SD
value of 0 represents no diversity. For our analyses here changes in SD through time can be

interpreted as follows: i) increases in SD within a given region through time, are interpreted as

reflecting regions where overall crop α-diversity is comprised of a greater number of crops

which are becoming more equitable in their abundances, while i) declines in SD within a given

region through time, are interpreted as reflecting regions where overall crop α-diversity is

becoming dominated by a fewer number of highly abundant crop species.

Measuring phylogenetic/ evolutionary crop alpha (α-) diversity

We then calculated metrics of phylogenetic/ evolutionary crop diversity that were essentially

analogous to SR and SD, but instead take into account evolutionary diversity among crop spe-

cies. This was done by first constructing a quantitative representation of the evolutionary rela-

tionships among crops (i.e. a phylogenetic tree). Our crop phylogenetic tree was based on the

evolutionary relationships among all plant species, as proposed in the Angiosperm Phylogeny

Group III “megatree” [21]. We then used Phylomatic [22] in order to “prune” this megatree

such that our phylogenetic tree included only crops species (see Table A in S1 File). Then, we

quantitatively measured the evolutionary distances among all crops (measured in millions of

years of evolution) by using the BLADJ algorithm in Phylocom [23], which ascribes evolution-

ary ages to each different crop based on fossil records [24] as updated by [25]. Unresolved evo-

lutionary relationships were treated as polytomies.

For each region-by-year combination we then quantified Faith’s phylogenetic diversity

(PD), which is a phylogenetic analogy to SR. However, instead of representing simply the

number of crop species within a given region-by-year combination, PD represents the sum of

all phylogenetic branch lengths within a region-by-year sample [26]; in other words, PD repre-

sents the total millions of years of plant evolution captured by the crops growing within a

given region within a given year.

We also calculated a phylogenetic analogue of SD, which is phylogenetic Rao’s quadratic

entropy (QEphy) [27, 28]. A value of QEphy was calculated for each region-by-year combination

as:

QEphy ¼
P

i

P
j6¼1
ðdij � pipjÞ ð1Þ

where dij represents the phylogenetic distance between species i and j, and p represents the

proportional abundance of species i and j within any given region-by-year grouping. For our

analysis, QEphy is a metric of crop α-diversity that is similar to SD, but takes into account the

evolutionary relatedness among crop species. In our analysis then, i) increases in QEphy

through time represent regions where crop α-diversity is becoming defined by a larger number

of crop evolutionary lineages that are more equitable in their abundances, while ii) decreases

in QEphy through time represent regions where a smaller number of crop evolutionary lineages

are becoming more dominant in their abundances.

All crop evolutionary/ phylogenetic diversity metrics were calculated using the ‘picante’ R

package [29]. In calculating both PD and QEphy, we had to account for the discrepancy

between FAO commodity groups containing multiple species, while presenting only a single

corresponding estimate of area harvested. Therefore, for each individual measurement both

PD and QEphy were calculated assuming only one randomly selected species per commodity

group (see Table A in S1 File). This randomization was repeated 100 times, and final values of

Crop diversity through the Anthropocene

PLOS ONE | https://doi.org/10.1371/journal.pone.0209788 February 6, 2019 4 / 18

https://doi.org/10.1371/journal.pone.0209788


PD and QEphy used in analysis for each region-by-time data point were taken as the median

PD and QEphy values from the randomized distributions.

Changes in crop alpha (α-) diversity through time

Our preliminary analysis entailed fitting and comparing a number of linear and non-linear

models, in order to evaluate patterns of crop taxonomic- and phylogenetic diversity through

time (as well as total agricultural area harvested) in each region individually. For these analy-

ses, we assumed that any metric of diversity (D in Eqs 2–7 below) might change following six

different linear and non-linear patterns. First, we fit a linear regression model of the form:

D ¼ aþ ðb� yearÞ ð2Þ

where a is the intercept and b represents the rate of change in D through time. Based on this

linear model, we then fit a piecewise linear regression model using the “segmented” R package

[30]. This entailed using the linear model from Eq 2, to estimate breakpoints in the relation-

ship between D and year. Piecewise models were of the form:

D ¼ aþ bðyearÞ þ ðcðyear � c1Þ � Iðyear > c1ÞÞ þ ðdðyear � c2Þ � Iðyear > c2ÞÞ ð3Þ

where a is as in Eq 2, and b represents the slope of the D-year relationship prior to the first

breakpoint (ψ1). In these models, c represents the difference in the slope of the D-year relation-

ship between the first and second segments, which therefore applies only when the first condi-

tional indicator function (denoted by “I”) is true. Similarly, d represents the difference in

slopes for the D-year relationship between the first, second, and third segments, which only

applies when the second conditional indicator function is true. In sum, the slope of the rela-

tionship between D and year is equal to b prior to the ψ1, is equal to b + c between the ψ1and

ψ2, and is equal to b + c + d after the ψ2. Since there may be multiple solutions to the piecewise

model fitting process, all model parameters as well as overall model Akaike’s Information Cri-

terion (AIC) and r2 value, were calculated as median values of a distribution for these parame-

ters generated through bootstrapping with replacement (where n = 500 replicates) [31].

We then fit a linear model including a second-order polynomial term of the form:

D ¼ aþ ðb� yearÞ þ ðc� year2Þ ð4Þ

where a and b are as in Eq 2, and c represents to the coefficient for the year2 term which con-

trols the form of the parabolic curve.

We then used non-linear least square to fit a number of non-linear models, the first of

which was a unimodal model of the form:

D ¼ a� bðyear� cÞ
2

ð5Þ

where a, b, and c are parameters representing the mean value of D, the shape of the unimodal-

ity, and the year of the peak, respectively. The next model was an asymptotic model of the

form:

D ¼ aþ b� expð� expðcÞ � yearÞ ð6Þ

where a represents the asymptote, b represents the difference between the y-intercept and the

asymptote, and c represents the log of the rate constant. Next we fit a four-parameter logistic

model of the form:

D ¼
aþ ðb � aÞ
ð1þ exp c� year

d

� �
Þ

ð7Þ
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where a represents the minimum value of D (a lower asymptote), b represents the maximum

value of D (the upper asymptote), and c and d represent the slope and the inflection point of

the curve, respectively. Values for all parameters in Eqs 5–7 were estimated using maximum

likelihood.

Model comparisons

For all regions, we then identified the best-fit model for each D-by-year relationship (as well as

agricultural area-by-year) using AIC, with the lowest AIC score indicating the most parsimo-

nious model fit. Among all models (Eqs 2–7), overwhelmingly two-break piecewise models

(Eqs 2 and 3) best described changes in D through time (Table B and Fig B in S1 File). Of the

88 regional trends in four different diversity metrics evaluated, AIC-selection indicated that

piecewise models represented the most parsimonious model in 78 instances; in the 10 total

cases where segmented models were not AIC-selected, differences in AIC between these mod-

els and the most parsimonious fit were low and piecewise models generally showed the sec-

ond-lowest AIC value (Table B and Fig B in S1 File). Similarly, piecewise models also best

explained changes in agricultural area through time in 16 instances (Table B and Fig B in S1

File). Therefore we used piecewise model fits for all D-year relationships, in order to facilitate

further analyses.

Regional characteristics of change in crop alpha (α-) diversity through time

We used parameters from piecewise models to assess and compare changes in crop D through

time across regions as follows. First, ψ1 in Eq 3 was used to quantify the timing of the first

major breakpoint in crop D change. Secondly, we calculated the duration of the period of

major change in crop D through time as ψ1-ψ2 from Eq 3. Third, we calculated the change in

the slope of the relationship between D and year that occurs at ψ1, as an indicator of both the

direction and rate of change in D through time following the first major breakpoint (calculated

as b + c from Eq 3).

We then focused more explicitly on the first breakpoints in D, in order to test if the timing

of crop D change mirror patterns of agricultural expansion. This was done using linear regres-

sion analyses where the timing of the first breakpoint in agricultural area was treated as the

independent variable, and the timing of the first breakpoint in D as the dependent variable.

Similarly, we assessed if the timing of major changes in crop taxonomic- or phylogenetic diver-

sity differed from one another. This analysis was performed using linear regression analysis,

where ψ1 (Eq 3) for one measure of D was predicted as a function of ψ1 for any other measure

of D. We tested if these linear models differed from a 1:1 relationship using a linear hypothesis

test using the ‘linear.hypothesis’ function in the ‘car’ R package [32].

Changes in regional differences in crop beta (β-) diversity through time

We used non-metric multidimensional scaling (NMDS) to assess changes in crop β-diversity

among regions and through time. This entailed constructing a global community matrix of all

region-by-year crop “communities”, and then calculating pairwise Bray-Curtis (BC) dissimi-

larity values among all communities as:

BCjk ¼

P
ijxij � xikj

P
iðxij þ xikÞ

ð8Þ

where BCjk represents the dissimilarity between the jth and kth sample, xij represents the abun-

dance (i.e., area harvested) of taxon i in sample j, and xik represents the abundance of taxon i

Crop diversity through the Anthropocene
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in sample k. We used an Adonis test–essentially a multivariate analogue to an analysis of vari-

ance (ANOVA)–to evaluate if pairwise distances differed significantly as a function of region,

year, and a region-by-year interaction. An Adonis test also returns an r2 value. Therefore in

our analysis, the Adonis tests informs our statistical evaluation of i) the presence/ absence of

statistical differences in crop diversity among regions, among years, and among all region-by-

year combinations, as well as ii) the degree to which region or year explain differences in crop

β-diversity among all region-by-year groups. All statistical analyses were conducted using R

statistical software v 3.3.2 [33].

Results

Changes in crop diversity within regions

Major shifts in regional crop taxonomic diversity (measured as crop species richness (SR)) and

phylogenetic diversity (PD), occurred within all regions in very similar patterns: i) a period of

little change in diversity from the early- through to the late 1960s, followed by ii) a period of

rapid increase in diversity beginning in the late 1970s through mid-1980s, which endured for

~9.5–10.5 years on average, which then iii) ultimately stabilized in the early 1990s (Figs 1 and

2, Figs A and B and Tables C and D in S1 File).

Across all 22 regions, pronounced increases in both SR and PD began on average in 1982

(SR average = 1982.4±5.6 years (s.d.); PD average = 1982.0±6.5, Fig 2). When evaluated at a

global scale, across all regions the onset of increases in crop diversity did not differ significantly

between SR and PD (Fig 2), but there were some notable exceptions. Increases in crop PD

began in North America 8.0 years prior to SR, while increases in PD in Eastern- and Southern

Africa occurred 3.1 and 5.4 years before increases in crop SR began, respectively (Fig 1,

Table D in S1 File). At the same time, increases in SR in South America and Eastern Europe

were initiated at 8.5 and 10.7 years, respectively, prior to any commensurate increase in PD

(Table D in S1 File).

Following the onset of crop diversity increases, regional SR then increased on average by

2.1±2.4 species year-1 with increases continuing for 8.4±5.4 years on average. Similarly, follow-

ing the onset of crop diversity increases, across all regions PD increased by 93.7 million years

year-1 on average; increases which were maintained for 10.7 years on average. The only excep-

tion to these patterns were three regions in Oceania which showed only subtle declines in SR

of 0.3 species year-1 and PD of 18.9 million years year-1, beginning in 1979–80 and occurring

for a period of ~10 years (Fig 2, Figs A and B and Table D in S1 File).

When evaluated at a global scale, the timing and duration of change in crop diversity and

agricultural area both increased through time (Fig 2) However, when examined more in

detailed within regions, these patterns did not mirror one another. Neither the onset of

increases in SR nor PD was correlated with onset of increases in agricultural expansion. The

timing of major increases in agricultural area occurred anywhere from ~21 prior to, to ~11

years following, increases in SR. Similarly, the onset of sharp increases in agricultural area

occurred anywhere from ~23 years prior to, to ~17 years following, increases in PD (Fig 3).

Periods of increases in agricultural area tended to last longer on average (14.6±10.0), as com-

pared to the duration of SR and PD increases (Fig 2).

Across all regions in the global dataset, six new crop commodity groups were reported

between 1961 and 2014, including cassava leaves (first reported by the FAO in 1990), dry cow

peas (1969), jojoba seed (1981), kiwi (1969), tallow tree seed (1984), and triticale (1975).

Within regions, the largest net increases in crop SR between 1961 and 2014 were observed in

Central America, where additional 30 crop commodity groups were reported from a wide

range of crop types, including cereals (e.g. rye, millet, and non-specified cereals), legumes (e.g.
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Fig 1. Timing of the onset and duration of changes in regional crop diversity and agricultural area across 22 FAO-defined

agricultural regions. Detailed values and confidence limits surrounding them are presented in Tables C and D in S1 File.

https://doi.org/10.1371/journal.pone.0209788.g001
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string beans and non-specified pulses), tree and nut crops (e.g. almond, areca nut, cashew, rub-

ber, sunflower, tea), spices (e.g. ginger, pepper, as well as nutmeg, mace, and cardamom), vege-

tables (e.g. artichoke, leeks and other alliaceous vegetables, spinach, taro) and, to a lesser

extent, fruits (e.g., blueberry and persimmons). Alternatively, in the same time period Polyne-

sia reported increases of only one additional crop commodity group (i.e. lettuce and chicory)

and Micronesia reported only three additional crops (i.e. cucumbers and gherkins, pineapples,

and plantains).

Changes in crop composition within regions

When evaluated at a global scale, the timing of major changes in crop composition, as measured

by Simpson’s diversity index (SD) and a phylogenetic analogue of SD (Rao’s quadratic entropy;

QEphy), was broadly similar to the timing of change in crop SR and PD (Fig 2). Across all

regions on average, crop SD and QEphy began shifting in ~1979–1982 (Figs 1 and 2). However,

when evaluated within regions, unlike SR, PD, or agricultural area, these were not necessarily

periods of rapid increases. In 10 of 22 regions evaluated, this time marked a period of declines

of SD−i.e. a period of increasing dominance of a smaller number of crop species–through much

of the 1980s, over a period of 11.4±4.5 years (Figs C and D and Table D in S1 File). Similarly,

nine regions showed a period of declining QEphy throughout the 1980s –i.e. a period therefore

defined by increasing dominance of a few evolutionary lineages–over 9.0±3.7 years on average.

In regions where the 1980s were marked by declines in SD and QEphy (i.e. increasing domi-

nance of a few crop species or evolutionary lineages), this period was then followed by

increases in these diversity metrics throughout the 1990s to mid-2010s (Figs C and D and

Table D in S1 File). The timings of the first breakpoints in SD and QEphy were correlated across

all regions, but the timing of the onset of increases in SD or QEphy was not predicted by the

timing of increases in agricultural area (Fig 3).

Changes in crop diversity among regions

We detected statistically significant differences in crop diversity among regions (Adonis test r2

= 0.949, p<0.001; Fig 4, Fig D in S1 File). Yet when controlling for regional differences, crop

β-diversity also changed significantly through time (Adonis test r2 = 0.01, p<0.001): there was

a significant, though small in magnitude, trend of increasing the similarity of crops grown

among different regions occurring between 1961 through to 2014 (r2 = 0.003, p<0.001,

n = 11823). These subtle increases in the similarly of crops grown among regions, or alterna-

tively significant declines in the crop diversity among regions, occurred over a ~9-year period

from 1983 to 1992 (Fig 4).

Discussion

Trends in crop diversity within and among regions

Our analyses show that over time the taxonomic- (SR) and phylogenetic (PD) diversity of

crops produced within regions has increased significantly over the past 50 years, in nearly all

Fig 2. Probability distributions of two indicators of change in crop diversity and agricultural area across 22 FAO-

defined agricultural regions. Panel A represents data on the timing of major change in crop diversity and agricultural

area, while panel B represents data on the duration of major change in four different crop diversity metrics and

agricultural area (where n = 22 in all cases). Region-specific values for each of these indicators, as well as a third

indicator associated with the rate of change in crop diversity metrics and agricultural area, are presented in Table C in

S1 File. Points below the histograms in panels A and B correspond to means ± 1 standard deviation, and medians ± 1

median absolute deviation, respectively.

https://doi.org/10.1371/journal.pone.0209788.g002
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regions of the world (Fig A and B in S1 File). While crop diversity within regions has generally

systematically increased, our results indicate that these changes lead to a weak but statistically

significant signal of homogenization of agricultural lands among regions throughout the same

Fig 3. Relationships between the timing of the first breakpoint in agricultural area as compared to timing of the first breakpoint in four metrics of crop diversity

across 22 FAO-defined agricultural regions. Dashed gray lines represent a 1:1 trend line, and bold black trend lines represent significant relationship among the

breakpoints based on linear regression. Linear hypothesis p-values>0.05 indicate relationships that do not differ significantly from a 1:1 line.

https://doi.org/10.1371/journal.pone.0209788.g003
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period (Fig 4). These patterns are similar to, albeit weaker than, those observed in analyses of

national-level food consumption patterns [7].

Our analyses also indicate that global scale assessments of diversity in agricultural lands (or

other metrics such as food consumption patterns e.g. [7]) may miss important differences

occurring at regional scales. For instance, an assessment of global averages (and associated

errors) indicated overlap in the timing and duration of change in all agricultural diversity indi-

ces and area (Fig 2). Yet these same metrics differed widely when assessed at regional scales

(Fig 3), indicating that any interpretations that global patterns in agricultural diversity reflect

change occurring on smaller scales should be done cautiously. Indeed, moving beyond

regional assessments by employing our analytical framework at the national-level, and then

linking these patterns with explicit local environmental or socio-economic data or policy, rep-

resent a next step in elucidating smaller-scale changes in crop diversity in greater detail.

Our study also shows that increases in regional crop diversity, and associated declines in

regional differences in crop diversity, are not explained by patterns of agricultural expansion

alone (Fig 3). This indicates that the complex interaction of factors leading to certain crops

being grown across regions–such as crop-specific subsidies, international trade markets, popu-

lation growth and per capita food demand, or environmental change e.g. [10, 11, 12]–are not

necessarily the same that drive agricultural expansion. For example, much of the literature

evaluating linkages between the political economy of food systems and crop diversity stems

from Central America and the Caribbean, where research has demonstrated how international

trade agreements have influenced the diversity of crops grown on farms independently of agri-

cultural expansion e.g. [11, 34]. Within this and nearby regions, the North American Free

Trade Agreement (NAFTA) and other initiatives such as the Caribbean Basin Initiative in the

mid-1980s, resulted in major increases in the number of crops grown within the national agri-

cultural portfolio of Central American countries. These changes specifically entailed introduc-

tion of palm oil, spices, fruits, and multiple “winter vegetables” into agricultural lands [34];

changes which correspond closely to the onset and duration of crop diversification in Central

America observed throughout the early to mid-1980s (Fig 1).

However, such conclusions must be interpreted within the context of data limitations. Spe-

cifically, increases in agricultural diversity here, quantified as changes in the crop species asso-

ciated FAO-defined commodity groups, may underestimate the number of cultivars, varieties,

and landraces that comprise agricultural lands. For instance the NAFTA established in the

mid-1990s, and other trade liberalization initiatives in the region, have demonstrably reduced

the genetic diversity of maize across Central America on existing croplands [35]. Comparative

evaluation of hypotheses that predict shifts in crop diversity as a function of specific policy

interventions vs. other environmental and socio-economic change would be key in addressing

the causes of change in crop diversity further, but is beyond the scope of our analysis here.

In nearly all regions a larger number of crops are becoming more abundant in their contri-

butions to agricultural lands; a trend supported here by consistent increases in SD and QEphy

over the past half century (Fig 1, Table D in S1 File). Only South America, and to a lesser extent

Eastern Asia and Western Europe, showed evidence of increasing dominance of certain crops

Fig 4. Changes in the differences in crop diversity among 22 FAO-defined agricultural regions from 1961–2014. Panel A presents a visualization of regional

differences in crop β-diversity (calculated following a common metric in community ecology: non-metric multidimensional scaling (NMDS)). The values associated

with this technique (NMDS axis 1 and NMDS axis 2) are plot and interpreted here visually as a “map of similarity”: points closer to one another are region-by-year

combinations with more similar crop composition, while points further from one another are more dissimilar in crop composition. For clarity only data points from

1961, 1980, 2000, and 2014 are shown; corresponding confidence ellipses represent 1 standard deviation for each of these four years. Sizes of symbols within a region

corresponding to year with 1961 represented by the smallest symbols, 1980 medium size symbols, 2000 large symbols, and 2014 the largest symbols. Panel B represents

changes in regional crop similarity from 1961 to 2014. Data points represent similarity between any two regions, and trend line represents a segmented linear

regression model fit to the entire dataset fit. Shaded gray bands are 95% confidence limits surrounding the model.

https://doi.org/10.1371/journal.pone.0209788.g004
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or phylogenetic lineages (Fig B and Table D in S1 File). In the unique case of South America, a

trend of reduced SD and QEphy is reflective of massive soybean expansion from ~260,000 to

55.7 million ha between 1961–2014 (Table D in S1 File).

Implications for agricultural diversity and sustainability

Given the scale of our analyses, increases in the diversity of crops grown within regions

observed here is likely not reflective of on-farm cultivation or conservation of crop varieties

and landraces, which is often most notably observed on small-scale farms [11, 36]. Nor are the

trends reported here likely driven by in situ domestication of new commercial crop species,

since much of this occurred prior to ~4000–2000 years ago [2]. Instead, patterns reported here

are likely attributable to increases in large-scale movement of commercial crops, specifically

those being grown in conventional intensive management systems outside of their regions of

origin [3].

In that sense, our results should not be interpreted as support that actual farms worldwide

are shifting towards more diverse agroecosystems sensu [37, 38]. The environmental or socio-

economic benefits of diverse agroecosystems vs. intensive monoculture, such as increased crop

resilience to climate change or enhanced nutrient-use efficiency, are realized at farm- or agri-

cultural landscape scales where crops are interacting with one another or other non-crop spe-

cies [37–40]. Similarly, the benefits of increased crop diversity in terms of greater nutritional

quality or increased food sovereignty are also largely realized at sub-regional or household

scales [41] but see [42]. So while here we contribute towards finer spatial-scale analyses of crop

diversity, by moving from global assessments of crop commodity group diversity to crop spe-

cies- and phylogenetic diversity assessments on regional scales, considerable work remains in

order moving towards even finer scale analyses of changes in crop diversity.

In its current form, our analyses can play an important role in setting and measuring global

priorities for agricultural sustainability and diversity. Specifically SDG 2 Target 2.5 calls for the

conservation of a “. . .genetic diversity of seeds, (and) cultivated plants. . .”: initiatives which

are progressively focusing on both taxonomic and phylogenetic diversity of crops and their

wild relatives, as well as intraspecific diversity within major crop lineages [43, 44]. The crop

taxonomic- and phylogenetic diversity values presented here could be used as a baseline for

such crop conservation initiatives, since questions surrounding “how much diversity is

enough” are central to such sustainability initiatives. Similarly, SDG 2 Target 2.4 calls for

“. . .resilient agricultural practises. . .” that confer a multitude of ecosystem services beyond

yield alone. Diversified agroecosystems that incorporate multiple crop species are key in meet-

ing this target [45], however, political support for such systems remain limited [46, 47]. Our

analyses suggests that at regional scales, diversified polyculture assemblages would also be criti-

cal in addressing both the trend towards, and consequences of, increasing homogenization in

agricultural systems globally.

Conclusions

The Anthropocene epoch is a time marked by major shifts in plant and animal biogeography,

mediated by both deliberate and accidental human-caused species movement. Our data pro-

vides evidence that the 1970s-80s marked a widespread period of major increases in the taxo-

nomic- and phylogenetic diversity of crops grown within nearly all regions of the world. And

while regional differences in crop species pools persist, there is evidence of a trend towards

greater homogeneity in the crops being grown in agricultural lands across regions. In basing

our analysis on FAO data, the trends observed here most likely reflect of how environmental

and socio-economic conditions influence species-level diversity of crops being grown in large-
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scale, industrial agricultural systems. Evaluating temporal changes in crop diversity at the land-

scape-, farm-, or household levels are ultimately critical for understanding how crop diversity

can be enhanced to ensure both human well-being and agricultural sustainability.
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