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Deep neural networks with promising diagnostic accuracy for the 
classification of atypical femoral fractures
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Background and purpose — A correct diagnosis is 
essential for the appropriate treatment of patients with atypi-
cal femoral fractures (AFFs). The diagnostic accuracy of 
radiographs with standard radiology reports is very poor. 
We derived a diagnostic algorithm that uses deep neural net-
works to enable clinicians to discriminate AFFs from normal 
femur fractures (NFFs) on conventional radiographs.

Patients and methods — We entered 433 radiographs 
from 149 patients with complete AFF and 549 radiographs 
from 224 patients with NFF into a convolutional neural net-
work (CNN) that acts as a core classifier in an automated path-
way and a manual intervention pathway (manual improve-
ment of image orientation). We tested several deep neural net-
work structures (i.e., VGG19, InceptionV3, and ResNet) to 
identify the network with the highest diagnostic accuracy for 
distinguishing AFF from NFF. We applied a transfer learning 
technique and used 5-fold cross-validation and class activa-
tion mapping to evaluate the diagnostic accuracy.

Results — In the automated pathway, ResNet50 had the 
highest diagnostic accuracy, with a mean of 91% (SD 1.3), 
as compared with 83% (SD 1.6) for VGG19, and 89% (SD 
2.5) for InceptionV3. The corresponding accuracy levels for 
the intervention pathway were 94% (SD 2.0), 92% (2.7), 
and 93% (3.7), respectively. With regards to sensitivity and 
specificity, ResNet outperformed the other networks with a 
mean AUC (area under the curve) value of 0.94 (SD 0.01) 
and surpassed the accuracy of clinical diagnostics.

Interpretation — Artificial intelligence systems show 
excellent diagnostic accuracies for the rare fracture type of 
AFF in an experimental setting.

Atypical fractures occur at atypical locations in the femo-
ral bone and show a strong association with bisphosphonate 
treatment (Odvina et al. 2005, 2010, Shane 2010, Shane et al. 
2010, Schilcher et al. 2011, 2015, Starr et al. 2018). In con-
trast to the metaphyseal area, which is the site for the majority 
of all fragility fractures, the diaphyseal region is where atypi-
cal fractures occur. As is the case for any other insufficiency-
type fracture of the diaphysis, atypical fractures show specific 
radiographic features, such as a transverse or short oblique 
fracture line in the lateral femoral cortex and focal cortical 
thickening (Schilcher et al. 2013, Shane et al. 2014). These 
features differ from those of normal femur fractures (NFFs), 
which show oblique fracture lines and no signs of focal corti-
cal thickening (Shin et al. 2016b). 

Early and correct diagnosis of AFF is essential for appropri-
ate management (Bogl et al. 2020a), which minimizes the risk 
of healing complications (Bogl et al. 2020b). In clinical rou-
tine practice, conventional radiographs are used to diagnose 
complete AFF. However, routine diagnostic accuracy is poor, 
and < 7% of AFF cases are correctly identified in this way 
(Harborne et al. 2016). 

Artificial intelligence (AI), deep learning through convo-
lutional networks, has proven effective in the classification 
(Russakovsky et al. 2015) and segmentation (Ronneberger et 
al. 2015) of medical images in general, and for bone fractures 
in particular (Brett et al. 2009, Olczak et al. 2017, Chung et al. 
2018, Kim and MacKinnon 2018, Lindsey et al. 2018, Adams 
et al. 2019, Urakawa et al. 2019, Kalmet et al. 2020). Given 
the very specific radiographic pattern of these fractures, AI 
appears to be a useful tool for finding the needle (AFF) in the 
haystack (NFF). 
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We evaluated the abilities of different deep neural networks 
to discriminate complete AFF from NFF on diagnostic plain 
radiographs in an experimental setting and we assessed the 
effect of limited user intervention on diagnostic accuracy.

Patients and methods
Dataset and preprocessing procedures
The original dataset of radiographs comprised patients with 
complete AFFs and NFFs derived from a cohort of 5,342 
Swedish women and men aged ≥ 55 years who had suffered a 
fracture of the femoral shaft in the period 2008–2010 (Figure 
1). We extracted and anonymized the radiographs of 151 
subjects with AFF and 230 subjects with NFF owing to their 
accessibility from the research PACS at Linköping University 
Hospital and excluding all patients with signs of previous sur-
gery, such as joint prosthesis or other orthopedic implants, and 
signs of pathological fractures (Schilcher et al. 2015). Fracture 
classification into AFF and NFF was based on repeated indi-
vidual review in several previous studies with excellent inter-
rater reliability (Schilcher et al. 2011, 2015, Bogl et al. 2020b). 
For each subject, several radiographs were available. During 
manual screening, images with extensive artefacts (e.g., 
splints or plasters) were excluded. The final dataset included 
433 radiographs from 149 patients with AFF and 549 from 
224 patients with NFF. For the purpose of image processing, 
the original images were converted from the Digital Imaging 
and Communication in Medicine (DICOM) format to the Joint 
Photographic Experts Group (JPEG lossless) format. To allow 
for transfer learning from ImageNet, grayscale images were 
converted to Red Green Blue (RGB) images with 3 channels 
(with identical duplication for each channel). Moreover, all 
the images were padded to a square size and downsampled to 
256×256 pixels to reduce the amount of data and computing 
time for the whole image. Image intensity was normalized to 

have a mean of 0 and standard deviation of 1. The images 
were augmented through random rotation (± 10°), shifting (< 
10%), and zooming (< 10%) so as to increase the robustness 
of the trained model. The dataset used in this study will be 
shared in the “AIDA Dataset Register” (https://datasets.aida.
medtech4health.se). 

Network architecture 
We identified several network structures that had passed 
benchmark thresholds for large-scale visual recognition 
through the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) (Russakovsky et al. 2015). For image clas-
sification, convolutional networks are the most widely applied 
deep neural networks. Convolutional networks build upon 
convolutional layers, involving the application of a set of 
machine-learned convolution filters to the input image so as 
to extract image features such as lines, edges, and corners. 
During image processing, the filter slides across the image 
and stacks along the channel’s dimension in the convolutional 
layer (Goodfellow et al. 2016). 

VGG
VGG (Visual Geometry Group) is a classic convolutional 
neural network (CNN) that consists of stacked convolutional 
layers, pooling layers, and fully connected layers (Simonyan 
aand Zisserman 2014), connected sequentially. These layers 
are the building blocks found commonly in modern CNNs. In 
the ILSVRC 2014 challenge, VGG was ranked in 2nd place 
(after the Inception network) for the image classification task 
and in 1st place for the localization task. We used the 19-layer 
model due to its high performance.

Inception network
The Inception network (the first version was also referred to as 
GoogLeNet) won the ILSVRC 2014 contest with a top-5 error 
rate of 6.7% (Russakovsky et al. 2015). This is a level close 
to human perception. Inception consists of 22 convolutional 
layers with batch normalization. Due to the introduction of 
inception blocks, each consists of parallel connections of four 
convolutional pathways. The Inception network uses 20-times 
fewer parameters than VGG. The computational cost associ-
ated with the use of Inception is therefore much lower than 
that linked to VGG or AlexNet, making it accessible to mobile 
computing devices with limited computational resources. The 
Inception architecture has been refined in various ways. We 
used InceptionV3 (Szegedy et al. 2016), which is 42 layers 
deep, and the computational cost is only about 2.5-fold higher 
than that of GoogLeNet (Inception V1), while at the same time 
being more efficient than VGG.

ResNet
The residual neural network ResNet won the ILSVRC 2015 
contest (He et al. 2016). The ResNet strategy is based on an 
attempt to solve the problem of degradation with increasing 
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Figure 1. The study cohort recruitment process. 
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depth. The network applies a residual function in a residual 
network based on the hypothesis that optimizing a residual 
mapping function is easier to achieve than optimizing the 
original unreferenced mapping. The network converges faster 
and gains accuracy with increasing depth (He et al. 2016). In 
a hyper-parameter searching experiment, we applied ResNet 
with depths of 18, 36, 50, 101, and 152 layers; ResNet50 
showed the best performance for the number of images avail-
able in our study. Therefore, only the results obtained from 
ResNet50 are reported here.

Transfer learning
Transfer learning is a technique that applies known image data 
to pre-train a deep neural network by reusing image features 
from other tasks to learn the classification task at hand and, 
thereby, increase the performance of the neural network. It 
allows training of the network through random initialization 
in a situation of limited data and resources. ImageNet, which 
is currently the largest publicly available dataset for object 
recognition, is widely applied in transfer learning (Deng et al. 
2009). ImageNet is an open image database that consists of 
10,000,000 images collected from the internet. These images 
depict more than 10,000 object categories and every image is 
labeled according to the category it belongs to. For pre-train-
ing, we use the subset from the ILSVRC 2012 image classifi-
cation challenge. This subset of images contains 1,000 object 
categories and 1,200,000 images. Even though these images 
are different from the radiographic images in our study, it is 
generally believed that pre-training of the CNN networks on 
this complicated image classification task will allow the net-
works to learn a hierarchy of generalizable features. Despite 
the differences between natural images and radiographs, trans-
fer learning from ImageNet can make medical image recogni-
tion tasks more effective (Shin et al. 2016a). The cross-modal-
ity imaging transferability makes transfer learning in CNN 
representation from ImageNet popular in various modalities 
for imaging recognition.

Feeding pathway
2 diagnostic pipelines were constructed using the CNNs as the 
core classifier, in order to study the influence of user interven-
tion on network performance.

Automated
The radiographs were directly fed into the network with size 
and intensity normalization steps, as described above. All 3 
CNN architectures (VGG19, InceptionV3, and ResNet50) 
were tested for diagnostic accuracy in relation to the classifi-
cation of the radiographs to either AFF or NFF. 

Intervention
The radiographs show the femur in different positions in terms 
of the rotation and position of the radiograph. An automated 
script (see Supplementary data) was created using the Keras 
(https://keras.io/api/preprocessing/image/) and OpenCV pack-
age (https://opencv.org/) to move the fracture towards the center 
of the image and to rotate the femur into the vertical position. 
In addition, all the images were cropped to a size of 256×256 
pixels around the center of the fracture (Figure 2). Using this 
intervention, we attempted to increase the precision of the net-
work in focusing on the features of the fracture. The intervention 
involves 2 computer mouse clicks per image from the user inter-
face and visual screening to ensure the quality of these images.

Evaluation methods
We used cross-validation to obtain more accurate results with 
less bias in the machine learning studies. Theoretically, the 
dataset is split into K-folds, of which 1 fold is for validation 
and the other folds are for training. The training and valida-
tion processes were repeated several times using different 
folds each time. The final results were then averaged and the 
standard deviation (SD) was calculated. We also calculated the 
diagnostic accuracy, precision, sensitivity, and specificity of 
each network to discriminate between the 2 types of fractures 
and present area under the ROC (receiver operating charac-
teristics) curves (AUC) for each network and the 2 feeding 
pathways. Neural networks typically do not provide insights 
into the processes within the network that lead to a specific 
result. We used class activation mapping (CAM) to visual-
ize the features that the network is learning. CAM visualizes 
a discriminative image region that is used by the network to 
identify a certain type of fracture (Zhou et al. 2016).

Experimental setup
During the training process, the batch size was set to 5 and 
trained for 100 epochs for InceptionV3 and ResNet50. For 
VGG19, we trained for 200 epochs, since it converged at a 
slower rate. The learning rate was set to 10–5 for all 3 models 
as a result of fine-tuning. A stochastic gradient descent (SGD) 
optimizer was used for VGG19. The Root Mean Square 
Propagation (RMSprop) and Adaptive Moment Optimization 
(Adam) optimizers were used for InceptionV3 and ResNet50 
(Kingma and Ba 2014).

Ethics and funding
Ethical approval for the study was obtained from the Swedish 
Ethical Review authority (Dnr. 2020-01108). JS has received 

Figure 2. The intervention pathway involves reposition (A), rotation (B), 
and cropping (C).
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  C
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institutional support or lecturer’s fees outside of this work 
from Link Sweden AB, Depuy Synthes, and Sectra.

Results
Automated pathway
When using standardized, pre-processed input data, the evalu-
ated accuracies for the validation dataset were 91% (SD 1.3), 
83% (SD 1.6), and 89% (SD 2.5) for ResNet50, VGG19, and 
InceptionV3. It took about 4 hours to train 1 fold with 100 
epochs each on a personal computer with an Intel Core i7 8700 
CPU, 16 GB RAM and an NVIDIA GTX 1070 graphic card. 

According to the accuracy plots (Figure 3) and ROC curves 
(Figure 4, upper row), ResNet not only achieved the highest 
final diagnostic accuracy, mean AUC value 0.89 (SD 0.03), 
but it also reached high levels after fewer iterations compared 
with the competitor networks. The results of the 5-fold cross-
validation are shown in Table 1 and Figure 4 (upper row). 

Intervention pathway
After adjustment of the image alignment and rotation, the 
diagnostic accuracies increased to 94% (SD 2), 92% (SD 2.7), 
and 93% (SD 3.7) for ResNet50, VGG19, and InceptionV3, 
respectively (Table 2). Similar improvements can be seen in 
the AUC values of the ROC curves (Figure 4, lower row), 
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Figure 3. Accuracy plots for: (A) VGG19; (B) InceptionV3; and (C) ResNet50, as expressed for the automated method.
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Figure 4. Receiver operating characteristics (ROC) curves for each network and the automated (upper row) and the inter-
vention (lower row) pathway. The intervention pathway of the ResNet50 network shows the lowest rate of false positives 
at the highest rate of true positives yielding a mean AUC (area under the curve) of 0.94.
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showing the highest diagnostic accuracy for the ResNet50 
network, mean AUC value 0.9 (SD 0.01).

Comparison with multi-metrics
When comparing multiple diagnostic metrics, the ResNet50 
network outperformed the competitor networks in terms of 

specificity (92%, SD 3) and precision (92%; SD 
3), whereas the InceptionV3 network showed a 
slightly higher sensitivity of 91% (SD 3.4), as 
compared with 89% (SD 3.3) when using the 
automated pathway. With sensitivity of 94% (SD 
1.5), specificity of 96% (SD 1.9), and precision of 
96% (SD 1.9), the ResNet50 outperformed all its 
competitor networks (Table 3). 

Visualization of the results
The final stage was to visualize the features 
that networks are learning with class activation 
mapping. Thus, one can observe the discrimina-
tive image regions used by the neural networks 
to identify AFF or NFF. Some examples of the 
results and potential sources of error in these 
analyses are shown in Figure 5. 

Discussion

Our aim was to identify deep neural networks that 
can discriminate atypical femoral fractures from 
normal femoral shaft fractures on routine conven-
tional radiographs. ResNet50 outperformed other 
networks with respect to both diagnostic accuracy 
and time required for the analysis (Table 3). Our 
findings are in line with those of previous stud-
ies indicating that ResNet outperforms other 
neural networks in classification tasks (He et al. 
2016, Brinker et al. 2018). ResNet takes advan-
tage of residual blocks to solve the problem of 
a vanishing gradient with increasing depth of 
the neural networks. Moreover, the convergence 

Table 1. Cross-validation of the automated method using VGG19, 
InceptionV3, and ResNet, expressed as percentages and averages 
with standard deviations (SD) for K-folds

			   Accuracy (%)
K-fold	 VGG19	 InceptionV3	 ResNet

Fold1	 81.6	 85.3	 89.1
Fold2	 84.4	 89.1	 90.7
Fold3	 84.4	 91.7	 90.0
Fold4	 81.6	 91.1	 92.5
Fold5	 81.4	 90.0	 90.0
Average	 82.7	 89.4	 90.5
SD	 1.6	 2.5	 1.3

Table 2. Cross-validation for intervention method (manual adjust-
ment of alignment and rotation) using VGG19, InceptionV3, and 
ResNet expressed as percentages and averages (SD) for K-folds

			   Accuracy (%)
K-fold	 VGG19	 InceptionV3	 ResNet

Fold1	 90.4	 97.0	 94.1
Fold2	 94.9	 94.3	 94.3
Fold3	 91.4	 91.7	 94.2
Fold4	 95.1	 88.0	 97.0
Fold5	 89.0	 96.2	 95.2
Average	 92.2	 93.4	 94.4
SD	 2.7	 3.7	 2.0

Table 3. Comparison with Multi-Metrics depicting accuracy, sensitivity, specific-
ity, and precision of discrimination between fracture types expressed as percent-
ages (SD) for the automatedmethod and the intervention method for each network

Network	 Method	 Accuracy	 Sensitivity	 Specificity	 Precision

VGG19	 Automated	 82.7 (1.6)	 85.4 (4.0)	 79.6 (4.8)	 81.0 (3.4)
	 Interactive	 92.2 (2.7)	 93.0 (2.0) 	 91.6 (5.2) 	 91.6 (5.2) 
InceptionV3	 Automated	 89.4 (2.5) 	 90.6 (3.4) 	 88.4 (2.6) 	 88.4 (2.6) 
	 Interactive	 93.4 (3.7) 	 92.8 (5.0) 	 94.2 (3.7) 	 94.8 (3.3) 
ResNet50	 Automated	 90.5 (1.3) 	 89.0 (3.3) 	 92.2 (3.0) 	 92.2 (3.0) 
	 Interactive	 94.4 (2.0) 	 94.4 (1.5) 	 95.8 (1.9) 	 95.8 (1.9) 

Figure 5. Attention maps showing areas in the image that are utilized by the network for 
learning through class activation mapping. Fracture region of AFFs (atypical femoral 
fractures) (A+B) and NFFs (normal femur fractures) (C+D) are correctly depicted by 
the network. Focus outside the fracture region (E+F) might lead to misclassification.

speed of ResNet is much higher than that of either Inception or 
VGG19. In line with our hypothesis, the intervention pathway 
improved the performances of all the networks. In clinical rou-
tine, these interventions could be applied by radiographers or 
other personnel. The smallest increase in benefit was obtained 
for ResNet, which already showed high accuracy and specific-
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ity and precision > 90% in the automated pathway. However, 
the minimal intervention effort of making 2 computer mouse 
clicks resulted in an improvement of on average 4%, which 
in medical diagnostics represents a relevant improvement. 
Finally, we found class activation mapping to be an essential 
qualitative tool for allowing human interpretation of the quan-
titative results given by the network (Figure 5).

Studies on AI applications in medical diagnostics typically 
aim to challenge the power of the human mind in performing 
highly specialized tasks or tasks of high volume, where process-
ing times matter. In the present study, we used the network to 
dichotomize, attempting to increase the radiologist’s sensitivity 
to a specific and rare fracture pattern among a large volume 
of normal fractures. In our understanding the purpose of the 
AI is not to replace the clinician but should provide a techni-
cal supplement to increase the likelihood of a correct diagnosis. 
In similarity to approaches taken previously, we used transfer 
learning from non-medical images to resolve the issue of a lim-
ited number of training images and to improve the performance 
of our CNN (Kim and MacKinnon 2018). Our results are simi-
lar to those of a previous study in which a CNN was used to 
distinguish 695 cases of wrist fracture from 694 non-fracture 
cases (Kim and MacKinnon 2018), achieving 95% accuracy. 
Even when CNNs were applied to classify proximal humeral 
fractures on plain anteroposterior shoulder radiographs, auto-
mated distinction of fractured from non-fractured shoulders 
was achieved with an accuracy of 96%. However, in the same 
sample, the CNN showed poorer performance in the classifi-
cation of different types of fractures, with 65%–86% accuracy 
(Chung et al. 2018). This leads us to conclude that classify-
ing fracture and non-fracture images is an easier task than dis-
tinguishing between 2 types of fractures. This type of task is 
also challenging for the human mind. Previous classification of 
shoulder fractures into different types according to a well-estab-
lished classification system (Neer 1970) yielded only approxi-
mately 50% inter-observer reliability and 60% intra-observer 
reliability (Sidor et al. 1993). The human mind tends to suffer 
from fatigue when engaging in cognitively demanding, repeti-
tive tasks (Tomei et al. 2006, Ren 2018). Therefore, allowing 
the CNN to perform the bulk analysis and to bring suspected 
cases to the attention of the radiologist through the visualization 

Figure 6. Artificial intelligence designed to attract attention to places where attention is needed. Illustrated by Pontus 
Andersson.

of discriminative image regions means that the CNN emerges 
as an attractive tool in this study (Figure 6). 

This study is the first attempt to use artificial intelligence 
for the radiographic diagnosis of atypical femoral fractures. 
We used radiographs from a selected cohort of patients who 
had suffered a femoral shaft fracture but had no previous frac-
tures, pathologic features, or pre-existing implants. This may 
explain the excellent results and could limit the applicability 
in a clinical setting, in which the CNN might be blurred by 
implants and pathologic features in the bone surrounding the 
fracture site. 

In conclusion, we demonstrate that CNNs are a promising 
tool for the radiographic detection of rare atypical femoral 
fractures. Given that < 10% of patients are correctly identified 
on the basis of diagnostic radiographs at the moment, CNNs 
could contribute potentially as a technical supplement for the 
clinician, although this is currently limited to the experimental 
setting. Further training with CNNs and their exposure to a 
real-world clinical environment are warranted.

Supplementary data
Intervention script is available as supplementary data in the 
online version of this article, http://dx.doi.org/10.1080/17453
674.2021.1891512
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