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ABSTRACT Estimates of the coalescent effective population size Ne can be poorly correlated with the true population size. The
relationship between Ne and the population size is sensitive to the way in which birth and death rates vary over time. The problem
of inference is exacerbated when the mechanisms underlying population dynamics are complex and depend on many parameters. In
instances where nonparametric estimators of Ne such as the skyline struggle to reproduce the correct demographic history, model-
based estimators that can draw on prior information about population size and growth rates may be more efficient. A coalescent
model is developed for a large class of populations such that the demographic history is described by a deterministic nonlinear
dynamical system of arbitrary dimension. This class of demographic model differs from those typically used in population genetics.
Birth and death rates are not fixed, and no assumptions are made regarding the fraction of the population sampled. Furthermore, the
population may be structured in such a way that gene copies reproduce both within and across demes. For this large class of models, it
is shown how to derive the rate of coalescence, as well as the likelihood of a gene genealogy with heterochronous sampling and
labeled taxa, and how to simulate a coalescent tree conditional on a complex demographic history. This theoretical framework
encapsulates many of the models used by ecologists and epidemiologists and should facilitate the integration of population genetics
with the study of mathematical population dynamics.

INTEREST has grown in methods that integrate increas-
ingly abundant genetic data from viruses with the infer-

ence of historic prevalence of infection and epidemiologically
relevant parameters (Grenfell et al. 2004; Gordo et al. 2009;
Pybus and Rambaut 2009; Van Ballegooijen et al. 2009;
Bedford et al. 2010; Biek and Real 2010; Kretzschmar
et al. 2010; Talbi et al. 2010; Bataille et al. 2011; Koelle
et al. 2011; O’Dea and Wilke 2011; Stadler 2011). Modeling
the replication of a pathogen requires consideration of epi-
demiological dynamics that are not always a concern when
investigating the population genetics of other organisms.
Changes in population size are often rapid and highly non-
linear. Birth rates and transmission rates change dramati-
cally over time and are not strictly proportional to
population size. The time between transmission events
(the serial interval) contracts over the course of an epidemic
(Kenah et al. 2008), and the variance in the number of

transmissions per infected unit may not be consistent with
conventional models in population genetics (K. Koelle and D.
Rassmussen, unpublished results). Finally, in many epidemic
scenarios, the sample fraction is quite large and cannot be
neglected. For example, sequencing of human immunodefi-
ciency virus (HIV) for drug resistance testing is now routine
in developed countries (Hirsch et al. 2000), and a majority of
incident infections are now genotyped.

In the following, we consider a haploid population mul-
tiplying according to a continuous time birth–death process
with varying rates. The population size Y(t) is a deterministic
and differentiable function of time. The birth rate, f(t),
describes the rate at which the Y(t) extant gene copies rep-
licate. Cases in which f(t) = cY(t) is strictly proportional to
population size, such as during exponential growth, are al-
ready well understood. The more general case where f(Y, t)
is an arbitrary function of time and the state of the system
is not well explored from the perspective of coalescent
theory. Throughout this article, t denotes time prospectively,
while s denotes units of time into the past from the last
taxon sampled.

In an epidemiological context, f(t) is the number of trans-
missions of a pathogen between hosts per unit time (the
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incidence of infection), and Y(t) is the number of infected
hosts (the prevalence of infection). Inference of epidemio-
logical parameters from a gene genealogy requires that the
tree reflects history of transmission events between hosts.
The validity of this comparison requires that several condi-
tions are satisfied. I assume that each infected host corre-
sponds to a single lineage in a gene genealogy of virus,
which is a fair approximation if superinfection is rare. I fur-
ther assume that the time of transmission corresponds to the
potential time at which two lineages coalesce. This is a fair
approximation if the intrahost coalescence time is short rel-
ative to the rate of epidemic dispersal. This is equivalent to
the condition that each infected host corresponds to a single
representative gene copy and the rate of replication of gene
copies is equal to the rate of transmission between hosts.

For motivation, consider the simple example of an
epidemic where the state of the system is described by the
number X of susceptibles and the number Y of infected hosts,
and the number of transmissions per unit time is f(t) = bX(t)
Y(t). Infected individuals recover and gain permanent im-
munity at a rate gY. In this case, the population size Y(t)
appears as the solution to the ordinary differential equations
[the well-studied Kermack–McKendrick system (Kermack
and McKendrick 1927)]:

d
dt

XðtÞ ¼ 2bXY ¼ 2f ðtÞ (1)

d
dt

YðtÞ ¼ fðtÞ2 gY : (2)

A solution for Y(t) may be obtained by integrating these
equations forward in time, and a record Y(s) can be kept
of the size of the population s units in the past. Given the
solution for Y(t), one might assume that the rate l2(s) that
two lineages coalesce s units in the past is 1=YðsÞ; which
would be similar to the rate in the Kingman coalescent. This
assumption underlies much recent work that attempts to
correlate estimates of effective population size with the
number of prevalent infected hosts. But, this is incorrect;
the rate of coalescence depends not only on just the chang-
ing population size, but also on changing birth rates, which
in turn affect the variance in the number of offspring per
unit time.

In previous work (Volz et al. 2009; Frost and Volz 2010),
we showed that the rate of coalescence for two extant lineages
is the following function of birth rates and population size:

l2ðsÞ ¼ 2f  ðsÞ
Y2  ðsÞ: (3)

In the above example (Equation 1), we have
l2ðsÞ ¼ 2bXðsÞ=YðsÞ: A more rigorous derivation of Equation
3 than was given in Volz et al. (2009) is provided in Meth-
ods. Classical solutions, such as l2(s) } 1/Y(s), appear as
special cases when births are strictly proportional to popu-
lation size. The simple formula for l2 is used as the point of

departure for exploring the effects of complex population
dynamics on genealogical structure. First, it is straightfor-
ward to investigate the implications of varying birth rates
f(s). From this perspective, it is easy to see when and why
skyline estimates of effective population size will be biased
for the true population size, and this is explored in The
effective number of infections. I revisit the problem of devel-
oping useful heuristics (Nee et al. 1995) to infer the mech-
anism of population growth from the distribution of node
heights in a gene genealogy (The number of lineages through
time). This solution, which holds within a single homoge-
neously mixing deme, can be relaxed to a situation with
multiple demes and an arbitrarily complex pattern of birth,
migration, and death, as described in Population dynamics
and gene genealogies in structured populations. The coales-
cent in structured populations under birth–death processes
does not appear to be a well-explored problem, and some
solutions are presented that describe the coalescent in the
presence of concurrent processes of birth and migration.
Finally, a method for calculating the likelihood of a gene
genealogy conditional on a history of f(s) and Y(s) is pre-
sented, as well as a simple method to simulate coalescent
trees conditional on this history (Population dynamics and
gene genealogies in structured populations).

The models developed herein should find similar applica-
tions to structured coalescent models used to estimate
migration rates between demes (Beerli and Felsenstein
1999, 2001; Bahlo and Griffiths 2000; Bloomquist et al.
2010). Before proceeding, it is worthwhile to remark on
how these methods differ from previous approaches. In our
case, the coalescent may be used to estimate the parameters
of commonly used epidemiological and ecological models of
population dynamics, such as birth rates, both within and
across demes. The models developed below differ from other
structured models in several important respects:

1. The models allow for potentially large sample fractions.
2. Birth and migration rates may be arbitrary functions of

the state of the system and time.
3. Gene copies may reproduce both within and across demes.

Consequently, two gene copies in different demes may co-
alesce without being preceded by a migration event.

These models were developed with viral epidemics in mind
and may be most appropriate for populations that change
and evolve rapidly over short timescales. While no assump-
tions are made about the sample fraction, this comes with
a cost: The population size is an extremely important
parameter of the system, and the models presented herein
will work best when there is good prior information about
this quantity, such as reported incidence of infection from
public health authorities.

Methods

In this section, the processes governing reproduction and
death are made precise and Equation 3 is rederived from
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first principles. Multiple stochastic processes may generate
the asymptotic dynamics of a deterministic system such as
Equation 1, and the details of that process are key to
understanding the behavior of the coalescent.

At time t there will be a homogeneous population of Y(t)
gene copies. The rate that the entire population reproduces
is the function f(t, Y) that is differentiable with respect to
time and population size. The rate that a single gene copy
reproduces (generates a single new copy) is f(t, Y)/Y(t).
Similarly, the death rate is m(Y, t), although this will not
appear in the solutions for the coalescent. Birth and death
events are asynchronous. This is similar to a continuous-
time birth–death (BD) process, but with varying rates. BD
processes have previously been studied from the perspective
of the coalescent with constant rates (Stadler 2011). As
noted by Harris (2002), the BD process does not seem to
be a good model for the spread of an epidemic in a finite
population, since when a large proportion of the population
has been infected, we cannot suppose that the rate of new
infections is independent of past history.

The processes considered here are different from the
standard form of BD models, since the birth rate of a single
gene copy (f(t, Y)/Y(t)) is both time and state dependent.
While at a particular point in time, all gene copies reproduce
and die at identical rates, the birth rate, and possibly the
death rate, may depend on the state of the system. f(t, Y)
may be any differentiable function of Y and t.

Given how the BD process is defined for gene copies, the
quantity Y(t) is a density- and time-dependent Markov jump
process. At rate f(t, Y), the number of gene copies Y(t) is
incremented by one, and Y(t) is decremented at rate m(t, Y).
In the remainder of this section, Y(t) is assumed to be very
large at all times, which will enable us to approximate Y(t)
with a system of ordinary differential equations (ODEs). For
epidemic models in particular, the relationship between
Markov-jump processes with varying rates and ODEs was
made precise in Kurtz (1981). In the limit of large popula-
tion size, the ODE approximation becomes exact.

Although this model differs from the model of Moran
(births and deaths are not contemporaneous), it leads to
similar expressions in terms of the variance in the number of
offspring and the probability of a coalescence following
a birth event. The connection to Moran is made precise
below.

The rate of coalescence

The cumulative number of births prior to time s on the re-
verse time axis is

FðsÞ ¼
Z s

0
fðtÞdt: (4)

Denote the population size when the jth birth happens (ret-
rospectively) as �Y  ðjÞ, and s2

MðjÞ is the variance of offspring at
the jth birth event. It follows that the cumulative hazard of
coalescence is

L2  ðsÞ ¼
X⌊FðsÞ⌋
j¼1

s2
MðjÞ
�YðjÞ ; (5)

as with the Cannings-type models, but summing over
individual birth events. Following the jth birth there is prob-
ability 2/(Y(j) + 1) of either having replicated or being the
new copy, so the number of offspring n( j) is

nðjÞ ¼

1 with probability
�YðjÞ þ 12 2
�YðjÞ þ 1

�
�YðjÞ2 2
�YðjÞ

2 with probability
2

�YðjÞ þ 1
·
1
2
� 2

�YðjÞ ·
1
2

0 with probability
2

�YðjÞ þ 1
·
1
2
� 2

�YðjÞ ·
1
2
:

8>>>>>>>>>><
>>>>>>>>>>:

(6)

It follows that s2
MðjÞ � 2=�YðjÞ is the variance in the number

of offspring for a single birth event, which is the same as for
a Moran model of constant size �Y  ðjÞ. It follows that

L2ðsÞ ¼
X⌊FðsÞ⌋
j¼1

2
�Y2ð jÞ

: (7)

At this point, we could rescale time to units of DF births,
and we would retrieve the Kingman coalescent. Alterna-
tively, I modify the coalescent rate to take the nonconstant
birth rates into account. By breaking the interval t into units
of equal duration h, we have

L2ðsÞ ¼
Xs=h
k¼1

ðFðkhÞ2 Fððk2 1ÞhÞÞyðkÞ; (8)

where y(k) is the average of s2
M=Y over the kth interval,

yðkÞ ¼ 1
DkF

XFðkhÞ
f¼Fððk2 1ÞhÞ

2
�Y2ðfÞ

/
1

DkF
 

Z FðkhÞ

f¼Fððk21ÞhÞ
  2

Y2ðF�1ðfÞÞ  df;

(9)

and DkF = F(kh) – F((k – 1)h). Similarly, I define the cumu-
lative function

YðFÞ  ¼  

Z F

f¼0

2

Y2ðF�1ðfÞÞ  df;
(10)

so that y(k) = (Y(F(kh)) 2 Y(F((k 2 1)h)))/DkF. Using
Taylor expansion of y(k), I rewrite Equation 8:

L2ðsÞ ¼
Xs=h
k¼1

ðDkFÞ
ðDkFÞY9ðFððk2 1ÞhÞÞ þ OðDkFÞ2

DkF
(11)

¼
Xs=h
k¼1

ðDkFÞ
�

2
Y2ððk21ÞhÞ þ OðDkFÞ

�
: (12)

Multiplying and dividing by h and taking the limit as h goes
to zero gives

Complex Population Dynamics 189



L2ðsÞ ¼ lim
h/0

Xs=h
k¼1

FðkhÞ2 Fððk2 1ÞhÞ
h

2
Y2ððk2 1ÞhÞ hþ O

�
h2

�
(13)

¼
Z s

t¼0

2f ðtÞ
Y2ðtÞ dt; (14)

where I have also used the fact that O(DkF) = O(h), assuming F
is continuous and h ,, 1. The integrand l2ðtÞ ¼ 2f ðtÞ=  Y2ðtÞ
is the solution for the rate of coalescence.

The above calculation can be repeated if there are A ex-
tant lineages, which yields the coalescent rate

lAðsÞ ¼
�
AðsÞ
2

�
2f ðsÞ
Y2ðsÞ: (15)

This rate is correct even if A is very large, and this model
should accomodate large sample fractions. To see this, note
that the ratio 2

�
A
2

�.
Y2 �

�
A

2

�.�
Y

2

�
can be interpreted as the prob-

ability of picking two extant lineages if selecting two gene
copies from the total population. This probability tends to one
as A / Y, in which case the rate of coalescence is simply the
rate of births. Furthermore, in the continuous birth–death
model, we need not worry about multiple mergers (Fu
2006), as there is zero probability of simultaneous events.

The effective number of infections: It is common to
compare estimates of the effective population size Ne, such
as the Bayesian skyline plot (BSP) (Drummond et al. 2005),
to the number of infected individuals (Frost and Volz 2010).
For the remainder of this article, Ne refers to the coalescent
effective size (Sjödin et al. 2005; Wakeley and Sargsyan
2009). I operationalize this definition somewhat differently
from in previous work: Where the coalescent rate is known
under our model, I define Ne = 1/l2. I distinguish Ne from
the true size Y(t), under the given model. The skyline esti-
mators are unbiased for the harmonic mean of Ne within
each internode interval of the genealogy (Pybus et al. 2000).

Comparison of Ne to Y is typically based on a coalescent
rate l92 ¼ 1=Y that is valid when birth rates are constant. In
this section, I explore the relationship between l92 and l2 =
2f/Y2. In some situations there is close correspondence be-
tween l2 and l92, while in other cases the correspondence
can be very poor, and this can lead estimates of Ne to be very
biased for the true population size. Furthermore, even when
there is a linear relationship between l2 and l92, it can be
a complex task to derive the correct scale of proportionality.
The main conclusion of this section is that there is a poor
correspondence between l2 and l92 when the birth rate (i.e.,
incidence of infection) is not strictly proportional to the
population size (i.e., the prevalence of infection).

As a motivating example, consider the following model
that describes the prevalence of infection over time for an
epidemic where infected individuals have nonpermanent
immunity and recover to the susceptible state:

d
dt

X ¼2b
X
N
Y1þa þ hZ

d
dt

Y ¼ b
X
N
Y1þa 2gY

d
dt

Z ¼ gY 2hZ:

(16)

X, Y, and Z are, respectively, the numbers of susceptible,
infectious, and recovered individuals in the population. Re-
covered individuals lose immunity at the rate h. The way
that incidence is modeled allows us to explore the relation-
ship between birth rates and the rate of coalescence. Inci-
dence of infection is proportional to Y1+a. The standard
susceptible-infected-recovered (SIR) model is recovered if
a = 0. The purpose of this model is not to provide a realistic
description of dynamics for a particular disease, but to illus-
trate the relationship between the population size Y and the
rate of coalescence l as the scaling factor a is changed.
Nevertheless, there is good reason to believe that real sys-
tems often deviate from simple mass action dynamics, and
this toy model is a special case of those investigated in Liu
et al. (1987). From Equation 3,

l2 ¼ X
N

2b
Y12a

: (17)

When a = 0, l2 has a similar functional form to l92 and is
different by a factor of bX/N. When a . 0, the growth rate
of the epidemic accelerates early on. This type of growth is
termed faster than exponential (FTE). And when a , 0, the
growth rate decelerates. This type of growth is termed
slower than exponential (STE). The population size where
a = 0 resembles exponential growth early on, but this
growth is transitory.

The relationship between l2 and l92 is readily understood
by examination of the ratio

rl :¼ l2
l92

¼ 2b
X
N

1
Y2a

: (18)

Early in the epidemic X � N. And if a = 0, the ratio
rl ¼ 2bðX  =  NÞ � 2b and the correspondence between the
coalescence rates is linear. In this situation, l92 may be a good
approximation early in the epidemic. However, if a 6¼ 0, the
ratio depends on Y. If growth is FTE, the ratio is increasing,
and if growth is STE, the ratio is decreasing.

This is illustrated in Figure 1, where three solutions of
Equation 16 are shown for a = 0, 1

10, and 2 1
10. The coales-

cent rates are normalized so that the maximum is unity. The
ratio of the normalized coalescent rates is shown in the left
column. When a = 0, this ratio (after normalization) simply
corresponds to the susceptible fraction of the population.
There is a brief transient where the rates are quite similar,
and since most coalescent events will take place during ex-
ponential growth, l92 may be a good approximation for the
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a = 0 case. But in the FTE and STE cases, the correspon-
dence is very fleeting and can be made arbitrarily bad by
increasing the exponent a.

The number of lineages through time: The number of
lineages as a function of time (NLFT) is informative of
historical population dynamics (Pybus and Rambaut 2009).
A variety of approaches have been developed to infer pop-
ulation size from the NLFT. Qualitative conclusions are read-
ily drawn from plots of the NLFT. If the NLFT drops close to
the root of the tree, it is considered a signature of exponen-
tial growth, whereas if the NLFT decreases close to the time
of sampling, the population is usually considered to have
a constant or decreasing size (Grenfell et al. 2004). A prob-
lem that is apparent from the approach developed in the
preceding sections is that the NLFT is sensitive to the history
of birth rates f(t), not just the population size Y(t). Conse-
quently, it is possible to contrive situations where the NLFT
has a counterintuitive relationship with the true population
dynamics. As demonstrated in this section, star-like trees are
not necessarily an indication of a rapidly expanding popula-

tion, and populations that are growing faster than exponen-
tially do not necessarily produce star-like trees.

The NLFT at time s in the past is denoted A(s), and the set
of lineages at time s is A(s). As discussed in Frost and Volz
(2010), a useful deterministic approximation to the NLFT is

d
ds

AðsÞ ¼ 2lA ¼ 2

�
A
2

�
2f ðsÞ
Y2ðsÞ: (19)

This approximation becomes exact in the limit of large sample
size n= A(0). For the remainder of this section, I consider the
pure birth process with ðd =  dtÞY ¼ bY1þa. The coalescent rate
l2 will be the same as for the FTE and STE models early in
the epidemic (Equation 17), where X/N � 1. We have

d
ds

AðsÞ ¼ 2

�
AðsÞ
2

�
2b

Y12aðsÞ
� 2A2ðsÞ b

Y12aðsÞ;
(20)

where the latter approximation is valid when the number of
lineages is large.

Figure 1 (Left) The fraction of the population susceptible
and infected is shown over time for model (16). (Right) The
rates of coalescence l2 = f/Y2 and l92 ¼ 1=Y . In all solu-
tions to Equation 16, N = 104, b = 2, g = 1, h = 1

10. The
incidence scaling factor a is varied for each row: a =
0 (top), a = 1

10 (middle), and a = – 1
10 (bottom).
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Figure 2 shows simulated genealogies for the pure-birth
FTE and exponential growth model: ðd =  dtÞY ¼ bY1þa. In the
FTE case, a = 1 and in the exponential growth case, a = 0.
b = 1 in both cases. Trees were generated using a chain-
binomial simulation as described in supporting information,
File S1. Samples of 30 taxa were taken during a period of
growth when the population reached Y = 2 · 104.

The coalescence rate in an FTE population is highest
close to the present, and most coalescent events will happen
close to the present. Somewhat counterintuitively, FTE
growth produces trees such that node heights are concen-
trated toward the tips of the tree and are qualitatively
similar to those in trees produced by populations of constant
size. This is contrary to the expectation that a star-like tree
will be generated by a rapidly growing population. Trees
that are more star-like than the exponential case are actually
generated by STE.

The FTE and STE models provide a simple illustration of
how estimates of effective population size can be biased in
models where the birth rate is not strictly proportional to
population size. The skyline estimate of effective population
size (Pybus et al. 2000) is premised on the duration of in-
ternode intervals being proportional to Ne=ð A2 Þ. The esti-
mated effective population size during the interval of
duration Ds when there are A lineages is

N̂e ¼ Ds

�
A
2

�
: (21)

This estimator is unbiased for the harmonic mean of the
population size during each interval, provided the coalescent
rate l92 is valid (Pybus et al. 2000). But the skyline will gen-
erally underestimate population size in the FTE case because

l2.l92 for a given population size; and the skyline will over-
estimate population size in the STE case because l2,l92, as
illustrated in Figure 2. Equation 17 makes it clear that for this
pure birth model, N̂e will actually be estimating the harmonic
mean of Y1–a/2b within each internode interval. The skyline
will have a linear relationship with Y when a = 0; the correct
scale is 1/2b (Frost and Volz 2010). When a . 1, and the
rate of growth is accelerating rapidly, the skyline will errone-
ously predict a decreasing population size; however, such
large values of the exponent are unlikely to be seen in reality.

Simple heuristics have been developed for detecting
exponential growth, FTE, and constant size (Nee et al.
1995) on the basis of plots of the NLFT. An alternative
heuristic is provided here and compared to existing heuris-
tics. In the particular case of exponential growth (a = 0),
the solution of Equation 20 is

AðsÞ ¼ Yð0ÞAð0Þ
Yð0Þ þ Að0Þðebs2 1Þ: (22)

We define the inverse function m(A) by solving the preced-
ing equation for s, which yields

mðAÞ ¼ 1
b
log

�
1þ Yð0ÞAð0Þ2AðsÞ

Að0ÞAðsÞ
�
: (23)

The function m(A) has been called the “epidemic transfor-
mation” of the NLFT (Nee et al. 1995), and when the plot of
m(A(s)) vs. s appears linear, this indicates that the popula-
tion growth is exponential. Our solution for m(A) has a sim-
ilar functional form but is slightly different from that
provided in Nee et al. (1995), which was based on the dis-
tribution of internode intervals:

Figure 2 Simulated genealogies (top) and corresponding
skyline estimates of Ne (bottom) for exponential growth
(left) and FTE growth (right). Simulations were of a pure-
birth process with monotonically increasing population
sizes. Samples of 30 taxa were taken during a period of
growth (either exponential or FTE) at the point when a pop-
ulation size of Y = 2 · 104 was reached. In the exponential
case, the skyline is unbiased for the harmonic mean of Y/
2b within each interval. In the FTE case, the skyline under-
estimates population size.

192 E. M. Volz

http://www.genetics.org/cgi/data/genetics.111.134627/DC1/1


mnðAÞ} log
�

1
4bYð0Þ

�
þ log

�
1

4bYð0Þ þ
Að0Þ2AðsÞ
Að0ÞAðsÞ

�
(24)

� log
�
Að0Þ2AðsÞ
Að0ÞAðsÞ

�
: (25)

The latter approximation is a good one when Y(0) is very
large. These alternative transformations are compared in
Figure 3 for a sample taken during the early stages of an
susceptible-infected (SI) epidemic for which growth is ap-
proximately exponential. When Y(0) and b are known,
Equation 23 is exact. However, when testing for exponential
growth, Y(0) is often not known. If Y(0) is assumed to be
large, Equations 24 and 23 will both appear linear aside
from a brief transient for small s. To see this, consider the
time derivative of the epidemically transformed NLFT,

d
ds

mnðAðsÞÞ � d
ds

log
�
Að0Þ2AðsÞ
Að0ÞAðsÞ

�

¼ 2
Að0Þððd =  dsÞAðsÞÞ
Að0ÞAðsÞ2A2ðsÞ;

(26)

and substituting Equations 20 (with a = 0) and 22, this
gives

d
ds

mnðAðsÞÞ � b
ebs

ebs2 1
���!s/N

b: (27)

So the growth of mn asymptotically becomes linear with
slope b. Therefore, Equations 22 and 23 provide an alterna-
tive justification for the approximation (24).

Population dynamics and gene genealogies in
structured populations

The derivations of the preceding section provided the
coalescent rate for a population such that each gene copy
has equal potential to reproduce. More generally, we
consider the case where a gene copy may occupy any of m
discrete states that may influence both birth and death rates.
These states may represent heterogeneity stemming from
a variety of factors, such as spatial and other population
structures. In the case of infectious diseases, states may re-
flect the different properties of hosts in which the pathogen

resides. For example, infected hosts of different age, behav-
ior, or clinical stages of infection may provide different po-
tential for a virus to spread to new hosts.

Formally, the models of population dynamics (prospec-
tively) assume that birth rates are deterministic and specified
by a time-dependent matrix F(t). There are m states and the
indexes k and l always refer to one of these states. In contrast
to most island models in population genetics, it is possible for
birth events to cross demes. For example, a gene copy in state
k may generate a new copy in state l. The rate at which this
occurs is the element fkl(t) of the matrix F(t).

To accommodate a larger range of population dynamic
models of epidemiological and ecological interest, these
models must also include migration of gene copies between
states that are independent of reproduction. The matrix G(t)
with elements gkl(t) specifies the time-dependent determin-
istic rate at which a gene copy in state k migrates to state l.

The matrices F and G uniquely specify the vector of pop-
ulation sizes in each state Y(t) along with initial conditions
Y(0). Additionally we model exogenous births and deaths in
state k with the functions hk(t) and mk(t), respectively.
These birth and death terms are necessary for some models,
but as will be shown have no direct effect on the rate of
coalescence. The population size Y is the solution of m or-
dinary differential equations of the form

d
dt

YkðtÞ ¼ hkðtÞ2mkðtÞ þ
Xm
l¼1

ð flkðtÞ þ glkðtÞ2 gklðtÞÞ: (28)

To motivate this framework, it is shown how to decompose
two simple epidemiological models into processes involving
births F(t) and migrations G(t): an epidemic such that infected
hosts progress through two stages of infection and an epidemic
spreading in a host population with age structure.

An epidemic with two stages of infection: Variations on this
model can be useful for epidemics such as HIV, where the
transmission probability per contact changes dramatically
over the course of infection (Longini et al. 1989). Upon in-
fection, hosts enter the state I1 of average duration 1/g1
and transmit infection at the rate b1. Infected hosts in I1

progress to state I2 of average duration 1/g2 with

Figure 3 (Left) The normalized preva-
lence of infection in an SI epidemic.
ðd= dtÞI ¼ bIðN2IÞ=N; b ¼ 2; N ¼ 106.
The vertical line indicates the point
where a sample of n = 250 is collected.
(Center) The number of lineages
through time. The dashed line shows
the solution to Equation 22. (Right)
The transformed number of lineages
through time.
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transmission rate b2. Hosts then progress to a recovered
state and no longer transmit. There is no birth or natural
mortality. The numbers of hosts that are susceptible in state
1 and state 2 are denoted, respectively, S, I1 and I2. The
equations that describe this system are as follows:

d
dt

I1 ¼ S
N
ðb1I1 þ b2I2Þ2 g1I1 (29)

d
dt

I2 ¼ g1I1 2 g2I2: (30)

The birth and migration rates for this model are

FðtÞ ¼

0
B@b1I1ðtÞ

SðtÞ
N

0

b2I2ðtÞ
SðtÞ
N

0

1
CA;

GðtÞ ¼
�
0 g1I1ðtÞ
0 0

�
;

hðtÞ ¼ ð0;  0Þ;

mðtÞ ¼
�

0
g2I2ðtÞ

�
:

(31)

An epidemic in an age-structured host population: For
many infectious diseases such as influenza, juvenile hosts
have higher contact rates and are more susceptible to
infection. In this model we divide the population into
juvenile (S1 susceptible and I1 infectious) and adult states
(S2 susceptible and I2 infectious), each of which has distinct
transmission rates within and between states. For example,
the rate that adults transmit to juveniles is b21. Juveniles
and adults recover from infection at the same rate g. The
equations that describe this system are as follows:

d
dt

I1 ¼ S1
N1

ðb11I1 þ b21I2Þ2 gI1
d
dt

I2 ¼ S2
N2

ðb12I1 þ b22I2Þ2 gI2:
(32)

We assume that the rate of epidemic dispersal is very fast
relative to the rate that hosts age, so there is zero migration
from the juvenile to the adult states. There is no birth or natural
mortality. The birth and migration rates for this model are

FðtÞ ¼

0
B@b11I1

S1
N1

b12I1
S2
N2

b21I2
S1
N1

b22I2
S2
N2

1
CA;

GðtÞ ¼
�
0 0
0 0

�
;

hðtÞ ¼ ð0;  0Þ;

mðtÞ ¼
�
gI1ðtÞ
gI2ðtÞ

�
:

(33)

The structured coalescent: In developing the structured
coalescent model, the number of taxa sampled at time s in
state k is nk(s), and the number of lineages in state k at time
s in the past is Ak(s). The indexes i and j always refer to
a lineage in the genealogy. A(s) denotes the total NLFT.

The coalescent model developed here does not assume
homochronicity of sampling. In general, each taxon may be
sampled at a distinct time point. Furthermore, the rate of
coalescence depends on the state of the taxa when they are
sampled. Therefore it is possible for each branch of the tree
to coalesce at a rate distinct from all other branches, and the
rate of coalescence between a given pair of branches may be
distinct from all other pairs of branches. The goal of this
section is to develop a master equation for the rate of
coalescence. The solution should be of sufficient generality
to capture the rates of coalescence between all pairs of
branches as a function of time-dependent births, migrations,
and population size.

As a motivating example, consider the two-stage epi-
demic model (Equation 29). Figure 4 shows a gene geneal-
ogy that might be generated by this process. The red
branches represent infected hosts in the first stage of infec-
tion, and blue branches represent hosts in the second stage.
Our goal is a mathematical description of the probability
that a branch occupies each state at some time s in the past
and the rate at which a given pair of branches coalesce.
Moving upward in the tree (backward in time), four events
can occur in this model:

1. Two red branches can coalesce, representing transmis-
sion by a stage-1 infection.

2. A red and a blue branch can coalesce, representing trans-
mission by a stage-2 infection.

3. A blue branch can become red, representing stage tran-
sition from the early to the late stage.

4. A red branch can become blue, representing transmission by
a stage-2 infected that is not ancestral to the sample; these
are subsequently called “invisible transmission” events.

The fourth event is important to include and easy to forget.
When a stage-2 infected transmits and initiates a line of
descent that is eventually sampled, but has no other extant
progeny in the sample, it will not be manifested in
a genealogy as a coalescence, but rather as the branch
changing state from a stage-1 host to the transmitting stage-
2 host. Note that two blue branches never coalesce since
there are no birth events between blue lineages. The
coalescent model is specified by the rates that these four
events happen, and these rates are straightforward to
calculate given prior knowledge of F(s) and G(s).

Suppose that at time s we have two lineages i and j. The
probability that lineages i and j are in state 1 are, respectively,
pi1 and pj1. And the probabilities of being state 2 are, respec-
tively, pi2 and pj2. Given that a transmission event by a stage-1
infected occurs, what is the probability of observing coales-
cence between i and j? Such transmissions occur at the rate
f11(s). The probability that i or j transmitted is pi1/Y1 or pj1/Y1.
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The probabilities that i or j became infected from this event
are the same: pi1/Y1 and pj1/Y1. The probability that either i or
j transmitted and either i or j was infected by this event is

2 · 
pi1
Y1

pj1
Y1

: (34)

Extrapolating to the entire tree, the probability that two
stage-1 lineages coalesce is

�A1

Y1

��A121
Y121

�
�

�A1

2

� 2
Y2
1
.

Now suppose a stage-2 unit transmitted. This happens at
rate f21(s). The probability of this resulting in a coalescence
between i and j is found by considering the probabilities that
i or j transmitted or was infected. Note that the lineage that
is infected must be in the first state, and the lineage that
transmitted is in the second state by assumption:

pi2
Y2

pj1
Y1

þ pj2
Y2

pi1
Y1

: (35)

Extrapolating to the entire tree, the probability that a co-
alescence occurs between lineages in states 1 and 2 is
ðA1=Y1ÞðA2=Y2Þ.

The probability of observing an invisible transmission
event (the fourth type of event) is more complex and
depends on the probability that the transmitting host is
not ancestral to the sample. The probability that i changes
state from 1 to 2 is then the probability that i is type 1, times
the probability that the transmitting host is not among the
j 6¼ i lineages:�

pi1
Y1

��
Y2 2

P
j6¼i pj2

Y2

�
¼

�
pi1
Y1

��
Y2 2 ðA2 2 pi2Þ

Y2

�
: (36)

Extrapolating to the entire tree, the probability that a lineage
ancestral to the sample changes state from 1 to 2 is
ðA1=Y1ÞððY22A2Þ=Y2Þ.

Handling migration events (that is, “stage transitions”) is
more straightforward. Given that a stage transition occurs,
which takes place at the rate g12(s), the probability that
lineage i changes state from 2 to 1 is pi2/Y2. The probability

that a lineage ancestral to the sample changes state from 2
to 1 is A2/Y2.

Using these derived probabilities and the given rates at
which birth and migration events occur, the rate that
lineages of type 1 are lost to coalescence is

lðA1;A2Þ ¼
�
A1
2

�
2f11
Y2
1

þ f21
A1

Y1

A2

Y2
: (37)

The first term can be recognized as the rate of coalesce from
Equation 1. Furthermore, a convenient deterministic approx-
imation to the NLFT is available when the sample size is large:

d
ds

A1 ¼ 2lðA1;A2Þ þ g12
A2

Y2
2 f21

A1

Y1

Y2 2A2

Y2
(38)

d
ds

A2 ¼ 2g12
A2

Y2
þ f21

A1

Y1

Y2 2A2

Y2
: (39)

The initial conditions of these equations may be based on
the number of infected sampled in states 1 and 2. These
equations could be used for inference and model fitting. In
Volz et al. (2009) a deterministic model similar to this one
was fitted to a phylogeny of HIV-1 genetic sequences by
comparing the observed distribution of internode intervals
to the theoretical expectation with homochronous sampling,

Prfti. tg ¼ n2AðtÞ
n21

; (40)

where ti is the time of the ith coalescent event (or “node
height”), n is the sample size, and A(t) = A1(t) + A2(t). And
this distribution is easily generalized to heterochronous
sampling by integrating a different set of equations like
(38) between each sample time. While the use of this ap-
proximation is computationally efficient, it does not use all
information available in the tree. The distribution of node
heights contains information about the demographic history,
as does the topology of the tree. For example, if we observe
that taxa in state 1 coalesce with one another at a different
rate than with taxa in state 2, that provides information
about the relative transmission rates of b1 and b2. This issue
is explored in greater detail in the next section for models
with generalized structure.

The coalescent for populations with generalized structure:
The derivations of the preceding section for a structured
population with two states can be extended to models with
an arbitrary number of states and arbitrary structure. More
generally, ~lijðsÞ is the rate of coalescence between lineages
i and j. The state of each branch is governed by the varia-
bles pik(s), which is the probability that branch i is in state k
at time s in the past. The function S(i) 2 (1, m) returns the
state of lineage i, which is usually unknown. Note that
the number of lineages in state k is AkðsÞ ¼

PAðsÞ
i pik ðsÞ.

With the understanding that all state variables and rates
are time dependent, the variable s is dropped from future
expressions.

Figure 4 An example gene genealogy that could be generated by the
HIV model (Equation 29). Red branches correspond to stage-1 infected
hosts. Blue branches correspond to stage 2.
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Given that a birth event from state k to state l occurs,
the probability that lineages i and j coalesce is
ðpik  =  YkÞðpjl  =  YlÞ þ ðpil  =  YlÞðpjk  =  YkÞ. The rate that such births
occur is fkl, and summing over all combinations of states k
and l yields the rate that i and j coalesce:

~lij ¼
Xm
k

Xm
l

fkl
YkYl

�
pikpjl þ pilpjk

�
: (41)

The
�A
2

�
rates of coalescence ~l depend on the state vectors

p
/
, and these change going backward in time as a function of

the numbers of migration and invisible birth/transmission
events:

1. Migrations from state k to l at rate gkl cause the state to
change l / k with probability pil/Yl.

2. Migrations from state l to k at rate glk cause the state to
change k / l with probability pik/Yk.

3. Births from state k to l at rate fkl cause the state to change
l / k with probability ðpil  =  YlÞððYk2AkÞ=  YkÞ.

4. Births from state l to k at rate flk cause the state to change
k / l with probability ðpik   =  YkÞððYl2AlÞ=  YlÞ.

Putting these terms together yields the master equation for
the state of branch i:

d
ds

pik ¼
Xm
l

�
pil
Yl
gkl 2

pik
Yk

glk þ
pil
Yl

Yk2Ak

Yk
fkl 2

pik
Yk

Yl 2Al

Yl
flk

�
:

(42)

Following a coalescent event, the state of the new branch
a depends on the state of the daughter lineage i or j when it
reproduced. The rate that either i generates j or j generates i
while in state k is fklððpikpjl þ pilpjkÞ=  YkYlÞ. Summing over all
states l and normalizing by the total coalescent rate between
i and j yields

pak ¼
1
~lij

Xm
l

fkl
YkYl

�
pikpjl þ pilpjk

�
: (43)

An additional subtlety arises for small populations in
which it may not be presumed that the state of a lineage not
involved in the coalescent a9 6¼ i, j, a is independent of the
state of the new lineage a. For example, if F(ta) is such that
the reproducing unit is likely in state k, it is correspondingly
less likely that a lineage not involved in the coalescent event
is in state k. Adjusting the probabilities pa9k requires a small
adjustment that approaches zero in the limit of large pop-
ulation size.

The size of this adjustment can be found by application of
Bayes’ rule. Denote by p9a9k the probability that a9 is in state
k conditional on a particular coalescent event occurring be-
tween lineages i and j. First suppose that the reproducing
unit was in state k so that S(a) = k. We wish to calculate the
probability that a9 is in state k conditional on not reproduc-

ing at time ta. This is Pr{a9 not transmitting at ta | S(a9) = k,
S(a) = k} times the prior pa9k divided by the probability of not
reproducing, Pr{a9 not transmitting at ta | S(a) = k}. We have

Prfa9 not transmitting at ta   j  Sða9Þ ¼ k; SðaÞ ¼ kg ¼ 12
1
Yk
(44)

Prfa9 not transmitting at ta   j  SðaÞ ¼ kg ¼ pa9kð12
1
Yk
Þ þ 12 pa9k:

(45)

It follows that

p9a9k ¼
Prfnot transmitting at ta j Sða9Þ ¼ k; SðaÞ ¼ kg· pa9k

Prfa9 not transmitting at ta j SðaÞ ¼ kg
(46)

¼ pa9k
Yk2 1

Yk 2 pa9k
: (47)

Now suppose the reproducing unit was in state l 6¼ k and
S(a) = l.

Prfa9 not transmitting at ta   j  Sða9Þ ¼ k; SðaÞ ¼ lg ¼ 1

Prfa9 not transmitting at ta   j  SðaÞ ¼ lg ¼ pa9lð12
1
Yl
Þ þ 12 pa9l:

(48)

It follows that

p9a9k ¼ Prfa9 not transmitting at ta   j  Sða9Þ ¼ kSðaÞ ¼ lg · pa9k
Prfa9 not transmitting at ta   j  SðaÞ ¼ lg

¼ pa9k
Yl

Yl 2 pa9l
:

(49)

Now integrating over the state of the reproducing unit a
with probability mass pak, we have

p9a9k ¼ pakpa9k
Yk2 1

Yk2 pa9k
þ
X
l 6¼k

palpa9k
Yl

Yl2 pa9l
: (50)

Having defined the general framework for modeling the
rate of coalescence and the dynamics of branch states, two
problems are now open to investigation: simulating co-
alescent trees and calculating the likelihood of a gene
genealogy.

Simulating coalescent trees conditional on complex
demographic history: The total rate that coalescent events
occur is denoted lAðsÞ ¼

P
i;j2AðsÞ;i 6¼j

~lij=2 (note that ~lij ¼ ~lji
and is counted twice in this summation). Similarly, I define
~vi to be the rate at which lineage i changes state, and the
cumulative rate vAðsÞ ¼

P
i2AðsÞ~viðsÞ. The rate that lineage i
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changes state from k to l is denoted ~viðk; lÞ. From the dis-
cussion of the preceding section, we have

~viðk; lÞ ¼ pik
Yk

glk þ
pik
Yk

Yl 2Al

Yl
flk: (51)

In the simulations, we do not use a probabilistic description
pik for the state of a lineage (although this could be done).
Rather, we initialize the state of a lineage at the time of sam-
pling and update the state in a discrete manner, so pik = 0 or
1 at all times.

To simulate the coalescent, we begin at the time s =
0 when the first taxon (retrospectively) is sampled.

At time s, the putative time until the next event se, which
may be a coalescent or a change of state, is drawn from
a distribution with cumulative distribution function

Prfse.tg ¼ 12 e
R t

s9¼s
vAðs9Þ þ  lAðs9Þds9: (52)

Denote by a Ds a number generated from this distribution.
There are two possibilities:

1. If Ds is greater than the next sample time, then assign s
smaller than the next sample time and add the new lin-
eages to the tree.

2. Otherwise, assign s ) s + Ds. Then modify the tree with
a coalescent or state change.

Select which event occurs with probability proportional to
the rates

	 ~lij
2



i;j2AðsÞ;i6¼j

[�~viðk; lÞ
�
i2AðsÞ;k;l2ð1;mÞ:

If a coalescent happens, assign the state to the new lineage
selected using Equation 43. Given that i and j coalesce,
the state of the new lineage a is selected to be in state k
with probability proportional toXm

l

fkl
pikpjl þ pilpjk

YkYl
:

After a new lineage is sampled, or a coalescent event occurs,
or a state change occurs, a new number is generated from
the distribution (52) and the process is repeated.

The likelihood of a gene genealogy conditional on complex
demographic history: The set of coalescent events C of
a given gene genealogy consists of tuples (i, j, sa): the two
lineages that coalesce and the time sa in the past when the
event occurred. The probability of observing C depends on
the rate that each pair of branches coalesce and on the
probability that lineages have not coalesced prior to sa. I
denote this latter quantity u(s).

An unbiased calculation of the likelihood of a genealogy
given a demographic history can be obtained using the
method in Beerli and Felsenstein (1999). Consider an in-
ternode interval between times s0 and s. The probability that
a coalescent has not occurred by time s is

uðsÞ ¼ e
2
R s

s9¼s0
~Lðs9Þds9; (53)

where ~LðsÞ ¼ P
i;j2A;i 6¼j

~lijðsÞ=2 is the total rate at which the
extant lineages coalesce; note that ~lij ¼ ~lji and is counted
twice in the summand. The duration of an internode interval
has density ~LðsÞuðsÞ. When a coalescent occurs, the proba-
bility that it is with lineages i and j is ~lijðsÞ=~LðsÞ. The prob-
ability of i and j coalescing after interval s is

qijðsÞ ¼ ~LðsÞuðsÞ
~lijðsÞ
~LðsÞ ¼ ~lijðsÞuðsÞ: (54)

The likelihood is then the product of the probabilities qij(s)
after each internode interval:

LðCÞ ¼
Y

ði;j;saÞ2X
qijðsaÞ ¼

Y
ði;j;saÞ2X

elijðsaÞuðsaÞ: (55)

Regarding the computational efficiency of calculating the
likelihood, it requires the solution of m ODEs to describe pik
for each of 2(n – 1) branches of the tree; it also requires the
solution of 2(n – 1) ODEs for the survivor functions ui of
each branch. It is possible to improve on this and reduce the
calculation to a system of m2 + m equations in each inter-
node interval that does not depend on the sample size.

The first simplification is to solve for the dynamics of the
total number of ancestors of each type, Ak, rather than the
state of each lineage. The following equation describes
the dynamics of Ak within each internode interval conditional
on no coalescent events occurring within that interval:

d
ds

X
i

pik ¼ d
ds

Ak

¼ Pm
l 6¼k

gkl

�
Al

Yl
2 glk

Ak

Yk
þ fkl

Al

Yl

Yk 2Ak

Yk
2 flk

Ak

Yk

Yl 2Al

Yl

�
:

(56)

The second simplification consists of solving for m repre-
sentative state vectors pk* in each internode interval. At the
beginning of the interval, each vector is initialized with unit
mass on the kth element for k = 1, � � � , m. The dynamics of
the kth element of each state vector are found as above:

d
ds

pkk* ¼
Xm
l

�
pkl*
Yl

gkl2
pkk*
Yk

glk þ
pkl*
Yl

Yk2Ak

Yk
fkl2

pkk*
Yk

Yl2Al

Yl
flk

�
:

(57)

Given the solutions for Ak and pk*, the state of each lineage
can be calculated at the end of the internode interval that
begins at time s0 and ends at time s1:

pikðs1Þ ¼
Xm
k

pilðs0Þpkk* ðs1Þ: (58)

This can also be written as the dot product
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piðs1Þ ¼ Q � piðS0ÞT ; (59)

where Q is an m · m matrix with the kth column equal to
p*kðs1Þ.

Results and Discussion

Computational experiments have been carried out to cor-
roborate the derivations of the preceding sections and to
provide examples of how the structured coalescent model
may be used to explore system behavior and for inference.
Corroboration of the coalescent model is obtained by event-
driven simulation of large populations while maintaining
a record of who begot whom. The simulation methods are
described in File S1.

Figure 5 shows the NLFT for coalescent trees generated
as described in Simulating coalescent trees conditional on
complex demographic history and forward-time simulations.
Replication and migration were governed by the HIV model
as described in Population dynamics and gene genealogies in
structured populations. Fifty forward-time simulations were
conducted and were based on N = 104 reproducing units.
The coalescent simulator used birth and migration rates
generated by the deterministic HIV model (Equation 29).
Sampling was conducted when a specified cumulative num-
ber of transmissions had taken place. The coalescent trees
were compared for a range of sample fractions and trans-
mission rates and were found to faithfully reproduce the
NLFT of the forward-time simulations in all cases using
a fraction of the computational resources. Of interest, the
NLFT is highly sensitive to not only the population size (or
prevalence of infection), but also the relative transmission
rates in the first and second stages of infection. All epidemic
scenarios in Figure 5 have similar population dynamics and
identical R0 ¼ b1  =  g1 þ b2  =  g2, but vary by the fraction of
transmissions attributable to the first stage.

An additional set of experiments was carried out to
corroborate the likelihood function (55). To demonstrate
the generality of this solution, a set of complex structured
models was sought, and a method was employed to
generate a model with an arbitrary number of states and
random patterns of births and migrations. Births take place
according to the logistic function. Individuals in state k be-
get units in state l at rate bklð12Yl=  NÞ. Migrations take
place by the law of independent action. Units in state k
move to l at rate gklY. The matrices that specify bkl and gkl
are generated by randomly choosing a tunable number d of
m2 elements of both matrices to have a normally distributed
value. All other rates are zero. There are also small exoge-
nous birth and death terms [hk(t) and mk(t) from Equation
28] to prevent any population from going to zero.

Figure 6 shows the results from a model with m = 5
states, seven migration rates, and four birth rates, with
N = 5 · 103 and a sample fraction f = 30%. The potential
to estimate each of the four birth rates is evaluated using
a likelihood profile. To generate a genealogy, a coalescent

tree was simulated using the methods of the preceding sec-
tion and using birth and migration rates from a deterministic
ODE model. Each birth rate was perturbed by 650%, hold-
ing all other parameters constant, and the likelihood of the
coalescent tree was calculated. In all cases, the maximum
likelihood occurs at or near the true birth rate. From this
profile, a 95% confidence interval was calculated on the
basis of a difference in likelihood of 1.92 log units. In this
experiment, the interval covers the true value in all cases. A
multitude of similar experiments with different compart-
mental models and sample fractions are presented in File
S1.

An additional set of experiments was conducted using 35
genealogies simulated using the process described in File S1
and the same model as above with five states and four birth
rates. Likelihood profiles and confidence bounds were cal-
culated for each genealogy and each of four birth rates. The
carrying capacity of the population was set at N = 5000 and
a single homochronous sample was taken after 5N birth
events had occurred. The simulations were initialized far
out of equilibrium with a single individual in each of m
states. The sample fraction was 20% of extant individuals
(780 total) and sampling was random without replacement.
Across the 35 replicates, I find that the maximum likelihood
is unbiased (mean error ,1.3%) and the confidence inter-
vals based on likelihood profiles had good coverage of the
true value (74.3%).

These computational results suggest that it may be
feasible to use multiple sequence alignments as an addi-
tional source of data when estimating the parameters of
complex demographic models. But these experiments have
explored only error generated by the birth–death process
itself and not error due to the measurement process or in
the inference of the tree topology and branch lengths. The
branch lengths and topology of a gene genealogy are never
known with certainty, and these quantities must be esti-
mated at the same time as the parameters of a demographic
model. This article has addressed only the problem of cal-
culating the likelihood of a gene genealogy, but estimation
from genetic data will require incorporation of this likeli-
hood into algorithms for sampling genealogies. Recently de-
veloped tools have made it increasingly convenient to
conduct such inference for simple demographic models
within a Bayesian MCMC framework (Drummond et al.
2002; Beerli 2006; Drummond and Rambaut 2007; Kuhner
and Smith 2007; Beerli and Palczewski 2010; Hey 2010).
For complex demographic models, which may include many
states and more than a dozen parameters, much more care is
required for the design of proposal distributions for efficient
MCMC and for incorporating detailed prior information
about population size and rates.

When fitting complex models with many free parameters,
the likelihood calculation proposed here may be most useful
when there is abundant prior information about population
size and birth rates as well as a large sample of genetic data.
The HIV epidemic provides a good example where these
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methods may find immediate application. In developed
countries, genotyping HIV is now standard for drug-re-
sistance testing, and these data are sufficient for phyloge-
netic analyses despite composing only �10% of the genome
(Lewis et al. 2008). The study of HIV epidemiological dy-

namics may also benefit from generally good case reporting,
prior estimates of incidence and prevalence (Hall et al.
2008), and scores of studies that have estimated parameters
describing the natural history of infection (Longini et al.
1989). Where population size over time is already known

Figure 5 A comparison of the NLFT generated by the co-
alescent simulations and forward-time event-driven simu-
lations (box plot). Fifty simulations were conducted using
both methods. Dynamics were governed by the HIV model
in Population dynamics and gene genealogies in struc-
tured populations. g1 = 1/365, g2 = 1/3650. Homochro-
nous samples were collected at the time such that N
cumulative transmissions had occurred. System behavior
is largely controlled by the ratio q = (b1g2)/(b2g1) of the
stage-1 reproduction number to the stage-2 reproduction
number, and two values of this ratio are compared in the
simulations. Two population sizes (N = 103 and 104) are
compared. Two sample sizes are compared: a small sam-
ple of 10% and a census of 100% of extant infections.

Figure 6 (Left) A directed graph representing the model structure with m = 5 states, four birth terms, and seven migration terms. Blue arrows represent
logistic birth terms. Red arrows represent migration between states. (Center) The population size Yk over time for each of five states. (Right) Likelihood
profiles for each of four birth rates and 95% confidence intervals. To generate the profiles, the birth rates were perturbed from the true value by the
factor of parameter expansion.

Complex Population Dynamics 199



with high precision, models using genetic data may be used
to estimate parameters that are hard to discern from stan-
dard data sources. For example, there is much debate (Yerly
et al. 2001; Pao et al. 2005; Lewis et al. 2008; Cohen et al.
2011) about the relative contribution of transmissions dur-
ing the early/acute stage of HIV infection to total incidence.
In this case, a complex model of HIV transmission that fea-
tures transmission during multiple stages of infection could
be fitted to genetic data while making use of highly precise
prior information about historic incidence and prevalence.

While deficiencies of the skyline estimate have been
discussed regarding estimation of epidemic prevalence, it is
important to remember that model misspecification can still
be a large source of bias. The SIR models discussed above
are also simplifications of reality and are subject to inductive
bias. It is hoped that these models may be sufficiently
complex and incorporate enough prior information to obtain
nearly unbiased estimates of the unkown population size.
Ultimately, this work may contribute to the integration of
phylogenetic inference over short timescales with the vast
and growing literature on mathematical modeling of eco-
logical and epidemiological population dynamics (Bailey
1975; Anderson and May 1991). These models could likely
be incorporated into recent statistical approaches that in-
clude stochastic effects (Rasmussen et al. 2011). Such an
integration would be much harder to achieve with conven-
tional estimates of effective population size, which can cor-
relate poorly with the true population size when birth rates
vary through time.
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