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Abstract: The complexities in the variations of soil temperature and thermal diffusion poses a
physical problem that requires more understanding. The quest for a better understanding of the
complexities of soil temperature variation has prompted the study of the q-statistics in the soil
temperature variation with the view of understanding the underlying dynamics of the temperature
variation and thermal diffusivity of the soil. In this work, the values of Tsallis stationary state q index
known as q-stat were computed from soil temperature measured at different stations in Nigeria. The
intrinsic variations of the soil temperature were derived from the soil temperature time series by
detrending method to extract the influences of other types of variations from the atmosphere. The
detrended soil temperature data sets were further analysed to fit the q-Gaussian model. Our results
show that our datasets fit into the Tsallis Gaussian distributions with lower values of q-stat during
rainy season and around the wet soil regions of Nigeria and the values of q-stat obtained for monthly
data sets were mostly in the range 1.2 ≤ q ≤ 2.9 for all stations, with very few values q closer to 1.2
for a few stations in the wet season. The distributions obtained from the detrended soil temperature
data were mostly found to belong to the class of asymmetric q-Gaussians. The ability of the soil
temperature data sets to fit into q-Gaussians might be due and the non-extensive statistical nature of
the system and (or) consequently due to the presence of superstatistics. The possible mechanisms
responsible this behaviour was further discussed.

Keywords: soil temperature; soil thermal diffusivity; q-Gaussian; non-extensive statistical mechan-
ics; superstatistics

1. Introduction

The complexities in soil thermal diffusion and the complex thermal interaction be-
tween the soil and the atmosphere could be responsible for the sporadic changes in the
soil temperature measurements. Different factors are responsible for the variations in the
soil temperature and these factors can contribute greatly to the complex variations of the
soil temperature [1–3]. Dynamical complexity, a phenomenon which has been attributed
to the dynamics of the atmospheric parameters, have been studied and characterised in
different ways [4–6]. Many researchers have attributed the complexity of the atmosphere
as contributing factors to the complexity of soil temperature variations [7–9]. However,
the underlining dynamics of both systems are different and as such, the intrinsic complex
dynamics of the soil temperature propagation and the various factors affecting the thermal
diffusivity of the soil are the major determinants of its internal temperature dynamics.
The complexities in soil dynamical processes in aspects such as the soil hydrology have
been evaluated using the entropic approach and it has been able to reveal the variations
of soil dynamics resulting from varying hydrological processes [10,11], which usually
affects the temperature variation [1]. The other intrinsic factors affecting the soil thermal
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diffusivity include soil vegetation cover [1,3,8,12], soil colour, soil texture and soil organic
carbon [1,3,7,8,12].

As described earlier, most atmospheric temperature systems are easily character-
ized by dynamical complexity. This framework is based on the study of complexity in
these systems considering the Tsallis statistical distribution. Since statistical distributions
are particularly important in the understanding the complexity of a dynamical system.
The dynamical complexity of atmospheric and many environmental systems are mainly
characterized by superstatistics, which can be seen as a generalization of many other distri-
butions that may also characterize the atmospheric systems. For example, the symmetric
q-Gaussian can be easily derived into a superstatistical distribution [13–15]. Superstatistics
can describe fluctuations in natural systems that follows from a χ2- distribution like the
q-Gaussian [14,16]. This explains the reason why heavy tailed distributions such as the
atmospheric temperature and rainfall has been found to assume superstatistical character-
istics [17,18]. Besides the symmetrical q-Gaussian, the superstatistical distributions can also
be derived from the log-normal distributions [14], which have been found to characterize
the atmospheric humidity and precipitation [19]. Relating the distributions describing
natural systems such as the atmosphere to the presence of superstatistics could be a good
reason for the possible presence of q-Gaussians. This because, like the ability to derive the
superstatistics from q-Gaussians, the q-Gaussians can also be derived from super statis-
tics. However, the asymmetric q-Gaussian cannot be easily derived from superstatistical
distributions, as the processes can be extremely complicated.

Alternatively, q-Gaussians can be derived from either Tsallis entropy or gamma distri-
butions [20,21]. Particularly, gamma distributions allow for the formulation of asymmetric
q-Gaussians. An extensive derivation of asymmetric q-Gaussian from gamma distributions
can be found in Budini (2015) where he Generally classified the asymmetric q-Gaussians [21].
In this investigation, our interest in the consideration of q-Gaussians stems from the fact
that gamma distributions have been observed in satellite rain rate measurements from
tropical regions [22].

In this work, we have investigated the complexity of soil temperature and thermal
diffusivity dynamics for a better understanding of the statistical mechanics of its variation.
An attempt is made to investigate the dynamical processes in the soil temperature variation
by considering the Tsallis formalism for q-Gaussian distribution, as we attempt to fit
statistical distribution from the measured soil temperature data into Tsallis q-Gaussian.
A good number of studies have considered the use of the Tsallis formalism in fitting
experimental data into q-Gaussians [23–30]. To achieve this, we evaluate the non-extensive
statistical mechanics in soil temperature time series measured from four different locations
in Nigeria. The nonextensive statistical mechanics was investigated for soil temperature in
this work with the following questions in consideration:

i. Does the Tsallis q-stat parameter vary seasonally for soil temperature?
ii. Is there a possible influence of changes in factors such as rainfall on the variations of

the q-stat?
iii. Is there an influence of vegetational changes such as changes in vegetational cover

soil texture and other intrinsic properties?

Our ability to answer these questions will not only shed more light on soil temperature
dynamics but also provide a better understanding of the viability of the application of
nonextensive statistical mechanics and Tsallis statistics to the characterization and mod-
elling of soil temperature and soil thermal diffusivity in the future.

2. Tsallis Statistical Formalism and q-Gaussians

Tsallis statistics can be found in various natural systems, because as mentioned earlier,
many experimental distributions obtained from natural systems can fit directly into Tsallis
q-Gaussian [23–27]. The Boltzmann-Gibbs statistical mechanics is generally described by
Gaussian distribution. However, the special class of statistical systems described by the
Tsallis formalism are described by q-Gaussians [28–33].
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As mentioned before the q-Gaussian can be derived from Tsallis entropy in which the
Tsallis q-index plays a vital role. The Tsallis q-index which was introduced by Tsallis in
1988 provides the generalization of the Boltzmann-Gibbs statistical mechanics. The Tsallis
entropy can be derived as follows [20,28,33]:

Given that the Shannon entropy from Boltzmann-Gibbs statistical Mechanics is:

Ssh = k ∑
i

PilnPi (1)

The non-extensive generalization of the Shannon entropy is therefore given as

Sq = k ∑
i

PilnqPi (2)

Pi is the probability density function of a discrete random variable xi such that

∑
i

Pi = 1 (3)

and the q logarithm lnq(x) is given as

lnq(x) =
(

x1−q − 1
)

/(1− q) (4)

The parameter q is the Tsallis q-index, which varies for different systems based on the
variations in their dynamical characteristics.

Putting expression (4) into (2) we arrive at Tsallis entropy in the form:

Sq = k
1

1− q

(
1−

w

∑
i=1

pq
i

)
(5)

where p is the probability of each micro-configurations of the series, w is the total number of
micro-configurations in the system and q is the Tsallis q-stat (which must be a real number).
This Tsallis entropy expression is such that; for q = 1 we obtain a special case of Tsallis
entropy which results back into Boltzmann-Gibbs statistical mechanics where q 6= 1 results
in non-extensive statistical mechanics.

Considering the continuous case for the random variable x, Sq maximizes with the
probability as follows:

∞∫
−∞

P(x)dx = 1 (6)

and

〈(x− x)〉q =

∞∫
−∞

(x− x)Pq(x)dx = 0 (7)

such that,

〈(x− x) 2〉q =

∞∫
−∞

(x− x)2Pq(x)dx = σ2
q (8)

This gives the Tsallis distribution in the form:

P(x) ≡ 1
Z q

[
1 + (1− q)βq(x− x)2

]1/(1−q)
(9)

Combining Equations (11) and (14)

∫
P(x)dx =

1
Z q

∫ [
1 + (1− q)βq(x− x)2

] 1
1−q

= 1 (10)
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The normalization constant Zq is given by:

Zq =
∫ [

1 + (1− q)βq(x− x)2
]1/(1−q)

dx (11)

Considering that the Lagrange multiplier β for (8) is given as:

β = 1/
(

2σ2
q Zq−1

q

)
,

we can show that:
Zq = Cq/

√
β (12)

and

Cq =
√

π
Γ
(

1
q−1 −

1
2

)
√

q− 1 Γ
(

1
q−1

) (13)

From established theories [14,15], the q-Gaussian for a positive number β can be
generalized as follows:

Gq(β; x) =
√

β

Cq
e−βx2

q (14)

where the normalizing constant Cq for different values of q expressed as follows:

Cq =



2
√

πΓ
(

1
1−q

)
(3−q)
√

1−qΓ
(

3−q
2(1−q)

) , −∞ < q < 1,
√

π, q = 1,
√

πΓ
(

3−q
2(q−1)

)
√

q−1Γ
(

1
q−1

) , 1 < q < 3.

(15)

For q < 1, the support of Gq(β; x) is compact since the density vanishes for |x| >
1/
√
(1− q)β.
In the case of asymmetric q-Gaussians Budini (2015) introduced the asymmetric

Poissonian q-Gaussian Gp
>1(x

∣∣∣q, a, β) relating the function to Tsallis index q, the shape

parameters α and α′ and the asymmetric parameter a [21].
The introduction of the Poissonian distribution in Ref. [21] is anchored on the intro-

duction of two independent gamma functions Y1 and Y2, whose joint probability can be
defined as:

P(y1, y2) = yα−1
1 yα′−1

2
e−(y1+y2)/θ

θα+α′Γ(α)Γ(α′)
(16)

It is assumed the scale θ the same, while α and α′ are the shape parameters of the
functions Y1 and Y2 respectively.

An asymmetric q-Gaussian was derived as a function of functions Y2 and Y2

X = f (Y1 , Y2) (17)

in which the random variables of X as follows:

X =
1√

β

Y1 −Y2

2
√

Y1Y2
(18)

The resulting distribution P(x) for X, which is a function of Y1 and Y2, is given as

P(x) =
√

β

C∝∝′

(
1

1 + βx2

)(∝+∝′+1)/2(√
1 + βx2 +

√
βx2

)∝−1
×
(√

1 + βx2 −
√

βx2
)(∝′−1)

(19)
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such that, the normalization constant is Cαα′ given as Cαα′ = 2α+α′−1Γ(α)Γ(α′)/Γ(α + α′).
The maximum value of this P(x) above can be given as

xM =
α− α′√

(1 + 2α)(1 + 2α′)β
(20)

In which the asymmetry condition that in the limit
√

βx � 1, the power law behaviour
emerges as,

lim
x→∞

P(x) ≈
√

β

Cαα′
2α−α′

(
1√
β x

)2α′+1

(21)

such that, in the limit
√

βx � −1 we have

lim
x→−∞

P(x) ≈
√

β

Cαα′
2α′−α

(
1

−
√

β x

)2α+1

(22)

The derived function asymmetric Poissonian function Gp
>1(x

∣∣∣q, a, β) can be written
as follows [21]:

P(x) =
√

β

Cαα′

(
1

1 + βx2

)(α+α′+1)/2
(√

1 + βx2 +
√

βx√
1 + βx2 −

√
βx

)(α−α′)/2

(23)

such that, the normalization constant is Cαα′ given as Cαα′ = 2α+α′−1Γ(α)Γ(α′)/Γ(α + α′).
The Tsallis q-index is related to the shape parameters α and α′ as follows:

q = 1−
[

α + α′

2
− 1
]−1

, a =
α− α′

2
(24)

where α 6= α′ in this asymmetric case. However, if α = α′ and a = 0, we have the symmetric
case and Equation (7) reduces to

P(x) =
√

β

Cα

(
1

1 + βx2

)α+(1/2)
(25)

The normalization constant in the symmetric case transforms to Cα = 2(2α−1)Γ2(α)/Γ(2α).
Considering the background on asymmetric q-Gaussian given by Budini [21] and the

presence of Gamma distributions in natural systems like precipitation [22], we therefore
consider that the presence of asymmetric q-Gaussian in natural system such as soil temper-
ature, which is controlled by various forcing mechanisms is hugely possible. In previous
work, we have shown that other systems such as the ionosphere have demonstrated such
phenomenon [27].

3. Data and Methods

In this work, the measured soil temperature data were obtained from the National
Space Research and Development Agency (NASRDA) and Centre for Atmospheric Re-
search (CAR) data depositories in Nigeria. The data sets were measured using the sensors
deployed in different weather stations at different regions of Nigeria.

The measured temperature data characterizing the dynamics of soil temperature vari-
ation tend to possess sporadic variations in time. The time series measurement for soil
temperature variation can be seen in Figure 1. The main diagram in Figure 1 is charac-
terised by daily peaks due to diurnal variation, which dominates the intrinsic dynamics.
Considering the purpose of our study, the internal variation of the soil temperature dy-
namics is required. Therefore, to obtain the intrinsic dynamics of the soil temperature we
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performed a detrending analysis on the soil temperature as to remove the diurnal effects
follows [34]:

Figure 1. Time series plots. Outer Plot: Time plot showing the diurnal variations of the soil temperature time series. Inner
Plot: Detrended time series for the soil temperature.

We let the measured time series be x(ti)
with a length v and the fixed-point average

temperature values of x f ix(tj)
, where i = 1, 2, 3 . . . . . . v represents the observed time series,

and j = 1, 2, 3 . . . ..v, such that the detrended or diurnal variation reduced time is given as

x′(ti)
= x(ti)

− x f ix(tj)
(26)

where i = 1, 2, 3, . . . ., j = mod(i, v), if mod(j, v) 6= 0, and j = v if d(j, v) = 0.
The detrending filter produces soil temperature time series x′(ti)

as seen in the inner
diagram in Figure 1. Further details on this process can be found in Ref. [34]. Similar
analyses were carried on other time series to obtain the detrended time series before
further analysis.

The datasets were further subjected to stationarity test, as this will ensure the sus-
tainability of the datasets in modelling. The Dicky Fuller methods combined with the
Kwiatkowski Philip Schmidt and Shinn (KPSS)-tests were conducted on the detrended soil
temperature data sets [35–37].

The next step is to analyse our detrended time series data to obtain the probability
distribution function (PDF) from which we obtain the values of the stationary state Tsallis
q-index (q-stat).

Considering the theory of q-statistics [23–26], the probability distribution for the
energy states {Ei} is given by the expression

P(E) α[1− (1− q)βEi]
1/(1−q) (27)

and for the continuous state X in {X}, the probability density function becomes

P(x) α
[
1− (1− q)βx2

]1/(1−q)
(28)

The expression P(x) represents the probability of the dynamics of the microscopic
elements xj in states {X}.
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The stationary state q-index qstat can be derived based on the above theory of the from
the probability distribution functions

PDF(Z) ≡ Aq

[
1 + (1− q)βqZ2

]1/(1−q)
(29)

where PDF (Z) ≡ is the probability distribution with Z as the probability element, coeffi-
cients Aq, βq denote the normalization constants and q = qstat is the stationary state in this
case for which q ≤ 3.

Based on the q-Gaussian equation, we can estimate the value of q from time series
zi with length i, that is, Z : {z1z2 . . . . . . , zi} estimate the optimum value of qstat from the
series zi using the probability density function (PDF) above.

To fit the data to the probability density function, the values Xi was divided into
windows with width of small value Z with a [Zmin, Zmax] for which the frequency of Z;
that fall within the Z intervals can be obtained. The normalized histogram for PDF(Z) were
obtained, such that, the probability density function PDF{Pi(Zi )} represents stationary
PDF function.

The resulting fitting would give the corresponding value of Tsallis q-index. To obtain
the power relation of this probability density function, we go further obtain the linear
relationship between log q[P(Z)] and Z2. This procedure was carried out for monthly soil
temperature datasets measured from the following locations: Port-Harcourt (4.8156◦ N,
7.0498◦ E), Nsukka (6.8429◦ N, 7.3733◦ E), Makurdi (7.7322◦ N, 8.5391◦ E) and Yola
(9.2035◦ N, 12.4954◦ E).

To evaluate for the degree of asymmetry in the q-Gaussian based on Ref. [21], we
obtain the shape parameter ∝ by evaluating the gradient S1 of linear fit of the normalized
probability function H (Hnorm) plotted against the corresponding absolute value of |x|
based on (21). Similarly, we obtain the shape parameter ∝′ by evaluating the gradient
S2 of linear fit of the normalized probability function H (Hnorm) plotted against the
corresponding absolute value of |−x| based in (22). The coefficient of asymmetry a, which
can be obtained from the shape parameters ∝ and ∝′ are related to the corresponding slopes
as follows:

Recall that,
a =

(
∝ − ∝′

)
/2

where (∝, ∝′) ∈ A such that

A(S)↔
{

∝≈ (S1 − 1)/2
∝′≈ (S2 − 1)/2

(30)

Therefore, the asymmetric parameter a is related to the gradients as follows:

a ∼= ((S1 − S2))/4 (31)

The values of the asymmetric parameters were evaluated from the detrended soil
temperature measured for different months of the year, based on this procedure.

4. Results and Discussion

In this work, the soil temperature time series was analysed to understand the statistical
mechanics of the thermal diffusion processes and the energy transfer dynamics in the soil.
The test for stationarity shows that the data sets are stationary. The Augmented Dickey
Fuller (ADF) test for the data sets gave p values exceedingly less than 0.01, which gives
us the confidence to reject the null hypothesis and classify the data sets as stationary and
the KPSS test showed unity for all the values. Both cases of test results from the ADF test
and the KPSS test show that we can reject the null hypothesis that the soil temperature
data is stationary [35–38]. The stationarity of the data implies that our time series data can
preserve the q-Gaussian model.
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The monthly Tsallis q-stat was computed from monthly temperature data from dif-
ferent stations in Nigeria. This was carried out by dividing the annual soil temperature
data into monthly segments and each of the segments was fitted into q-Gaussian. The
values of q-stat obtained showed that the detrended soil temperature data generally satisfy
the non-extensive statistical mechanics, as the q-index values were greater than 1 in all
cases. The values of q-stat obtained from the q-Gaussian were in the range 1.2 ≤ q ≤ 2.9
(See Tables 1–4). The observed ability of the atmospheric temperature data to fit the q-
Gaussian might also be a consequence of the presence of superstatistics. As mentioned
earlier, physical systems that exhibit non-extensive statistical mechanics have been linked
with superstatistics [13,14,33].

Table 1. Tsallis q-stat for soil temperature measured at Port-Harcourt in 2009.

Month Tsallis q-Stat SSE RMSE R-Square

January 2.934 0.011118 0.03052 0.9456
February 1.867 0.006541 0.02335 0.9771

March 1.320 0.000327 0.00452 0.9994
April 1.395 0.000014 0.00093 1.0000
May 2.016 0.002225 0.01179 0.9953
June 2.024 0.001031 0.00803 0.9982
July 1.593 0.000386 0.00491 0.9990

August 1.468 0.000346 0.00465 0.9995
September 1.599 0.000206 0.003589 0.9996

October 1.575 0.000301 0.004334 0.9994
November 1.417 0.000019 0.001083 1.0000
December 1.977 0.002105 0.011470 0.9927

Table 2. Tsallis q-stat for soil temperature measured at Nsukka in 2011(—incomplete data).

Month Tsallis q-Stat SSE RMSE R-Square

January ——– ——— ———- ———
February 2.148 0.005725 0.02184 0.9843

March 1.738 0.001648 0.00931 0.9971
April 1.887 0.024250 0.03320 0.9510
May 1.701 0.002174 0.01043 0.9959
June 1.608 0.000377 0.00434 0.9993
July 1.587 0.004064 0.01426 0.9888

August 1.548 0.000086 0.00277 0.9999
September 1.653 0.000081 0.00202 0.9999

October 1.939 0.00103 0.00718 0.9977
November 1.709 0.016350 0.03691 0.9427
December ——— ———- ———- ——–

Table 3. Tsallis q-stat for soil temperature measured at Makurdi in 2009 (—incomplete data).

Month Tsallis q-Stat SSE RMSE R-Square

January 2.892 0.004172 0.01947 0.9718
February 2.870 0.002934 0.01502 0.9845

March 2.952 0.003258 0.01648 0.9809
April 1.796 0.000492 0.00555 0.9989
May 1.715 0.000626 0.00417 0.9985
June 1.744 0.001205 0.00709 0.9972
July 2.246 0.001027 0.00889 0.9966

August 1.837 0.000131 0.00286 0.9997
September 1.725 0.000024 0.00116 1.0000

October 1.652 0.000021 0.00097 1.0000
November —— ———- ——— ——-
December —— ———- ——— ——-
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Table 4. Tsallis q-stat for soil temperature measured at Yola in 2012.

Month Tsallis q-Stat SSE RMSE R-Square

January 2.662 0.0007251 0.008119 0.9978
February 2.869 0.0040690 0.01705 0.9771

March 2.753 0.0014070 0.01131 0.9947
April 2.606 0.0012227 0.00936 0.9964
May 1.914 0.0000334 0.001741 1.0000
June 1.572 0.0000261 0.001278 1.0000
July 1.468 0.0000009 0.000287 1.0000

August 1.326 0.0000007 0.000216 1.0000
September 1.60 0.0000016 0.000266 1.0000

October 1.702 0.0000560 0.001764 0.9999
November 2.507 0.0015540 0.011890 0.9951
December 1.661 0.0001864 0.002376 0.9997

These observed results imply that the intrinsic properties of soil in different locations
such as the thermal diffusivity, moisture variation, changes in vegetational cover might be
responsible for the changes in the soil temperature dynamics and the variation in q-stat,
which are found to be in a particular range for different locations. (See Figures 2–9).

Figure 2. Outer Plot: Asymmetric Annual q-Gaussian for soil Temperature data measured in February 2009 Port-Harcourt.
Inner Plot: Linear fit for the values of Logq [P(Z)] vs. Z2 at q = 1.867± 0.592 fixed at bound.

We found that the measured soil temperature data sets fit into q-Gaussians with q-
stat values ranging from 1.2 ≤ q ≤ 2.8. However, it is possible that due to the system
reorganization between the rainy season and the dry season, the soil temperature in the
savannah region or in the dry season (for southern region) were mostly found to fit into
the q-Gaussian model when the data sets were binned into distributions with larger width
or class intervals. The distributions were found to assume q-Gaussian more accurately
with less noise with larger class intervals during dry season. For instance, we found that
for Yola and Makurdi stations, when the soil temperature time series distributions are
subdivided into smaller class intervals, the resulting distribution could only fit into the
q-Gaussian model from the month of May and June, respectively, and cannot fit into the
q-Gaussian model after the rainy season from November (see Tables 3 and 4). The observed
possibility of smaller range classes, which allows for a distribution with larger number
of bins in the wet season might be because of the presence of rain and high humidity in
the raining season, modifying the micro changes in temperature variation. The raining
season in Nigeria varies for different locations with longer rainy seasons in the south and
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shorter rainy seasons in the northern part of Nigeria. A good number of investigations have
established that the soil water content is a strong determinant factor in soil temperature
regulation [1,10].

Figure 3. Outer Plot: Asymmetric Annual q-Gaussian for soil Temperature data measured in September 2009 at Port-
Harcourt. Inner Plot: Linear fit for the values of Logq [P(Z)] vs. Z2 at q = 1.711± 0.088.

Figure 4. Outer Plot: Asymmetric Annual q-Gaussian for soil Temperature data measured in February 2011 at Nsukka, with
high degree of Skewness. Inner Plot: Linear fit for the values of Logq [P(Z)] vs. Z2 at q = 2.148± 0.63.

The variations in soil texture for different locations might be another factor affecting
the nature of the distributions. The soil texture is one of the characteristics of the soil that
strongly affects the soil thermal diffusivity [2,7]. The soil structure in the southern part of
Guinee savannah where Yola and Makurdi measuring stations are located which is also
known as derived Savannah region [39] is mostly characterized by combination of loosely
packed aeolian sandy soil and rocky (quartz) sediments, with high silica content [40].
The thermal conduction of soils with high silica can be highly consistent with minimal
changes in temperature [7]. The thermal diffusivity of loosely packed soil structure in
some areas of the Savannah may also affect the thermal conduction, as conduction is
lower in loosely packed soil. As a result, the micro-changes soil temperature occurs in
lower magnitude, due to high degree of aeration and conduction gaps resulting from the
characteristically large pores found in the soil structure in this region. With less rain in the
Savannah region the soil temperature tends to be more consistent. Also, the temperature
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could be more consistent due to the soil texture. A combination of these characteristics
might be responsible for the near zero micro-changes in the soil temperature, hence, the
small distributions in class intervals and larger value of q-Gaussian. This characterizes the
dynamics of soil temperature in arid/Savannah region and possibly other regions with less
rainfall and soil moisture differently, compared to other regions with a higher soil humidity
and soil moisture content differently from seasons with rainfall in the same region. This is
because the presence of moisture could greatly increase the soil thermal conductivity.

Figure 5. Outer Plot: Asymmetric Annual q-Gaussian for soil Temperature data measured in June 2011 at Nsukka, with
high degree of Skewness. Inner Plot: Linear fit for the values of Logq [P(Z)] vs. Z2 at q = 2.045± 0.234.

Figure 6. Outer Plot: Asymmetric Annual q-Gaussian for soil Temperature data measured in Jan 2009 at Makurdi, with high
degree of Skewness. Inner Plot: Linear fit for the values of Logq [P(Z)] vs. Z2 at q = 2.892.

The values of q were suspected to change with the weather conditions, this might
be responsible for the variations in q values especially for lower values of q below 1.3
and sometimes close to unity close to wet season in some locations. The lower values of
q-stat being recorded in the wet season might be due the situation where the conductivity
of the soil varies due to the moisture content. The atmosphere and other environmental
systems have been characterized with a mixture of both chaotic and stochastic variations
and sometimes with high degrees of freedom. These variations usually result in radical
changes in the dynamical component of these environmental systems [41].
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Figure 7. Outer Plot: Asymmetric Annual q-Gaussian for soil Temperature data measured in June 2009 at Makurdi, with
high degree of Skewness. Inner Plot: Linear fit for the values of Logq [P(Z)] vs. Z2 at q = 1.744± 0.178.

Figure 8. Outer Plot: Asymmetric Annual q-Gaussian for soil Temperature data measured in April at Yola, with high degree
of Skewness. Inner Plot: Linear fit for the values of Logq [P(Z)] vs. Z2 at q = 2.606 fixed at bound.

Figure 9. Outer Plot: Asymmetric Annual q-Gaussian for soil temperature data measured in December 2011 at Yola, with
high degree of Skewness. Inner Plot: Linear fit for the values of Logq [P(Z)] vs. Z2 at q = 1.661± 0.095 fixed at bound.
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Another interesting aspect of our results show that the q-Gaussians fitted from the
soil temperature data classified under the extended group of asymmetric q-Gaussians
(see Figures 2–13), as derived in earlier (see also Ref. [21]). These asymmetric properties
could be associated with the seasonal variations in energy transfer between the air and soil
interface. The symmetrical changes in the q-Gaussian distributions obtained from the soil
temperature data sets can be associated with the inconsistencies in the atmosphere–soil
energy transfer interface. However, this asymmetric property might not be totally linked
to changes in location as it could be found in the southern region for both Nsukka and
Port-Harcourt and toward the northern region at Makurdi (see Figures 2–7). However,
the asymmetry in the q-Gaussian found at Yola towards the northern/middle belt region
of Nigeria appeared to be lower compared to the q-Gaussians fitted for the other three
locations (see Figures 8 and 9). These inconsistencies may range from the inconsistencies
due to vegetational cover, soil carbon and other parameters that could affect the thermal
diffusivity of the soil from one location to the other. The effect of these varying factors on
the soil–atmospheric energy transfer could be responsible for the asymmetric properties of
soil temperature q-Gaussian.

Figure 10. Left Panel: q-Gaussian for atmospheric temperature measured in Yola in February 2012 (Left Panel). Right
Panel: Linear fit of ln(Hnorm) vs. ln|X| for positive values of X (outer plot) and negative values of X (inner plot); with the
asymmetry a computed from the slopes in which a = −0.225.

Figure 11. Left Panel: q-Gaussian for atmospheric temperature measured in Yola in April 2012. Right Panel: Linear fit
of ln(Hnorm) vs. ln|X| for positive values of X (outer plot) and negative values of X (inner plot); with the asymmetry a
computed from the slopes in which a = 0.2525.
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Figure 12. Left Panel: q-Gaussian for atmospheric temperature measured in Makurdi in February 2009. Right Panel: Linear
fit of ln(Hnorm) vs ln|X| for positive values of X (outer plot) and negative values of X (inner plot); with the asymmetry a
computed from the slopes in which a = −0.045.

Figure 13. Left Panel: q-Gaussian for atmospheric temperature measured in Makurdi in July 2009. Right Panel: Linear fit
of ln(Hnorm) vs. ln|X| for positive values of X (outer plot) and negative values of X (inner plot); with the asymmetry a
computed from the slopes in which a = −0.7875.

The q-Gaussian produced from smaller distribution and their corresponding linear
plots of ln(Hnorm) vs. ln|X| are shown in Figures 10–13. The q-Gaussians are clearly
defined with wider class intervals, particularly for savannah regions and dry seasons,
as discussed earlier. These distributions tend exhibit varying degrees of asymmetry as
observed from the q-Gaussians in the left panels of Figures 10–13 and as shown in the
previously presented figures. The slope of the linear plots of ln(Hnorm) vs ln|X| computed
to evaluate the asymmetry parameters of the q-Gaussians (See Figures 10–13 right panels).
The values of asymmetry a tends to vary with season, as the values were lower in month
of February, which falls within the dry season in this region, when the q-Gaussians were
closer to symmetry. However, the values of asymmetry a were higher in the months of
April at Yola and July at Makurdi which fall within early and deep rainy season in this
region, respectively.

The asymmetry holds, since all values of a are greater than zero, that is, where a > 0,
then all the probability distributions presented here are asymmetrical. However, the degree
of asymmetry becomes higher with higher values of |a|. In the cases where the values
of |a| → 0 for a given probability distribution, then such a distribution tends towards
symmetry.

The asymmetric parameters computed from the time series showed that the distribu-
tions obtained from detrended soil temperature were found to be more symmetrical in the
dry season month, especially in the months of January and February with higher degrees of
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asymmetry during the rainy season from April, particularly for Savannah regions, where
there is a clear distinction between the rainy season and dry season (see Figures 10–13).
These observations demonstrate the possible effect of humidity and rainfall as one of the
possible driving forces responsible for changes in symmetrical positions of the q-Gaussian
distributions. The shift in the symmetry shows that for different seasons the soil thermal
system undergoes self-reorganisation. This changes in the symmetry during the rainy
season can be attributed to the direct influence of the rainfall, which is a major atmospheric
driver influencing the soil moisture content and hence the temperature regulation [10,41].

5. Conclusions

In this work, the Tsallis non-extensive statistical mechanics was investigated in soil
temperature dynamics to obtain the stationary q-index for soil temperature measured from
different regions of Nigeria. This was carried out by fitting the detrended soil temperature
data into q-Gaussian. The analysis of soil temperature to obtain the Tsallis q-stat showed
that virtually all distributions fit into the q-Gaussian model exhibiting the possible presence
of non-extensive statistical mechanics. The ability of the detrended soil temperature
time series to fit into Gaussian distribution demonstrates the possibility of representing
the soil temperature with non-extensive statistical mechanics. It could also be because
of the superstatistical nature of atmospheric systems, which are usually controlled by
precipitation. As mentioned earlier, most of the physical systems that are characterized by
non-extensive statistical mechanics usually fit into superstatistics. It was observed that the
values of Tsallis q-stat varies with changes in the geographical belts of Nigeria as the values
of q-stat varies increases towards the southern part of Nigeria. The statistical variations of
soil temperature show that the monthly soil temperature distributions are dependent on
seasonal variation, particularly considering the varying symmetry of the distributions. The
asymmetry in the q-Gaussian, which varies seasonally has been attributed to the seasonal
energy variations. The obtained result from this work shows that the Tsallis statistical
mechanics can be used to determine and characterise the properties of the soil temperature
and thermal diffusivity dynamics. Based on our observations, we infer that there is possible
self-reorganization and dynamical forcing due to seasonal dynamical variations in the soil
thermal diffusion. However, there is need for further investigations on the non-extensive
dynamical properties of soil temperature for clearer understanding the drivers responsible
for these variations in the future.
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