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Abstract
Neuroacanthocytosis (NA) is a diverse group of disorders in which nervous system abnor-
malities co-occur with irregularly shaped red blood cells called acanthocytes. Chorea-acan-
thocytosis is the most common of these syndromes and is an autosomal recessive disease 
caused by mutations in the vacuolar protein sorting 13A (VPS13A) gene. We report a case of 
early onset parkinsonism and seizures in a 43-year-old male with a family history of NA. Neu-
rologic examinations showed cognitive impairment and marked parkinsonian signs. MRI 
showed bilateral basal ganglia gliosis. He was found to have a novel heterozygous mutation 
in the VPS13A gene, in addition a heterozygous mutation in the PARK2 gene. His clinical pic-
ture was atypical for typical chorea-acanthocytosis (ChAc). The compound heterozygous mu-
tations of VPS13A and PARK2 provide the most plausible explanation for this patient’s clinical 
symptoms. This case adds to the phenotypic diversity of ChAc. More research is needed to 
fully understand the roles of epistatic interactions on phenotypic expression of neurodegen-
erative diseases.
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Introduction

Neuroacanthocytosis (NA) denotes a diverse group of neurological disorders accom-
panied by thorn-shaped abnormalities of red blood cell morphology (acanthocytes) [1]. Core 
NA syndromes are characterized pathologically by basal ganglia degeneration and pheno-
typically by a variety of movement disorders (e.g., chorea, dystonia, and parkinsonism) along 
with cognitive impairment, psychiatric symptoms, seizures, and axonal neuropathy [2]. Core 
NA syndromes include autosomal recessive chorea-acanthocytosis (ChAc), X-linked McLeod 
syndrome, autosomal dominant Huntington’s disease-like 2, and autosomal recessive panto-
thenate kinase-associated. ChAc, McLeod syndrome, and Huntington’s disease-like 2 are 
usually adult-onset disorders with characteristically slow progression, whereas pantothenate 
kinase-associated neurodegeneration is usually of childhood or juvenile onset [2].

The most common of the NA syndromes, ChAc is an autosomal recessive condition caused 
by mutations in the vacuolar protein sorting 13A (VPS13A) gene located on chromosome 9, 
which encodes the protein chorein [2]. Disease manifestation typically occurs in early adulthood, 
usually between ages 20 and 40 [1]. Often, the initial presentation is subtle cognitive or psychi-
atric symptoms [2]. Seizures are seen in 40% of ChAc patients [1] and may precede motor 
symptoms by as much as a decade [2]. During the disease course, most patients develop a char-
acteristic phenotype including chorea, feeding dystonia, orofacial dyskinesias, dysarthria, invol-
untary tic-like vocalizations, and lip and tongue biting [2]. Limb dystonia is also common, and 
patients may have a gait characterized by truncal instability and severe trunk spasms [2].

Peripheral nervous system dysfunction in ChAc may lead to diminished or absent reflexes, 
sensory-motor neuropathy, and variable weakness and atrophy [2]. Autonomic nervous 
system dysfunction may lead to abnormal respiratory rhythm, orthostatic hypotension, or 
impaired digestive motility [1]. Serum creatine kinase is elevated in up to 85% of ChAc 
patients, and liver enzymes are often elevated as well [1]. Neuroimaging shows atrophy of the 
caudate nucleus, as well as the putamen and globus pallidus [1, 2]. Diagnosis is either by 
genetic testing or by Western blot detection of chorein protein [1]. Treatment of ChAc is 
symptomatic, as there are currently no curative or disease-modifying drugs available [1, 2]. 
The disease usually slowly progresses over 15–30 years, but sudden death presumably due 
to seizure or autonomic dysfunction may occur [2].

Case Report

A 43-year-old man presented for evaluation of parkinsonism. Past medical history was 
significant for alcohol abuse. Family history was significant for ChAc in 2 sisters, both with 
typical clinical manifestations of chorea, lip and tongue biting, and cognitive decline. Diag-
nosis was confirmed in one by Western blot with characteristic loss-of-chorein expression 
and in the second by neuropathologic analysis (both at Zentrum für Neuropathologie und 
Prionforschung; Munich, Germany). Both sisters died in their thirties. Of note, his parents had 
no history of neurologic disease, although their genetic profiles are unknown.

Our patient was initially evaluated at age 36 for obsessive tendencies. Neurologic exami-
nation at that time was normal. He was reevaluated at age 40 for arm-hand tremor, incoordi-
nation, memory decline, and anxiety. Neurologic examination was notable for mildly masked 
facies, mild neck retroflexion, bradykinetic, and irregular rapid hand movements, and mild 
postural and kinetic tremor with questionable low-amplitude involuntary leg movements. Over 
the next 4 months, he developed recurrent generalized seizures with repeat examination 
showing progression of his parkinsonism and slightly wide-based gait. MRI brain at age 40 was 
unremarkable, and topiramate administration resulted in good seizure control.
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Over the next three years, he developed worsening bradykinesia, bilateral hand rest and 
action tremor, imbalance, word finding and speech difficulty, and personality change. He denied 
lip or tongue biting, feeding dystonia, dysphagia, drooling, or anosmia. Neurologic examination 
revealed moderate hypomimia without evidence of lip or tongue biting. Montreal Cognitive 
Assessment score was 22/30. Tone was mildly increased in his head, neck, and bilateral arms. He 
had spasticity in his legs and cogwheel rigidity in both arms symmetrically. Bilateral high-frequency 
low-amplitude rest tremor was present, exaggerated by action. Alternating movements showed 
symmetric moderate-to-severe reduction in amplitude and speed in all extremities. Reflexes were 
equal and symmetric throughout. No focal atrophy or fasciculations were noted. His gait was 
cautious, with shuffling and reduced arm swing. He had mild unsteadiness with pull testing.

CT head without contrast at age 44 showed globus pallidus hypodensities bilaterally 
(Fig. 1). MRI brain revealed cystic globus pallidus degeneration with possible hemosiderin 
deposition bilaterally (Fig. 2). Dopamine transporter scan was normal. Blood tests, including 
creatine kinase, heavy metal screen, and paraneoplastic autoantibody panel were negative. 
Peripheral blood smear showed normal red cell morphology, and Western blot analysis on 2 
separate occasions showed no chorein protein abnormalities. Twenty-four-hour urine copper 
levels were normal. A neurodegeneration with brain iron accumulation gene panel (including 
genes ATP13A2, C19orf12, COASY, CP, DCAF17, FTL, FUCA1, PANK2, PLA2G6, SQSTM1, WDR45, 
FA2H, KIF1A, and TRIM32) through Invitae (San Francisco, CA, USA) was normal. Whole-exome 
sequencing through Invitae revealed an exon 2 deletion of the PARK2 gene and a novel but likely 
pathogenic variant in intron 46 (splice donor c.6095+1 G>A) of the VPS13A gene.

After our evaluation, a trial of carbidopa-levodopa was prescribed. Despite upward titration 
to levodopa 200 mg three times daily, there was no improvement in his parkinsonism. 
Propranolol 20 mg three times daily resulted in short-term tremor improvement and is being 
increased to see if any further benefit can be achieved. Baclofen resulted in decreased spasticity.

Discussion

Genetic testing in our patient revealed heterozygous mutations in 2 genes associated 
with recessively inherited movement disorders. Regarding the mutant VPS13A allele, our 
patient exhibited some ChAc features including cognitive impairment, dysarthria, and seizures 

Fig. 1. CT head without contrast at age 44 showing bilat-
eral globus pallidus hypodensities.
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and has 2 first-degree relatives with typical ChAc. Mutation of intron 46 of the VPS13A gene 
is expected to disrupt RNA splicing and likely result in absent or disrupted protein product. 
Donor and acceptor splice site variants typically lead to loss of protein function [3], and 
loss-of-function variants in VPS13A are known to be pathogenic [4, 5]. Nevertheless, his 
normal creatine kinase and red blood cell morphology, normal Western blot, lack of caudate 
atrophy, absence of choreiform movements, lip/tongue biting, and feeding dystonia are 
inconsistent with typical ChAc. Regarding the normal Western blot analysis, perhaps 
chorein production was suppressed to levels sufficient to cause pathogenesis or perhaps 
posttranslational protein modification occurred. Finally, prominent parkinsonism occurs 
only in a minority of ChAc patients [2] and could be better explained by early onset Parkin-
son’s disease (PD).

a b

c d

Fig. 2. MRI brain at age 44. Axial T2-FLAIR sequence (a) showing symmetric round high T2 signal lesions 
within the globus pallidus bilaterally and axial T1 sequence (b) showing symmetric round low T1 signal lesions 
within the globus pallidus bilaterally. Axial gradient echo sequences (c, d) showing presumed hemosiderin 
deposition within the globus pallidus bilaterally.
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In several studies, the prevalence of PARK2 heterozygous variants is higher in PD patients 
[6–10], implying that PARK2 heterozygosity may increase susceptibility for developing PD 
[11]. PD may, in part, be an oligogenic disorder with individually innocuous mutations of 
several genes interacting to increase susceptibility to neurodegeneration [12]. Despite the 
mutant PARK2 allele, however, our patient had intact nigrostriatal innervation based on 
dopamine transporter scan, pallidal pathology very atypical for PD, and levodopa nonre-
sponsive symptoms.

We arrived at a tentative diagnosis of atypical NA. Additional research is needed to fully 
uncover the genotypic and phenotypic diversity of ChAc. Tomiyasu and colleagues [5] 
performed exome sequencing on 35 ChAc patients, among whom they identified 36 different 
pathogenic VPS13A mutations. A more recent study performed by the same group identified 
eleven additional novel VPS13A pathogenic mutations [13]. By continuing to study the 
genotype-phenotype correlations, we will begin to better understand and ultimately improve 
diagnosis and treatment of this debilitating disease.

Two recent reports describe separate patients with ChAc found to have compound 
heterozygous VPS13A deletions [14, 15]. Perhaps exome sequencing in our patient missed 
an additional VPS13A variant allele. Whole-exome sequencing sensitivity may be limited 
by DNA quality, base pair size of deletions/insertions, inability to detect translocations 
and mosaic/somatic events, and exclusion of certain exons or genes due to quality stan-
dards of the performing company. Alternatives are that this patient is a unique case of 
dual haploinsufficiency secondary to one mutant VPS13A allele and the PARK2 deletion 
mutation. Our patient’s phenotype does not fit well into either a diagnosis of typical early 
onset PD or typical ChAc. Although speculative, his double heterozygote state may be the 
etiology of this disorder. Perhaps the 2 genes could function in the same pathway, or 
perhaps it is a cumulative effect of general cell stress. More research is needed to fully 
understand the roles of epistatic interactions on phenotypic expression of neurodegen-
erative disease.
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