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Background: Cardiomyopathy is known to be a heterogeneous disease

with numerous etiologies. They all have varying degrees and types of

myocardial pathological changes, resulting in impaired contractility, ventricle

relaxation, and heart failure. The purpose of this study was to determine the

pathogenesis, immune-related pathways and important biomarkers engaged

in the progression of cardiomyopathy from various etiologies.

Methods: Wedownloaded the genemicroarray data from theGene Expression

Omnibus (GEO). The hub genes between cardiomyopathy and non-

cardiomyopathy control groups were identified using di�erential expression

analysis, least absolute shrinkage and selection operator (LASSO) regression

and weighted gene co-expression network analysis (WGCNA). To assess the

diagnostic precision of hub genes, receiver-operating characteristic (ROC)

curves aswell as the area under the ROCcurve (AUC)were utilized. Then, Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analysis

and Gene Ontology (GO) analysis were conducted on the obtained di�erential

genes. Finally, single-sample GSEA (ssGSEA) and Gene Set Enrichment Analysis

(GSEA) were utilized to analyze the infiltration level of 28 immune cells and

their relationship with hub genes based on gene expression profile data and all

di�erential gene files.

Results: A total of 82 di�erentially expressed genes (DEGs) were screened

after the training datasets were merged and intersected. The WGCNA analysis

clustered the expression profile data into four co-expression modules, The

turquoise module exhibited the strongest relationship with clinical traits, and

nine candidate key geneswere obtained from themodule. Thenwe intersected

DEGs with nine candidate genes. LASSO regression analysis identified the last

three hub genes as promising biomarkers to distinguish the cardiomyopathy

group from the non-cardiomyopathy control group. ROC curve analysis in

the validation dataset revealed the sensitivity and accuracy of three hub genes

as marker genes. The majority of the functional enrichment analysis results

were concentrated on immunological and inflammatory pathways. Immune

infiltration analysis revealed a significant correlation between regulatory T cells,
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type I helper T cells, macrophages, myeloid-derived suppressor cells, natural

killer cells, activated dendritic cells and the abundance of immune infiltration

in hub genes.

Conclusion: The hub genes (CD14, CCL2, and SERPINA3) can be used as

markers to distinguish cardiomyopathy from non-cardiomyopathy individuals.

Among them, SERPINA3 has the best diagnostic performance. T cell immunity

(adaptive immune response) is closely linked to cardiomyopathy progression.

Hub genes may protect the myocardium from injury through myeloid-derived

suppressor cells, regulatory T cells, helper T cells, monocytes/macrophages,

natural killer cells and activated dendritic cells. The innate immune response

is crucial to this process. Dysregulation and imbalance of innate immune cells

or activation of adaptive immune responses are involved in cardiomyopathy

disease progression in patients.

KEYWORDS

cardiomyopathy, weight gene co-expression network analysis (WGCNA), biomarkers,

immune cell infiltration, LASSO regression

Introduction

Cardiomyopathies are a diverse set of cardiac muscle

illnesses characterized by electrical or mechanical abnormalities,

typically exhibiting abnormal ventricular dilation or

hypertrophy, thus contributing to the decline in systolic

and diastolic function in heart failure (1). The etiology of

cardiomyopathy is diverse, and its classification varies by

country. For example, cardiomyopathy is classified according to

etiology in the American Heart Association classification, while

the European Society of Cardiology classification is based on

a combination of morphology and hemodynamics. Currently,

cardiomyopathy is mainly divided into primary and secondary

cardiomyopathies. Primary cardiomyopathy can be classified

as hereditary, such as arrhythmogenic right ventricular

cardiomyopathy (ARVC), hypertrophic cardiomyopathy

(HCM), acquired, such as inflammatory cardiomyopathy

(ICM), and mixed, such as hereditary and acquired dilated

cardiomyopathy (DCM). Secondary cardiomyopathy mainly

includes alcoholic, ischemic, and perinatal cardiomyopathy

(2, 3). Currently, it is not clear whether cardiomyopathy of

different etiologies involves common mechanisms in molecular

genetics changes or pathogenesis. Though, understanding

these mechanisms is critical for managing and treating

cardiomyopathy. However, to the best of our knowledge, we

are innovatively combining cardiomyopathy with various

etiologies to explore the key genetic changes or pathogenesis of

cardiomyopathy progression compared to non-cardiomyopathy

individuals by bioinformatics method.

The development of various phenotypes in cardiomyopathy

depends on the complex interactions between individual

genetic genotypes, multiple cellular signaling pathways,

and environmental stressors. Although the pathogenesis of

cardiomyopathy varies by etiology, inflammation and the

immune system both play important roles in mediating

irreversible damage to the myocardium (4, 5). When the heart is

damaged or stressed, innate immune cells, such as neutrophils

and monocytes, will migrate to the damage site and release

mediators such as reactive oxygen species (ROS) and proteases

to remove the factors that cause heart damage. However, after

injury, Cardiomyocytes will further secrete pro-inflammatory

cytokines that can trigger adaptive immunity and aggravate

the inflammatory response (6). Current studies have shown

that myocardial inflammation involves multiple inflammatory

pathways, such as the TNF/NF-κβ pathway associated with

cardiac infection and injury, pattern recognition receptors

expressed by macrophages such as Toll-like receptors (TLRs),

and oxidative and stress-activated caspase-1 inflammasome

pathway and so on (7). In conclusion, inflammation plays a

vital function in cardiomyopathy progression and pathogenesis.

Therefore, the regulation of inflammation remains a promising

target for treating cardiomyopathy of different etiologies. To

find out the key immune-related pathway involved in them,

our study further elucidates the inflammatory infiltration

mechanism of cardiomyopathy.

In this study, we merged and intersected the data from

cardiomyopathy groups with various etiologies so that the

differentially expressed genes (DEGs) obtained by screening

were more representative. Next, we intersected DEGs with

the candidate key genes determined using weighted gene co-

expression network analysis (WGCNA). Following this, the

hub genes that distinguish the cardiomyopathy group from

the non-cardiomyopathy control group were screened out

using the least absolute shrinkage and selection operator

(LASSO) regression on the basis of the intersection genes.

Combining these methods increases the accuracy of the targeted
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signature genes for screening. Most importantly, we validated

the screened hub genes expression level and diagnostic ability

in the cardiomyopathy and non-cardiomyopathy control group

in a large independent sample dataset (validation group). In

addition, we conducted KEGG pathway enrichment analysis,

Gene Ontology (GO) on DEGs, and Gene Set Enrichment

Analysis (GSEA) on all differential gene files to identify

their inflammatory and immune-related signaling pathways.

Finally, using single-sample GSEA (ssGSEA), we investigated

the infiltration of 28 immune cells based on expression

profile data and their connection with hub genes. The

current study would help us understand the cardiomyopathy

pathogenesis and identify novel predictive and treatment targets

for cardiomyopathy.

Materials and methods

GEO data download

We downloaded the Microarray expression data from the

Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.

gov/geo/) (8). The dataset for this analysis is divided into

validation and training datasets. The training dataset included

the following: GSE42955 (9) (12 cases of DCM, 12 cases of

ICM, and five cases of controls), where GPL6244 platform of

Affymetrix Human Gene 1.0 ST Array served as the foundation,

in addition to GSE29819 (10) (12 cases of ARVC, 12 cases

of DCM, and 12 cases of controls), where GPL570 platform

of Affymetrix Human Genome U133 Plus 2.0 Array served

as the foundation. The 17 controls of the training dataset

(GSE42955 and GSE29819) were derived from non-diseased

donor hearts, which could not be transplanted for technical

reasons. The large sample dataset was used as the validation

dataset: GSE5406 (11) (86 DCM, 108 ICM, and 16 controls),

where GPL96 platform of Affymetrix Human Genome U133A

Array served as the foundation. The 16 controls of the validation

dataset (GSE5406) were from non-diseased normal hearts that

had normal left ventricular function. The training and validation

datasets can be subdivided into cardiomyopathy (Treat) and

non-cardiomyopathy control (Con) groups.

Data merging, intersecting, and
screening of DEGs

The data from GSE42955 and GSE29819 datasets were

merged and intersected using “sva” and “limma” R software

packages (version 4.2.0), and the data were probe-annotated,

batch-corrected, and normalized. Probe annotation files

provided by researchers were employed to translate probes in

each dataset into gene symbols. We determined the amount

of gene expression in a given tissue by using the average

numbers of probes that correspond to the same gene symbol. A

systematic evaluation of ComBat’s performance demonstrates

that it outperforms other tools. Therefore, we used ComBat

to eliminate batch effects between the two datasets (12). Both

“pheatmap” package and “ggplot2” package were deployed to

create DEGs heatmaps and volcano plots, respectively (13). The

screening criteria of DEGs were customized to log fold change

(FC) > 1 and P < 0.05 (14, 15).

Building gene co-expression networks
and finding the most relevant modules
for clinical traits

From the expression profiling data of the merged datasets,

a weighted gene co-expression network was created using

the WGCNA package of the R program (16). We used

the “goodSampleGenes” function to check the data’s integrity

and the “pickSoftThreshold” function to verify the ideal

soft threshold (β) to correlate to a scale-free network more

closely. After obtaining the matrix data, we converted it into

a topological overlap matrix, and then gene clustering was

performed, and the clustering results were identified by dynamic

shearing module. Next, a hierarchical clustering dendrogram

was built after calculating the module eigengenes (MEs) and

combining related modules in the clustering tree based on the

MEs. The modules were subsequently merged with phenotypic

data to generate heatmaps. Subsequently, the correlations

between genes and modules (MM) and the importance of genes

(GS) were calculated. Finally, correlation histograms and scatter

plots were drawn according to the MM and GS values.

Hub gene screening, expression level
verification, and diagnostic ability of the
hub gene

According to the screening criteria (absolute value of MM

> 0.80, absolute value of GS > 0.50), candidate key genes

were picked from the modules with the greatest connectivity.

Using R’s “venn” package, we intersected the candidate key genes

with the DEGs. Lastly, the final hub gene was screened by

LASSO regression (17). The expression levels of the obtained

hub gene in the training datasets were compared between the

control group and the cardiomyopathy group using a boxplot,

which was validated on an independent, large-sample dataset

(GSE5406). The accuracy of the hub gene as a marker gene

for cardiomyopathy and control groups was also assessed using

the Receiver-operating characteristic (ROC) curve, and the

diagnostic ability was further validated in the validation dataset.
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FIGURE 1

Determining optimal soft thresholds (β) in WGCNA. (A) Examination of the average connectivity under various β and scale-free fitting index. The

red line implies that the corresponding soft threshold is 10 when the correlation coe�cient is 0.9. (B) Connectivity distribution histogram and a

scale-free network correlation coe�cient of 0.96 checked at β = 3.

GO, KEGG, and GSEA functional
enrichment analysis

KEGG enrichment analysis and GO were conducted

on DEGs using the “clusterProfiler” and “enrichplot”

packages of the R software (18). For all differential

gene files, we used the immune-related gene sets that we

obtained from the Molecular Signature Database (MsigDB)

for GSEA enrichment (19). The top five significantly

enriched immune gene sets were displayed. Considered

statistically significant P values were adjusted at < 0.05 (q

< 0.05).

ssGSEA enrichment analysis to assess
immune cell infiltration on profile data
expression and its association with hub
genes

With the ssGSEA algorithm, we assessed the correlation

of gene expression profiles with the 28 immune cells

(20). The differential expression levels of 28 immune

infiltrating cells in the cardiomyopathy and non-

cardiomyopathy control groups were visualized using

Violin plots and heatmaps. The degree of association

between the 28 immune cells and hub gene was evaluated
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FIGURE 2

Constructing WGCNA modules and screening candidate key genes. (A) Gene clustering dendrogram: each branch represents a gene, and each

color below represents a co-expression module. (B) Module-trait relationships heatmap, with turquoise modules significantly associated with

controls. (C) Distributing gene significance in each module. (D) In the turquoise module, a scatter plot of gene module members vs. gene

significance is shown, GS > 0.5 and MM > 0.8 are candidate key genes.

by Spearman correlation and visualized using R software’s

“ggplot2” package.

Results

WGCNA analysis for the construction of a
co-expression network for the
identification of important modules and
genes

To improve the data quality, the samples are clustered,

missing values are filled in, outliers are removed, and normalized

the data. Therefore, when the optimal soft threshold β = 3 is

selected after clustering, the constructed network is more like the

scale-free network (Figures 1A,B). Subsequently, a topological

overlap matrix was derived. Using dynamic hybrid shearing,

we obtained gene modules, which were then clustered to create

four gene modules (Figure 2A). A heatmap was used to show

the correlation of the above modules with clinical traits in

the control group and the cardiomyopathy group and genes’

importance in each module. The strongest correlation (cor)

among them was found between the turquoise module and

the control group (cor = 0.69; P = 1e-10) and the highest

gene importance within the turquoise module (Figures 2B,C).

Lastly, according to the scatter plot, between GS and MM in

the turquoise module have a strong correlation (cor = 0.76; P

= 1e-200). Under the screening conditions of GS > 0.5 andMM
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FIGURE 3

Screening of DEGs and identification of Hub genes. (A) Volcano plots of DEGs expression in control and cardiomyopathy groups. (B) Heatmap of

DEGs expression in cardiomyopathy and control groups. (C) Venn diagram of the DEGs’ intersection and candidate genes of the turquoise

module. (D) Map of the regression coe�cients of the eight genes in LASSO model. (E) Three hub genes screened by 10-fold cross-validation in

the LASSO regression model.

> 0.8, 9 candidate key genes belonging to the turquoise module

were obtained then used for subsequent analysis (Figure 2D,

Supplementary File 4).

Screening of di�erential genes and
identification of hub genes

Based on the DEGs’ screening criteria (log fold change

(FC) > 1 and adjusted-P < 0.05), a total of 82 DEGs

were obtained (Supplementary File 3). DEGs expression in

the samples was displayed in volcano plots and heatmaps

(Figures 3A,B). By intersecting the DEGs with the nine

candidate key genes from the turquoise module, we were able to

get eight intersection genes (Figure 3C, Supplementary File 4).

Finally, we performed LASSO regression analysis for the

intersection genes, and the final three hub genes were

identified as follows:CD14,CCL2, and SERPINA3 (Figures 3D,E,

Supplementary File 4).

Identification of the expression level of
the hub gene and its diagnostic value

Using boxplots, the expression levels of the three hub genes

were determined. In the training dataset, the cardiomyopathy

group’s expression levels of CD14, CCL2, and SERPINA3 were

significantly lower than the ones in the control group. P

values were all <0.001 (P < 0.001) (Figure 4A). Then, in a

separate large-sample validation dataset, we further validated the

expression levels of these three hub genes (GSE5406), and the

results were like those of the training group, CD14 (P < 0.05),

CCL2 (P < 0.01), and SERPINA3 (P < 0.001). The expression

difference of SERPINA was most significant in the validation

group (Figure 4B). Our next step was to assess the precision

of the three hub genes as markers for discriminating between

cardiomyopathy and control groups using ROC curves. In the

training datasets, the area under the ROC curve (AUC) values of

CD14, CCL2, and SERPINA3 genes were all > 0.95, indicating

that these genes have high diagnostic values as marker genes
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FIGURE 4

Identification of the expression level of the Hub gene. (A) The expression levels of hub genes, CD14, CCL2 and SERPINA3 in the training datasets

were significantly lower in the cardiomyopathy group than in the control group. (B) The hub gene expression was verified in the large sample

validation dataset (GSE5406), and the expressions of CD14, CCL2 and SERPINA3 in the cardiomyopathy group were significantly lower than

those in the control group, of which SERPINA3 had the most significant di�erence. “***”, “**”, “*” represent P < (0.001, 0.01, 0.05).

(Figure 5A). In the validation dataset, the AUC values of the

three genes CD14, CCL2, and SERPINA3 were 0.673, 0.704, and

0.939, respectively. Data from the large sample validation dataset

indicated that all three genes could be used as marker genes, with

SERPINA3 having the highest diagnostic sensitivity (Figure 5B).

Functional enrichment analysis of DEGs

KEGG enrichment analysis and GO were done to

comprehend the related signaling pathways and important

biological functions involved in DEGs (Supplementary File 5).

Biological functions are mainly enriched in defense and

inflammatory processes, such as leukocyte chemotaxis

and migration. In terms of cellular composition, it is

mainly enriched in the extracellular matrix. The molecular

functions are primarily enriched in receptor activities,

including G protein-coupled receptors, signaling receptor

activators, etc. (Figures 6A–C). The KEGG signaling

pathway enrichment analysis revealed that DEGs were

mainly abundant in inflammation-related signaling

pathways, such as chemokine, cytokine-cytokine receptor

interaction and IL-17 signaling pathways (Figures 7A–C).

These findings uncovered cellular mechanisms and

abnormal signaling pathways implicated in the development

of cardiomyopathy.

Immune signature gene set enrichment
analysis

GSEA enrichment analysis was performed on all differential

gene files using the immune signature gene set in MsigDB

database to identify the underlying immune-relatedmechanisms

during cardiomyopathy progression. A total of 1,281 gene sets

were enriched (q < 0.05, Supplementary File 6). We showed

the top five most significantly enriched gene sets, among

which the gene sets CD4+ T cells, CD8+ T cells, and naive

T cells have high enrichment scores in the cardiomyopathy

group but low scores in the control group. In contrast, natural

killer cells and regulatory T cells were highly enriched in the

control group. These findings demonstrated the importance of

adaptive immune cell in the progression of cardiomyopathy,

while regulatory immune cells and innate immune cells may play

a role in heart protection (Figures 8A,B).
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FIGURE 5

Validation hub genes are used as marker genes (A) Diagnostic ability of hub genes in the training datasets. The area under ROC curve (AUC) was

used to evaluate the discriminating ability of hub gene in cardiomyopathy and control groups. (B) The validation results of hub gene in the large

sample validation dataset (GSE5406) were similar to those of the training datasets.

ssGSEA analysis of immune cell
infiltration and its correlation with hub
genes

By using ssGSEA analysis, we first compared immune cell

infiltration between cardiomyopathy and control groups. The

distribution of the 28 immune cells in the expression profile

samples is shown in Figure 9A and Supplementary File 7. The

immune cell infiltration analysis results showed that regulatory

T cells, myeloid-derived suppressor cells, type 1 helper T cells,

and macrophages were lower in the cardiomyopathy group

than in the control group (Figure 9B). Then we evaluated the

association of 28 immune cells with hub genes, among which

regulatory T cells were associated with CD14 (P < 0.01), CCL2

(P< 0.001) and SERPINA3 (P< 0.001), activated dendritic cells,

myeloid-derived suppressor cells with CD14 (P < 0.001), CCL2

(P < 0.001) and SERPINA3 (P < 0.01), natural killer cells with

CD14 (P < 0.001), CCL2 (P < 0.001) and SERPINA3 (P <

0.001), macrophages were positively correlated with CD14 (P <

0.01), CCL2 (P < 0.001) and SERPINA3 (P < 0.01) (Figure 9C).

These findings may demonstrate the critical role of regulatory

and innate immune cells in heart protection.

Discussion

Recently, WGCNA analysis has replaced DEGs-based

screening approaches because of their deficiencies. For example,

traditional methods are only used to study a small number

of datasets, and the correlation between genes is “one size

fits all,” which is prone to overlook essential regulatory core

molecules in the regulatory process of biological systems. By

contrast, the core molecules associated with clinical traits can

be identified based on the weighted gene co-expression network

(21). LASSO provides a dimensionality reduction impact, as

a regression analysis approach, compared to classical logistic

and Cox regression (17). In this study, we analyzed data by

WGCNA to determine candidate genes that are strongly related

to the clinical traits of the cardiomyopathy group and the control

group. Following, we intersected DEGs with the candidate key

genes to identify divergent and highly correlated intersecting

genes between the two groups. Eventually, LASSO regression

analysis identified three hub genes:CD14,CCL2, and SERPINA3.

The expression level of these three hub genes was significantly

lower in the cardiomyopathy group when compared to

the control group. The AUC represents its sensitivity and
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FIGURE 6

GO enrichment analysis of DEGs. (A) The histogram of GO enrichment analysis; the redder the color, the more significant the enrichment. (B)

Bubble diagram representing GO enrichment analysis; the size of bubbles represents the number of enriched genes, and the redder the color of

the bubbles, the more significant the enrichment is. (C) The first circle indicates that BP, CC, MF are represented by di�erent colors and the top

six enriched GO:ID are taken. The second circle represents the number of genes in di�erent GO:ID genome backgrounds, where di�erent colors

represent the significant degree of DEGs enrichment. The third circle represents the number of genes enriched by DEGs. The fourth circle

represents the proportion of genes.
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FIGURE 7

KEGG enrichment analysis of DEGs. (A) The histogram of KEGG enrichment analysis; the redder the color, the more significant the enrichment.

(B) Bubble diagram representing KEGG enrichment analysis; the size of bubbles indicates the number of enriched genes, and the redder the

color of bubbles, the more significant the enrichment is. (C) The first circle represents the enriched KEGG:ID. The second circle represents the

number of genes in di�erent KEGG:ID pathway backgrounds, where di�erent colors represent the significant degree of DEGs enrichment. The

third circle represents the number of genes for which DEGs are enriched in the pathway. The fourth circle represents the proportion of genes.

accuracy as a marker gene. Among them, SERPINA3 had

the highest diagnostic efficiency and was the most strikingly

differentially expressed gene. In addition, it is worth noting

that previous research has focused on cardiomyopathies of a

single etiology, which can improve the understanding of the

pathological mechanisms of specific diseases, but may lack the

exploration of common pathological mechanisms involved in

cardiomyopathies of different etiologies. However, our current

study is innovatively investigation to combine cardiomyopathy

with varied etiologies which examined common hub genes and

their diagnostic ability as marker genes and how they contribute

to the immune infiltration pattern of various cardiomyopathies.

Especially, we have assessed the diagnostic ability and accuracy

not only in the training dataset, but also in the large sample

validation dataset as well. In this way, our results are very reliable

and trustworthy.

The innate immune system functions as an “early warning

system,” allowing the host to differentiate between non-self and

self accurately and quickly. It is activated by “pattern recognition

receptors” found on many cells, including cardiomyocytes.

Cardiomyocytes express various pattern recognition receptors

like Toll-like and CD14 receptors. The cardiac innate immune

system relies on these pattern recognition receptors to respond

to various forms of myocardial injury (22, 23). The CD14

receptor encoded by the CD14 gene is a leucine-rich receptor

mainly expressed on the surface of natural cells, especially

monocytes/macrophages. It can also act as a receptor in a soluble

form (sCD14) on cells that do not express CD14 on their surface,

such as dendritic cells (24). It plays an important protective

role as a pattern recognition molecule to recognize a variety

of inflammatory mediators (25). One of the CC chemokines,

called monocyte chemoattractant protein-1 (CCL2; MCP-1), is

important for the migration of monocytes, memory T cells,

and natural killer cells (26, 27). Several studies have shown

that monocytes/macrophages are involved in the pathogenesis

and occurrence of cardiovascular disease by retaining and
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FIGURE 8

Enrichment of GSEA immune signature gene set. (A) Immune gene set scores in the control group. (B) Immune gene set scores in the

cardiomyopathy group.

activating CCL2. As in ischemic cardiomyopathy, CCL2 has a

persistent chronic expression (28). In our study, the expression

level was lower compared to that of the control group, and

it may be used as a target molecule to distinguish chronic

cardiomyopathy from normal myocardium, or its dysregulation

promotes cardiomyopathy development. Unquestionably, this

needs to be verified in large samples and further experiments.

As a member of the serine protease inhibitor superfamily,

SERPINA3, also known as α1-antichymotrypsin, is implicated

in oxidative stress, apoptotic cell death and inflammatory

responses (29). The SERPINA3 gene expression is regulated

by cytokines such as IL1 and IL6. In addition, the SERPINA3

gene expression as part of inflammatory responses can regulate

immune cells via mast cell chymotrypsin, leukocyte elastase,

and neutrophil cathepsin G (30). Inadequate regulation of

SERPINA3 can result in prolonged or excessive cathepsin G

activity, eventually causing tissue injury (31). Studies have

shown that SERPINA3 is associated with systemic inflammation

and oxidative stress. In stable heart failure, excess levels can

have detrimental effects on cardiac function and increased

mortality or cardiac accidents. SERPINA3may be as well utilized

as a heart failure predictive biomarker with great potential

(32, 33). Consistent with previous studies, our study showed

that the number of samples expressing SERPINA3 in the

cardiomyopathy group was significantly greater compared to

the control group. However, in comparison with the control

group, the expression level was significantly lower, so this

specifies that the dysregulation or imbalance of SERPINA3 gene

expression is involved in heart disease progression in those

with cardiomyopathy.

Furthermore, the difference in SERPINA3 expression levels

between the two groups, and its ability to serve as a marker

gene to distinguish the cardiomyopathy group from the control

group, was significantly greater than that of CD14 and CCL2.

Thus, these merits further investigation into the diagnostic

and therapeutic potential of SERPINA3 in cardiomyopathy.

Most importantly, we found that both CCL2 and CD14,

which are closely related to monocytes/macrophages, and

SERPINA3, regulated by cytokines IL1 and IL6, appear to

be involved in the innate immune response. We conjecture

that their dysregulation and imbalance may contribute to the

cardiomyopathy progression. To better understand this finding,

we further performed an enrichment analysis of the data to

explore the immune-related pathways involved.

GO enrichment analysis of DEGs exhibited that the

biological functions were primarily concentrated in the immune

and inflammatory response. However, this is consistent with

our previous presentation, which stated that after cardiac injury

triggers inflammatory and immune responses, it promotes

tissue healing and remodeling by activating compensatory

mechanisms. Though, remodeling and inflammation become

chronic over time, decreasing cardiac function and heart

failure (34). Cardiac fibrosis occurs in the progression

of different etiologies of cardiomyopathy, and enrichment

analysis of cellular component shows that the extracellular

matrix is closely related to fibrosis (35). The molecular

function enrichment of signaling receptor activator activity

and G protein-coupled receptors represent central physiological

functions involved in cardiomyocyte growth, metabolism, and

functional regulation. The KEGG signaling pathway showed that
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FIGURE 9

ssGSEA analysis of immune cell infiltration and its correlation with hub genes. (A,B) Heatmaps and violin plots showing the di�erences and

distribution of 28 immune cells in cardiomyopathy and control groups. (C) The relation between immune cell infiltration and three hub genes;

the redder the color, the more significant the di�erence. “***”, “**”, “*” represent P < (0.001, 0.01, 0.05).
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DEGs were predominantly enriched in chemokine, cytokine-

cytokine receptor interaction and IL-17 signaling pathway.

Cytokines participate in the coordination of the immune system

during the host’s defense, and their release after organism injury

triggers innate and adaptive immunity (36). Cardiomyopathy

may be triggered by cytokines, which are believed to have a role

in the pathophysiology of several forms of cardiac dysfunction

(37, 38). Th17 cells are a distinct subset of CD4+ T helper

cells that primarily produce IL-17 cells, which link adaptive and

innate immune responses. Activating IL-6, transforming growth

factor-β and IL-1 in a pro-inflammatory cytokine milieu enables

naive CD4+ T cells to differentiate and prime Th17 cells (36).

Studies have found that the Th17/CD4+ T cells’ imbalance may

play a crucial part in the process of myocardial injury, and

the higher the proportion of Th17 cells, the more obvious the

decrease in cardiac function. However, the high expression of IL-

17 can aggravate the induction of ventricular hypertrophy and

myocardial fibrosis, leading to ventricular remodeling (39, 40).

Finally, GSEA enrichment analysis of expression profile files

showed that CD8+T cells, CD4+T cells and naive T cells had

high enrichment scores in the cardiomyopathy group, while

natural killer cells and regulatory T cells had high enrichment

scores in the control group. CD4+ T cell subsets now include

TH1 cells, TH2 cells, TH17 cells and regulatory T cells.

Regulatory T cells, expressing CD25 and the transcription factor

FoxP3, have immunomodulatory properties that help suppress

inflammation and autoimmune diseases (41). As an adaptive

immune response, TH1, TH2 cells, and the previously described

Th17 cell subtype have been implicated in the progression of

myocardial disease in numerous studies (4, 5). These findings

highlighted the crucial significance of genes associated with

adaptive immune cells in the incidence and development of

cardiomyopathy, while regulatory and innate immune cells may

be involved in the protection of the heart.

Finally, we analyzed the infiltration of 28 immune cells in

the cardiomyopathy group and the non-cardiomyopathy control

group using the ssGSEA algorithm. The findings indicated

that in the cardiomyopathy group, myeloid-derived suppressor

cells, regulatory T cells, type I helper T cells, and macrophages

were lower compared to the control group. Further analysis

of the most relevant immune infiltrating cells involved in

the three hub genes showed that regulatory T cells, myeloid-

derived suppressor cells, activated dendritic cells, macrophages

and natural killer cells were most closely related to the hub

genes. According to many scholars’ studies, it demonstrated

that that regulatory T cells, myeloid-derived progenitor cells,

monocytes/activated macrophages, or dendritic cells can play

a suppressive regulatory function in the myocardial disease

development (42, 43). These results are consistent with our

study. Based on the above analysis, we further proved that

the control group was more involved in the innate immune

response, while the adaptive immune response played an

important role in the cardiomyopathy group. Our studies

suggest that the heart may protect itself through regulatory

T cells and innate immune cells; however, dysregulation

and imbalance of innate immune cells and activation of

adaptive immune responses are involved in cardiomyopathy

disease progression in patients. These findings deepen our

understanding of the immune system’s role in cardiomyopathy

progression. It can better guides scholars for clinical drug

development and might help efforts to develop more targeted

specific immunotherapy for cardiomyopathy.

Because of its limitations, this study can be validated

further in prospective and larger-sample studies to eliminate

invasive diagnostics and to give a guideline for early detection

and focused medication development for cardiomyopathy of

diverse etiologies. The reasons are as follows: Firstly, this

study was retrospective and did not include all etiologies of

cardiomyopathy, such as HCM, so a larger prospective study

is needed to validate our conclusions. Secondly, the data set

sample of the training group in this study is still small, so

the accuracy of the assessment and prediction of the disease

Hub gene can be improved by increasing the sample size.

In addition, there are some other limitations that need to

be highlighted. For example, further experimental validation

using animal models of cardiomyopathy or tissue samples

from human cardiomyopathy patients is needed. Moreover,

the present study can only support the correlation analysis

between cardiomyopathy and immune cells and between Hub

genes and immune cells, but cannot reveal the cause-and-effect

relationship. Finally, the subjects in this study may differ in

terms of geography, race, living environment, genetic variation

and susceptibility to cardiomyopathy. All these factors may have

an impact on the study of cardiomyopathy.

In conclusion, with the intersection of multiple

cardiomyopathy gene sets with different etiologies and

WGCNA analysis and LASSO regression analysis, we screened

out a key module (turquoise module) and three hub genes

involved in cardiomyopathy progression (CD14, CCL2, and

SERPINA3). After that, we combined bioinformatics analyses

of GO, KEGG, GSEA, and ssGSEA. This study demonstrated

differential expression of hub genes and their diagnostic ability

as marker genes, but it also contributed to the common immune

infiltration pattern of various cardiomyopathies and provided

insights into the underlying immunomodulatory mechanisms.
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