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During hypoxia, acidosis, and I/R injury, the NO2
− reductase activity 

of deoxyhemoglobin, deoxymyoglobin, tissue heme proteins, and 
xanthine oxidoreductase (XOR) results in the reduction of NO2

− to 
NO.10,13–18

NO has protective or detrimental effects, depending on the tissue, 
site, source, and environment.19–21 The application of NO2

− as a direct 
NO donor has prominent therapeutic effects on I/R injury in the heart, 
liver, and brain.10,14,22 In contrast, NO might exert adverse effects by 
forming peroxynitrite, a strong oxidant produced by the reaction of 
increased NO and superoxide radicals during the reperfusion period. 
Because the detrimental effects of peroxynitrite are indiscriminate, 
several studies have assessed the level of apoptosis and oxidant stress 
in testicular I/R injury.6,23,24

As the mechanism of cytoprotection provided by NO2
−  is still 

unclear, we attempted to examine whether hypoxia-dependent NO 
production from NO2

− attenuates testicular I/R injury.

MATERIALS AND METHODS
Experimental animal model
All experimental procedures and protocols were approved by the Animal 
Care and Use Committees of Konkuk University  (Seoul, Korea) and 
conformed to the National Institutes of Health (NIH) Guide for the 
Care and Use of Laboratory Animals. Unilateral testicular ischemia 

INTRODUCTION
Testicular torsion is a common urologic emergency that is primarily 
induced by torsion of the spermatic cord in infants, children, and 
adolescents. Its incidence has been estimated at 1 out of 160 to 
4000 males per year by 25 years of age.1–3 The main etiology of testicular 
torsion-detorsion is ischemia/reperfusion (I/R) injury of the testis.4,5 
Although reperfusion is necessary for the survival of the injured tissue, 
it paradoxically exacerbates cell and tissue damage.

Nitric oxide (NO) is a freely diffusible, water- and lipid-soluble 
gaseous molecule and an important free radical with biologically 
multifunctional effects, such as maintaining vascular tone and 
homeostasis in many tissues and organs.6,7 Under normoxic 
conditions, NO is synthesized from L-arginine by three different 
NO synthase  (NOS) isoforms: endothelial NOS  (eNOS), neuronal 
NOS  (nNOS), and inducible NOS  (iNOS), which are generally 
expressed in testicular tissues.8,9 Since these isoforms exert catalytic 
activity via oxygen consumption, they are inhibited under conditions 
of hypoxia and ischemia. Therefore, alternative sources of NO 
generation are vital in patients in ischemic states. Emerging evidence 
has demonstrated that nitrite (NO2

−) and nitrate (NO3
−) are endogenous 

materials formed by NO oxidation under an aerobic condition and they 
represent the major circulating and tissue storage forms of NO.10–12 
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Testicular torsion, a common urologic emergency, is primarily caused by ischemia/reperfusion (I/R) injury of the testis. Nitric 
oxide (NO)‑derived from nitrite (NO2

−) has been reported to have prominent therapeutic effects on I/R injury in the heart, liver, and 
brain; however, its effects on testicular I/R injury have not been evaluated. This study, therefore, investigated whether NO from 
NO2

− is beneficial in a rat model of testicular I/R injury which eventually results in impaired spermatogenesis. Male Sprague‑Dawley 
rats were assigned to the following seven groups: group A, sham‑operated control group; Group B, I/R with no treatment; Groups C, 
D, and E, I/R followed by treatment with three different doses of NO2

−; Group F, I/R followed by administration of NO2
− and NO 

scavenger (2‑(4‑carboxyphenyl)‑4,4,5,5‑tetramethylimidazoline‑1‑oxyl‑3‑oxide potassium salt [C‑PTIO]); and Group G, I/R followed 
by administration of nitrate (NO3

−). NO2
−, NO3

−, and C‑PTIO were intravenously administered. Histological examination of the testes 
and the western blot analysis of caspase‑3 were performed. Levels of antioxidant enzymes and lipid peroxidation were measured. 
Germ cell apoptosis, oxidative stress, antioxidant enzymatic function, and lipid peroxidation in Group B were significantly higher 
than those in Group A. Group B exhibited an abnormal testicular morphology and impaired spermatogenesis. In contrast, testicular 
damages were attenuated in the NO2

− treatment groups, which were caused by reduction in superoxide and peroxynitrite levels and 
an inhibition of caspase‑3‑dependent apoptosis. The results of this study suggest NO2

− to be a promising therapeutic agent with 
anti‑oxidant and anti‑apoptotic properties in testicular I/R injury.
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was maintained for 5 h followed by reperfusion for 24 h. Pubertal, 
6-week-old, male Sprague-Dawley rats (OrientBio, Seongnam, Korea) 
were randomly assigned to the following seven groups  (10 rats per 
group): Group A, sham-operated control group with no I/R; Group B, I/R 
with no treatment; Groups C, D, and E, I/R followed by treatment with 
three different doses (0.12, 1.2, and 12 nmol g−1 body weight [bwt], 1 min 
before reperfusion via tail vein) of NO2

− administered intravenously; 
Group F, I/R followed by intravenous administration of NO2

−  (0.12 
nmol g−1 body bwt) and C-PTIO (0.01 μmol g−1 body bwt, 5 min before 
ischemia); Group G, I/R followed by intravenous administration of 
NO3

− (0.12 nmol g−1 bwt, 1 min before reperfusion via tail vein).
Sodium nitrite and sodium nitrate were obtained from Sigma-Aldrich 

(St. Louis, MO, USA; catalog number S2252 and S8170, respectively). 
The NO scavenger C-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethyli
midazoline-1-oxyl-3-oxide potassium salt) was purchased from Alexis 
Biochemicals (San Diego, CA, USA; catalog number ALX-430-001). All 
experiments were performed under zolazepam and tiletamine (Zoletil®, 
40 mg kg−1; Virbac, Seoul, Korea) and xylazine (5 mg kg−1; Bayer, Seoul, 
Korea) anesthesia injected intramuscularly. After a scrotal incision, the 
left testis was exteriorized. In control Group A, the testis was promptly 
placed back into the scrotum and suture with 4-0 silk (Ailee, Busan, 
Korea) was placed through the tunica albuginea. In the remaining six 
groups, the left testis was rotated 720° in a clockwise direction and 
maintained in an ischemic state by fixing the testis to the scrotum 
with a 4-0 silk suture. After 5 h of ischemia, the testis was released in 
a counter-clockwise direction to initiate reperfusion.25 After surgery, 
ketoprofen (5 mg kg−1) was injected subcutaneously for reducing pain. 
All animals experienced 24 h of reperfusion after which orchiectomy 
was performed using the same anesthetic regime.

Histopathologic evaluation of spermatogenesis
The number of germinal cell layers and Johnsen scores were used to 
categorize spermatogenesis in the testes by counting 10 consecutive 
seminiferous tubules  (×400 field areas) and calculating the mean 
number. Each tubular section was given a score ranging from 10 to 1 
according to a scoring system based on the degeneration of the germinal 
epithelium and the presence of germinal cells in the seminiferous 
tubules.26 Mean seminiferous tubule diameter (MSTD) was determined 
from 20 tubular diameters. A  testicular MSTD below 260  µm was 
considered a pathologically low value.27

Immunohistochemistry
Serial sections of paraffin-embedded testis were deparaffinized and 
incubated with an anti-cleaved caspase-3 antibody (rabbit monoclonal, 
1:800; Cell Signaling, Beverly, MA, USA; catalog number 9661) for 
24 h at 4°C after being blocked with normal goat serum. Then, the 
slides were incubated with a biotinylated secondary antibody for 
1 h followed by avidin-biotin peroxidase complexes (ABC Elite Kit; 
Vector Labs, Burlingame, CA, USA; catalog number PK-6100) for 
30 min. Peroxidase activity was confirmed using 3,3-diaminobenzidine 
(Vector Labs) followed by a hematoxylin counterstain. Stained germ 
cells were counted in each group. The number of caspase-3-positive 
cells was determined by counting 20 consecutive seminiferous 
tubules  (×400 field areas) per slide. Data are expressed as mean of 
caspase-3-positive cells per seminiferous tubule.

Protein extraction and western blot
Frozen testis tissue was homogenized in a tissue protein extraction reagent 
(T-PER; Pierce Bioscience, Rockford, IL, USA; catalog number 78510). 
Homogenates were centrifuged at 10  000  g at 4°C for 10  min, and 
supernatants were stored at  −80°C. Samples were diluted with a 

reducing sample buffer and then boiled for 10 min. The samples were 
separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
(SDS-PAGE) and were then transferred onto a PROTRAN nitrocellulose 
membrane (Whatman GmbH, Dassel, Germany).

After the membranes were blocked by 5% blocking solution (nonfat 
dry milk/Tris-buffered saline-Tween  [TBST]) for 1  h, they were 
incubated overnight at 4°C in a 2.5% blocking solution containing 
the primary antibodies against β-actin (mouse monoclonal, 1:1000; 
Applied Biosystems, CA, USA; catalog number AM4302) and 
caspase-3  (rabbit polyclonal, 1:500; Abcam, Cambridge, MA, USA; 
catalog number ab13847). The membranes were then incubated for 
1 h at room temperature with goat anti-rabbit IgG-HRP (Santa Cruz 
Biotechnology, Santa Cruz, CA, USA; catalog number sc-2004) or goat 
anti-mouse IgG-HRP  (Santa Cruz Biotechnology; catalog number 
sc-2005) diluted in 2.5% blocking solution.

After washed with TBST, protein was detected using an enhanced 
chemiluminescence substrate (ELPIS Biotech, Taejon, Korea; catalog 
number EBP-1071). Protein levels were determined with a LAS-3000 
densitometer and Science Laboratory 2001 Image Gauge software 
(Fuji Photo Film, Tokyo, Japan).

Analysis of peroxynitrite and superoxide formation
Paraffin-embedded, 4-μm thick sections were deparaffinized and then 
treated with citrate buffer (0.01 mol l−1, pH 6.0) heated in a microwave 
for antigen retrieval. The sections were incubated in 3% H2O2 in 
methyl alcohol to block endogenous peroxidase activity and washed 
with PBS. After incubating with blocking serum for 1 h, the tissue 
sections were treated overnight at 4°C with anti-3-nitrotyrosine (3-NT) 
antibody  (rabbit polyclonal, 1:1000; Upstate Biotechnology, Lake 
Placid, NY, USA; catalog number 06-284), a marker of peroxynitrite 
generation. The secondary antibody DyLight 405-conjugated AffiniPure 
anti-rabbit (goat polyclonal, 1:800; Jackson ImmunoResearch, West 
Grove, PA, USA; code number 111-475-003) was applied.

As a principal marker of superoxide, dihydroethidium (DHE) is 
rapidly oxidized to ethidium bromide (EtBR), which then binds to 
DNA in the nucleus and emits red fluorescence.28,29 Briefly, frozen, 
enzymatically intact testes in OCT compound  (Leica, Bensheim, 
Germany) were cut into 7-  to 10-μm thick sections and mounted 
on coating glass slides. The tissues were incubated with 5 mmol l−1 
DHE stabilized in dimethyl sulfoxide  (Invitrogen, Carlsbad, CA, 
USA; catalog number D23107) at 1:10  000 dilution in PBS and 
were stained in a light-protected humidified chamber for 5 min at 
37°C. Images were obtained using LSM 710 confocal laser scanning 
microscopy with ZEN software (Carl Zeiss, Jena, Germany). 3-NT- or 
DHE–positive cells were manually counted and averaged for 20 
seminiferous tubules.

Biochemical parameters
To measure malondialdehyde (MDA), which is an end product of lipid 
peroxidation, the thiobarbituric acid (TBARS) assay was performed 
using a commercially available kit (Cell Biolabs, San Diego, CA, USA; 
catalog number STA-330) following the manufacturer’s instructions. 
A  dilution series of MDA standards were prepared ranging from 
0 μmol l−1 to 250 μmol l−1, and samples were prepared after treating with 
PBS containing ×1 butylated hydroxytoluene (BHT). SDS lysis solution 
was added to both the samples and the MDA standards followed by 
TBA reagent. All samples were incubated at 95°C for 1 h and then 
cooled to room temperature. After centrifugation, the supernatant was 
used for analysis. MDA standards and samples were transferred to a 
96-well microplate for spectrophotometric measurement at 532 nm.
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Superoxide dismutase (SOD) activity was evaluated using a 
commercially available kit (Cayman Chemical, Ann Arbor, MI, USA; 
catalog number 706002) following the manufacturer’s instructions. 
Tissues were homogenized in cold 20 mmol l−1 HEPES buffer (pH 7.2) 
and centrifuged at 1500 g for 4 min at 4°C for collecting the supernatant. 
The diluted radical detector was added to both the samples and the 
SOD standards followed by addition of diluted xanthine oxidase 
reagent. All samples were incubated for 20 min at room temperature. 
The SOD standards and samples were analyzed using a plate reader 
for spectrophotometric measurement at 450 nm.

Catalase (CAT) activities were evaluated using a commercially 
available kit (Cayman Chemical; catalog number 707002) following 
the manufacturer’s instructions. Tissues were homogenized in a cold 
buffer and centrifuged at 10 000 g for 15 min at 4°C for collecting 
the supernatant. The diluted assay buffer and methanol were added 
to both the samples and the CAT standards followed by addition 
of diluted hydrogen peroxide reagent. All samples were incubated 
for 20 min at room temperature. Diluted potassium hydroxide and 
catalase purpald were added to each well. After incubating for 10 min 
at room temperature, catalase potassium periodate was added to each 
well. The standards and samples were analyzed using a plate reader for 
spectrophotometric measurement at 540 nm.

Statistical analyses
All quantitative data are reported as the mean  ±  standard 
deviation (s.d.). The data between the groups were compared using 
analysis of variance (ANOVA) followed by Tukey’s test for CAT level 
and the number of caspase-3-stained cells, or using nonparametric 
analysis with Kruskal–Wallis test followed by Dunn’s multiple 
comparison test for other data. A value of P < 0.05 was considered 
statistically significant.

RESULTS
Histological examination
As expected in ipsilateral testes, the sham Group  A had normal 
testicular architecture and regular seminiferous tubule morphology 
with an orderly arrangement of germ cells including the presence of 
primary and secondary spermatocytes, spermatids, and spermatozoa. 
Group B showed hypospermatogenesis and maturation arrest with a 
loss of germinal cells and layers and severely impaired seminiferous 
tubules with many red blood cells due to vessel extravasations in the 
testes. Unlike Group B rats, Group C rats demonstrated morphology 
close to normal with well-arranged cell architecture. The testicular 
structure and the morphology of seminiferous tubules of Group G 
were similar to those of Group B.

Testicular parameters of spermatogenesis
Table 1 summarizes the mean histological changes in the ipsilateral 
testes. The MSTD and Johnsen scores in Groups  B and F were 
significantly lower  (P  <  0.05) and the number of germ cell layers 
in Groups  B and G was significantly lower  (P  <  0.05) than that in 
Group A. The MSTD was significantly higher in Group  C than in 
Group B (P < 0.05). Furthermore, the Johnsen score in Group E was 
significantly lower than that in Group A (P < 0.05).

Immunohistochemistry and western blot for caspase‑3
Figure  1a‑1e show the results of immunohistochemical analysis of 
caspase-3 in the ipsilateral testes. The number of caspase-3-positive 
cells was significantly higher (P < 0.05) in Groups B (33.33 ± 8.68) 
and G (27.68  ±  12.13) than that in Group  A  (2.57  ±  1.26). After 
I/R, 0.12 nmol g−1 NO2

− administration (Group C) showed the most 

therapeutic effect on the damaged testis, as evidenced by a significant 
reduction in the number of caspase-3-positive cells  (8.51  ±  3.46), 
as compared to Groups B and G (P < 0.05). No therapeutic effects 
were observed in the other NO2

− and NO3
− groups (data not shown). 

The relative caspase-3/β-actin expression was significantly lower in 
Groups  A (0.48  ±  0.08) and C  (0.56  ±  0.08) than that in Group  B 
(1.43 ± 0.11, P < 0.05) (Figure 1f and 1g).

Detection of peroxynitrite and superoxide anion for evaluation of 
oxidative stress
Figure  2 shows the results for 3-NT immunoreactivity and DHE 
fluorescence in the ipsilateral testes. In the ischemic testes, the 
number of 3-NT-positive cells in Groups  B  (148.44  ±  27.09) 
and G  (121.70  ±  36.06) was significantly higher than that 
in Group A  (2.10  ±  1.12, P  <  0.05). In contrast, the number 
in Group  C  (30.78  ±  15.14) was significantly lower than the 
corresponding values in Groups B and G (P < 0.05). DHE fluorescence 
showed the same trend as 3-NT staining. In the ischemic testes, 
the intensity of DHE fluorescence was significantly higher in 
Groups B (67.34 ± 15.91) and G (76.71 ± 12.18) than that in Group 
A  (3.04  ±  1.56, P  <  0.05). However, Group  C  (15.74  ±  5.89) had 
significantly lower DHE fluorescence intensity than Groups B and 
G  (P  <  0.05). The extent of oxidative stress in Groups  D, E, and 
F (79.23 ± 13.85, 67.33 ± 16.74, and 74.60 ± 20.07, respectively) was 
similar to that in Groups B and G.

Testis MDA levels
The MDA level in the ipsilateral testis was significantly higher 
in Groups  B  (2.77  ±  0.84) and F  (2.17  ±  0.54) than that in Group 
A (0.55 ± 0.05) (P < 0.05, Figure 3a). In Group C (0.78 ± 0.29), the MDA 
levels were significantly lower than those in Groups B and F (P < 0.05).

Determination of the antioxidant enzymatic activity levels
The SOD level in the ipsilateral testis was significantly higher in 
Groups  A, C, and D  (0.77  ±  0.17, 0.69  ±  0.20 and 0.86  ±  0.18, 
respectively) than that in Group B (1.64 ± 0.30) (P < 0.05, Figure 3b). 
The CAT levels in Groups A (2.32 ± 0.72) and C (2.48 ± 0.47) were 
significantly lower than those in Group  B  (3.31  ±  0.37) (P < 0.05, 
Figure 3c).

DISCUSSION
The pathway which results in the production of NO from the three 
NOS isoforms might be compromised under conditions of low 
oxygen tension, such as acidosis, ischemia, and hypoxia.30 Under 
these conditions, the following alternative pathways have been found 
to exhibit NO2

−  reductase activity to convert NO2
−  to NO: acidic 

disproportionation,31 heme-proteins,32 and XOR.33

Table 1: Mean seminiferous tubule diameter value, Johnsen score, and 
number of germ cell layers in the left testes

Group MSTD Johnsen 
score

Germ cell 
layer

Group A (sham control) 278.33±14.45 9.00±0.82 5.17±0.75

Group B (IR only) 212.00±21.95a 2.83±0.75a 1.33±0.52a

Group C (IR + nitrite) 238.33±12.16b 5.33±1.03 2.50±0.84

Group F (IR + nitrite + C‑PTIO) 221.33±13.75a 3.50±0.55a 2.33±0.82

Group G (IR + nitrate) 226.83±12.59 3.00±0.63a 2.17±0.75a

aP<0.05 indicates significance compared to Group A testis, bP<0.05 indicates significance 
compared to Group B testis. MSTD: mean seminiferous tubule diameter; Group A: control; 
Group B: IR injury; Group C: I/R + 0.12 nmol g−1 nitrite; Group F: I/R + 0.12 nmol g−1 
nitrite + C‑PTIO; Group G: I/R + 0.12 nmol g−1 nitrate. IR: ischemia/reperfusion; 
C‑PTIO: 2‑(4‑carboxyphenyl)‑4,4,5,5‑tetramethylimidazoline‑1‑oxyl‑3‑oxide potassium salt
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NO2
−  is an important source of NO generated through an 

NOS-independent pathway in the kidney, heart, and liver 10,14,15,34 and 
also has protective effects in murine models of hepatic and myocardial 
infarction as well as in animal models of cerebral I/R.14,22,35,36 In the 
present study, we attempted to investigate whether hypoxia-dependent 
NO production from NO2

−  confers cytoprotection in testicular I/R 
injury. To the best of our knowledge, this is the first study to investigate 
the effects of NO2

− and NO3
− on testicular I/R injury and determine 

their therapeutic effects. The doses of 0.12, 1.2, and 12 nmol g−1 and the 
time of administration for NO2

− used in this study were selected based 
on previous studies regarding liver, heart, and kidney I/R injury.12,14,34

The NO scavenger C-PTIO was used to confirm whether the 
protection was, indeed, due to NO. C-PTIO inhibited the cytoprotective 
effect of NO from NO2

− in ischemic testis in vivo. These data were in 
accordance with the results of several studies, which reported that 
C-PTIO abolished the beneficial effects of NO2

−.22,34

In this study, the levels of MDA, SOD, and CAT in the left testes 
were significantly higher in Group B than the control levels. These 

results are the same as those of a previous study with ischemic testes.37 
However, there was an opposite trend for SOD and CAT values in 
ischemic brain and intestinal tissue.38,39 These could be due to differences 
between the organs. Because mammalian testes are highly sensitive to 
oxidative stress,40 the anti-oxidant enzymes are more likely to increase 
to compensate for reactive oxygen species  (ROS). The fluorescence 
intensity of 3-NT and DHE-stained cells was also significantly higher in 
Group B than that in the control group. The formation of peroxynitrite 
and superoxide radicals also decreased in Group C; as such, our data 
are in agreement with that of previous research.22

Our study demonstrated that testicular I/R-induced germ cell 
degeneration and impaired spermatogenesis,41 and an intravenous 
injection of 0.12 nmol g−1 NO2

−  exerted therapeutic effects on 
spermatogenesis in ipsilateral testis. While MSTD was significantly 
higher in the group treated with NO2

− than that in I/R group animals, 
the differences in the Johnsen scores and number of germ cell layers 
were not statistically significant. However, these values showed a 
tendency to increase in the group that received NO2

− intravenously. 
Taken together, these results could support the hypothesis of improved 
spermatogenesis and increased germ cell layer with intravascular 
NO2

− administration before reperfusion in testis.
Apoptosis is a critical indicator of tissue damage. Testicular I/R 

can lead to germ cell-specific apoptosis in rats.41,42 In this study, 
immunohistochemical analyses revealed an increased number of 
caspase-3-positive cells in the I/R group. Western blot of the germ 
cell lysate also showed that the relative expression of caspase-3 was 
significantly higher in the I/R group than that in the control group. The 
results of our study clearly demonstrated that an intravenous injection 
of NO2

− exerted anti-apoptotic effects, which were consistent with the 
results of earlier study of liver and heart I/R injury model.14 NO is a 
multifunctional signaling molecule that inhibits caspase activities to 
inhibit apoptosis,43 although the underlying mechanism by which NO 
from NO2

− has a beneficial effect on testicular I/R injury is still unclear.
The limitation of the present study is NO derivatives such as 

S-nitrosothiols, N-nitrosamines, iron-nitrosyl, and nitrated lipid 
were not evaluated. Since NO-modified proteins, peptides, and 
lipids have been reported to have cytoprotective effects on I/R 
injury,44 further analysis is required to discriminate among these 
NO-related compounds for verifying the exact mechanism. Second, 

Figure 2: Effects of nitrite and nitrate on 3‑NT staining and DHE fluorescence in ipsilateral testis. Immunohistochemical staining of 3‑NT in the left testes 
of Groups (a) A, (b) B, (c) C, and (d) G, respectively (scale bars = 50 µm). (e) The number of 3‑NT‑positive cells per seminiferous tubule in each group is 
shown. DHE fluorescence in the left testes of groups (f) A, (g) B, (h) C, and (i) G, respectively (scale bars = 50 µm). (j) The number of DHE‑positive cells per 
seminiferous tubule in each group is shown. aP < 0.05 indicates significance compared to Group A, bP < 0.05 indicates significance compared to Group C. 
Group A: control; Group B: I/R injury; Group C: I/R + 0.12 nmol g‑1 nitrite; Group G: I/R + 0.12 nmol g‑1 nitrate. 3‑NT: 3‑nitrotyrosine; DHE: dihydroethidium; 
IR: ischemia/reperfusion.
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Figure 1: Immunohistochemistry (×400) and western blot analysis of caspase‑3 
in ipsilateral testis. (a) The sham group has few caspase‑3‑positive cells. The 
number of stained cells is significantly higher in groups (b) B and (d) G than 
that in Group A. (c) The number of stained cells is significantly lower in 
Group C. Scale bars = 50 µm. (e) The number of caspase‑3‑positive cells per 
seminiferous tubule is shown. (f) The western blot image for caspase‑3 in left 
testis is shown. (g) The relative caspase‑3/β‑actin expression in Groups A and 
C is significantly lower than that in Group B. aP < 0.05 indicates significance 
compared to Group A, bP < 0.05 indicates significance compared to Group C. 
Group A: control; Group B: IR injury; Group C: IR + 0.12 nmol g−1 nitrite; 
Group G: IR + 0.12 nmol g−1 nitrate. IR: ischemia/reperfusion.
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the dose-dependent efficacy of NO2
−  was demonstrated in other 

studies,14,22 but not in this study. The organ specificity and sensitivity 
to NO production should be evaluated. As aforementioned, NO has 
an effect on the Janus pathway. NO generated in high quantities may 
form strong oxidant peroxynitrite leading to damage of tissue; however, 
it can also exert cytoprotection by reducing free radicals. Therefore, 
the concentrations that are attributable to the protective effect of NO 
derived from NO2

− vary for each organ.
In summary, this study demonstrates that NO from NO2

− with 
anti-oxidant and anti-apoptotic properties has a therapeutic effect 
under ischemic conditions. NO2

− could be an adjunctive therapy for 
testicular I/R injury.
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