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Abstract

Shared information content is represented across brains in idiosyncratic functional topographies. 

Hyperalignment addresses these idiosyncrasies by using neural responses to project individuals’ 

brain data into a common model space while maintaining the geometric relationships between 

distinct patterns of activity or connectivity. The dimensions of this common model capture 

functional profiles that are shared across individuals such as cortical response profiles collected 

during a common time-locked stimulus presentation (e.g. movie viewing) or functional 

connectivity profiles. Hyperalignment can use either response-based or connectivity-based input 

data to derive transformations that project individuals’ neural data from anatomical space into the 
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common model space. Previously, only response or connectivity profiles were used in the 

derivation of these transformations. In this study, we developed a new hyperalignment algorithm, 

hybrid hyperalignment, that derives transformations based on both response-based and 

connectivity-based information. We used three different movie-viewing fMRI datasets to test the 

performance of our new algorithm. Hybrid hyperalignment derives a single common model space 

that aligns response-based information as well as or better than response hyperalignment while 

simultaneously aligning connectivity-based information better than connectivity hyperalignment. 

These results suggest that a single common information space can encode both shared cortical 

response and functional connectivity profiles across individuals.
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1. Introduction

Hyperalignment models shared information that is embedded in idiosyncratic cortical 

patterns across brains. Modeling shared information makes it possible to compare functional 

anatomy across brains at a fine spatial scale. Hyperalignment projects cortical pattern 

vectors into a common, high-dimensional information space (Haxby et al., 2020). Derivation 

of this common space can be based on either neural response profiles (e.g. data collected 

during tasks, such as movie viewing (Haxby et al., 2011)) or functional connectivity profiles 

(Guntupalli et al., 2018). Common spaces based on each of these data types differentially 

improve between-subject alignment. Response-based common spaces better align held-out 

response data, whereas connectivity-based common spaces better align held-out connectivity 

data. However, it has remained unclear whether optimizations of both response 

hyperalignment and connectivity hyperalignment would converge on the same common 

information space.

While both response- and connectivity-based hyperalignment significantly improve 

intersubject correlations (ISCs) of response profiles relative to anatomical alignment, 

response-based hyperalignment (RHA) results in slightly higher ISCs for response profiles 

than does connectivity-based hyperalignment (CHA) (Guntupalli et al., 2018). Similarly, 

RHA yields better alignment of cortical response patterns for two additional tests of 

between-subject alignment: between-subject multivariate pattern classification (bsMVPC) 

and ISC of representational geometry (Guntupalli et al., 2016, 2018). At the same time, 

CHA yields higher ISCs of dense connectivity profiles than RHA (Guntupalli et al., 2018). 

In other words, RHA outperforms CHA on response-based metrics of alignment, whereas 

CHA outperforms RHA on connectivity-based metrics. The common information spaces 

derived from RHA and CHA are correlated yet different, which suggests that the 

information contained in population response patterns versus functional connectomes may 

be fundamentally distinct. Alternatively, RHA and CHA may both be imperfect estimates of 

a single common information space that can accommodate both shared response information 

and shared connectivity information.
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If the first hypothesis holds and the common spaces derived by RHA and CHA each 

capitalize on distinct aspects of the same data, then two separate optimal common spaces 

exist. In this case, adding response information to connectivity-based hyperalignment would 

move the CHA common space toward the RHA optimum and away from the optimal CHA 

space, degrading ISC of connectivity profiles. Likewise, moving closer to the shared CHA 

space by adding connectivity information to response-based hyperalignment should degrade 

response-based benchmarks of between-subject alignment: ISC of response profiles and 

bsMVPC of response patterns. If the second hypothesis holds, both RHA and CHA are 

imperfect estimates of a single optimal shared-information space. In this case, deriving a 

common space based on combined response and connectivity data should maintain or 

improve ISCs of response and connectivity profiles as well as bsMVPC of response patterns.

To test these two possibilities, we developed a new algorithm, hybrid hyperalignment, that 

derives a common space based on both response and connectivity data from the same task 

fMRI dataset. We measured the performance of hybrid hyperalignment using fMRI data 

collected while participants watched one of three movies: The Grand Budapest Hotel 
(Visconti di Oleggio Castello et al., 2020A), Raiders of the Lost Ark (Nastase, 2018), or 

Whiplash. We found that a single common model computed using both response and 

functional connectivity information aligned neural response and connectivity patterns across 

participants as well as or better than RHA or CHA alone, supporting the second hypothesis 

of a single, optimal shared-information space.

2. Materials and methods

2.1. Participants

We used three separate data sets for our analyses. All participants gave written, informed 

consent, and all studies were approved by the Institutional Review Board of Dartmouth 

College. In data set one (Budapest), we scanned 21 participants (11 female, 27.29 years ± 

2.35 SD) as they watched the second half of the film The Grand Budapest Hotel ((Visconti 

di Oleggio Castello et al., 2020A). This dataset had 25 total participants. We used a subset of 

21 participants with customized headcases for this analysis. In data set two (Raiders), we 

scanned 23 participants (12 female, 27.26 years ± 2.40 SD) as they watched the second half 

of the film Raiders of the Lost Ark (Nastase, 2018). In the third study (Whiplash), 29 

participants (15 female, 18.30 years ± 0.79 SD) watched part of the film Whiplash. In the 

Whiplash data set, we chose 29 participants with the least head motion (measured as average 

framewise displacement) from a set of 62 participants who viewed this video as part of 

another study.

2.2. Stimuli and design

In each of these studies, participants viewed part of an audio-visual film in the MRI scanner. 

In the Budapest data set, participants watched the audio-visual film The Grand Budapest 
Hotel. They viewed the first portion of the movie outside of the scanner and the second 

portion (final 50.9 min) in the scanner during fMRI data collection. This second portion of 

the film was broken into 5 separate runs, each approximately 10 min long, with a short break 

between each run (Visconti di Oleggio Castello et al., 2020A). In the Raiders data set, fMRI 
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responses were measured while participants watched the second half of the film Raiders of 
the Lost Ark (approximately 57 min) over 4 runs, each roughly 15 min. Again, participants 

viewed the first half of the movie outside of the scanner just prior to the scanning session. In 

the Whiplash data set, participants watched a 29.5 min edit of the film Whiplash. FMRI data 

were collected in a single run, and we divided the data into 4 pseudoruns of approximately 8 

min to approximately match the length of the runs in the two other data sets.

For each data set, the videos were projected using an LCD projector, which the participant 

could view on a mirror mounted on the head coil in the scanner. Audio was played using 

MRI-compatible in-ear headphones. Participants were simply instructed to pay attention and 

enjoy the movie.

2.3. MRI data acquisition and preprocessing

All fMRI data were collected in the Dartmouth Brain Imaging Center with a 3T Siemens 

Magnetom Prisma MRI scanner (Siemens, Erlangen, Germany) with a 32-channel phased-

array head coil with TR/TE = 1000/33 ms, flip angle = 59°, resolution = 2.5 × 2.5 × 2.5 mm 

isotropic voxels, matrix size = 96 × 96, FoV = 240 × 240 mm, with anterior-posterior phase 

encoding. For Budapest and Whiplash 52 axial slices were obtained. For Raiders 48 axial 

slices were obtained. Both volumes provided roughly full brain coverage with no gap 

between slices.

Anatomical data were acquired using a high-resolution 3-D magnetization-prepared rapid 

gradient echo sequence (MP-RAGE; 160 sagittal slices; TR/TE, 9.9/4.6 ms; flip angle, 8°; 

voxel size, 1 × 1 × 1 mm). Data acquisition and conversion to BIDS was performed using 

the ReproIn specification and tools (Visconti di Oleggio Castello et al., 2020B) and 

organized into BIDS format with DataLad (Gorgolewski et al., 2016; Halchenko et al., 

2017). Data was preprocessed using fMRIprep 20.0.3 (Esteban et al., 2018). The Budapest, 

Raiders, and Whiplash data sets had 3052, 2570, and 1770 total TRs, respectively. Confound 

regression was used to mitigate the effects of head motion, physiological fluctuations (e.g. 

aCompCor), and slow trends. Detailed information on anatomical and functional 

preprocessing can be found in previous publications for the Budapest (Visconti di Oleggio 

Castello et al., 2020A) and Raiders (Nastase, 2018) data sets or under Supplemental 

Methods for the Whiplash data set.

2.4. Intersubject alignment

Our analysis consisted of four types of intersubject alignment beginning with traditional 

anatomical alignment described in the previous section (and displayed in Fig. 1A). 

Anatomical alignment (AA) non-linearly registered each participant’s individual BOLD 

response data to FreeSurfer’s high-resolution fsaverage cortical template based on sulcal 

curvature (Fischl, 2012). For computational efficiency, and to more closely match the native 

resolution of the functional data, we then decimated this surface grid to fsaverage5 by 

selecting the first 10,242 vertices per hemisphere. This lower-resolution fsaverage5 mesh is 

equivalent to downsampling a participant’s volume data to a 5-order icosahedron tessellation 

( “icoorder5”). The AA data were then used to perform hyperalignment with three different 

algorithms. Response-based hyperalignment (RHA) mapped data from the anatomical space 
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to a common information space based on time-point response patterns across cortical 

vertices. Connectivity-based hyperalignment (CHA) mapped data from the anatomical space 

to a separate common information space based on functional connectivity patterns derived 

from the movie response data. Finally, the novel hybrid hyperalignment (H2A) algorithm 

began with RHA followed by hyperalignment that used both response and connectivity 

patterns as input to calculate a single common information space (Fig. 1). All 

hyperalignment was performed with python code utilizing the PyMVPA toolbox version 

2.6.5 (Hanke et al., 2009).

2.4.1. Response-based hyperalignment—To perform response-based 

hyperalignment we began with the AA data consisting of responses across cortical vertices 

(over time) in the downsampled fsaverage5 surface (“icoorder5”, 3 mm resolution). We 

removed vertices within the medial wall for this analysis, which resulted in 9372 and 9370 

vertices remaining in the left and right hemispheres respectively. The resulting data matrix 

for each participant consisted of a row for each TR (response patterns) and a column for 

each cortical surface vertex (18,742 total combined across left and right hemispheres; Fig. 

1B). Each column of the matrix (time series) was z-scored to have zero mean and unit 

variance. These data served as input to the searchlight response hyperalignment algorithm, 

which utilizes Procrustes transformations to calculate a transformation matrix for each 

participant that maps their AA data into a shared high-dimensional information space shared 

across participants (Guntupalli et al., 2016).

The searchlight hyperalignment algorithm centers a searchlight on each cortical surface 

vertex and computes a common information space across participants for each searchlight. 

Because searchlights are highly overlapping, each cortical-vertex-to-model space-dimension 

pair will be assigned transformation weights from multiple searchlight transformation 

matrices (Haxby et al., 2020). These transformation weights are summed and z-scored for 

each vertex-to-dimension pair to produce a single, whole-brain transformation matrix for 

each participant, which maps data into a single common space for the whole cortex. The use 

of searchlights serves to constrain the Procrustes transformations of response profiles to a 

neuroanatomically meaningful radius. In other words, functional data from a vertex in the 

occipital lobe cannot be aligned to a vertex in the prefrontal cortex. Our analyses used a 20 

mm searchlight radius (Guntupalli et al., 2016; Nastase, 2018; Feilong et al., 2018).

2.4.2. Connectivity-based hyperalignment—The implementation of connectivity-

based hyperalignment is identical to that of RHA, except that CHA takes a connectivity data 

matrix as input, rather than a response data matrix. In a functional connectivity matrix, each 

row is a pattern of connectivity strengths across vertices (columns) for a “connectivity 

target” elsewhere in the brain. In this way, CHA distinguishes itself from RHA by 

functionally aligning brain data based on the co-activation of cortical vertices with the rest 

of the brain in contrast to using purely local response profiles.

To compute each participant’s connectome, we began with the same data matrix as used as 

input to the RHA algorithm described above (fsaverage5 or “icoorder5” surface, 3 mm 

resolution) and then defined our connectivity seeds and targets. In this analysis, our 

connectivity seeds were of the same resolution (3 mm) as our data: each seed was an 
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icoorder5 surface vertex. Our connectivity targets were defined on a sparser surface for two 

main reasons. By downsampling to a lower resolution, we reduced the number of data points 

and increased computational efficiency. More notably, defining dense connectivity targets 

(for example, vertex-to-vertex) on anatomically-aligned data yields poor functional 

correspondence across participants (as shown in the results presented for anatomical 

alignment in Fig. 4). By aggregating these targets into searchlights instead of individual 

vertices, we ensure more reliable seed-target correspondence, which the hyperalignment 

algorithm assumes. We define the vertices at the center of each connectivity target as each 

vertex on a lower resolution surface mesh (icoorder3, yielding 588 and 587 vertices in the 

left and right hemispheres, respectively after masking the medial wall). We then centered a 

13 mm searchlight on each of these vertices and computed an average time series for each 

searchlight, which served as a connectivity target. We calculated the participant’s 

connectome as the correlation between the average time series of 1175 connectivity target 

searchlights and the time series of 18472 connectivity seeds (icoorder5 vertices). Each 

column of a subject’s connectome was then z-scored to have zero-mean and unit variance, 

and the connectomes were passed to the searchlight hyperalignment algorithm in exactly the 

same process described above for response patterns in RHA. We used 13 mm searchlights 

with local averaging to define connectivity targets to reduce the similarity of connectivity 

patterns for neighboring targets. However, the searchlight hyperalignment step of CHA was 

performed with 20 mm searchlights in order to match those used in RHA and H2A. This 

produced a transformation matrix for each participant, which, like RHA, mapped each 

brain’s cortical vertices into common information space dimensions, but these were based 

on alignment of each participant’s connectome (derived in AA space) into a connectivity-

based common information space.

2.4.3. Hybrid hyperalignment—The hybrid hyperalignment method starts with 

response hyperalignment (Fig. 1B1). The response-hyperaligned time series data is then 

used to compute a functional connectome (Fig. 1B2) using the same procedure as preparing 

anatomical data for CHA (Section 2.4.2). The time series data and the RHA connectome are 

then combined and used as input for searchlight hyperalignment to define a common model 

space based on both patterns of response and patterns of connectivity (Fig. 1C). These two 

data matrices do not necessarily have the same number of samples, as the samples of the 

response data represent the number of TRs collected and the samples of the connectome 

represent the number of connectivity targets we defined. Though each column in both of 

these matrices already had zero mean and unit variance, we wanted to ensure that the overall 

magnitudes of the variance of both response and connectivity input data were the same, such 

that both information types would be equally weighted by the Procrustes transformation. We 

therefore applied a multiplier to every element of whichever input matrix contained fewer 

rows. To determine the multiplier, we calculated the Frobenius norm of both the response 

profile matrix and the connectome matrix for each participant. A ratio of the two Frobenius 

norms was then computed: the numerator of the ratio was the Frobenius norm of whichever 

input matrix contained more samples, and the denominator of the ratio was the Frobenius 

norm of whichever input matrix contained fewer samples.
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Once this multiplier was applied, we vertically concatenated the connectome to the response 

data matrices (Fig. 1C). The resulting matrix was of dimensions t time points plus 1176 

connectivity targets (rows/samples) by 18,742 vertices (columns/features). This matrix was 

then passed to the searchlight hyperalignment algorithm as described above with a 20 mm 

searchlight radius. Again, searchlight hyperalignment produced a transformation matrix for 

each participant that maps their AA cortical data into a common information space based on 

both response and connectivity information.

It is important to note that all three hyperalignment methods made use of the same original 

neural data but used different sets of patterns derived from those data to compute individual 

transformation matrices and a common model space.

2.5. Alignment benchmarking

2.5.1. Intersubject correlation of response and connectivity profiles—To 

investigate the relative efficacy of the hyperalignment procedures in aligning shared 

information processing across brains, we computed the vertex-by-vertex intersubject 

correlation (Nastase et al., 2019) of both movie-viewing response profiles (time series 

responses) (Figs. 2 and 3) and functional connectivity profiles (dense functional 

connectomes; Guntupalli et al., 2018; Fig. 4). First, the transformation matrices for each 

participant were calculated by RHA, CHA, and H2A separately using a leave-one-run-out 

data folding scheme described below. Next, participants’ held-out movie-viewing response 

profiles (test data) were mapped from anatomical space (fsaverage5) into each common 

space (derived from training data). Within anatomical space and each common space a 

dense, vertex-by-vertex functional connectome was computed by correlating each cortical 

vertex’s response time series with all 18,741 other vertices’ time series for every participant. 

The Pearson correlation was then calculated across participants for every vertex on both (1) 

the held-out response profile data and (2) the held-out dense functional connectomes in each 

of the 3 common information spaces. Differences in the distributions of ISCs across 

alignment algorithms were tested using a one-sided permutation test for each 

hyperalignment method vs. AA, or a two-sided permutation test for comparing 

hyperalignment methods to each other (null distributions were created by shuffling 

alignment method labels 10,000 times in all tests). Mean ISCs across vertices, participants, 

and data folds were projected onto the fsaverage template with nearest neighbor 

interpolation for visualization.

2.5.2. Movie segment classification—We computed the classification accuracies, 

searchlight-by-searchlight, of 5 s movie segments from a held-out run of movie data. To do 

this, we compared each searchlight’s activity pattern (averaged across all vertices within a 

searchlight) in one participant with the average activity pattern over all other participants in 

the same searchlight for every 5 s movie segment (5 TRs) using a sliding window. Ten-

second buffer periods were added to both ends of every target segment such that no target 

segment was compared to a time segment within 10 s of itself. Thus, each analysis was a 

1/3023, 1/2541, or 1/1741 classification for the Budapest, Raiders, or Whiplash datasets, 

respectively.
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The searchlights used for movie segment classification were centered on each cortical vertex 

and included all other vertices within a 13 mm radius of the center vertex. If a participant’s 

searchlight pattern of activation for a given segment was most similar to the group average 

response for the corresponding segment (relative to average group patterns for all other 
movie segments) it was considered correctly classified. We quantified “most similar” as the 

segment with the highest Pearson’s correlation coefficient. Differences in the distributions of 

accuracies for each subject across alignment algorithms were tested using a one-tailed 

permutation test for AA vs. each hyperalignment method or a two-tailed permutation test for 

comparing hyperalignment methods to each other. Null distributions were simulated by 

shuffling alignment method labels 10,000 times in all tests. Mean classification accuracies 

across searchlights, participants, and data folds were projected onto the fsaverage template 

with nearest neighbor interpolation for visualization.

We consider movie segment classification to be a strong test of the quality of alignment of 

shared information across participants. Movies combine complex visual and auditory 

information with higher-order information about social interactions and narrative arc. Each 

person encodes this information in idiosyncratic cortical topographies. If hyperalignment 

successfully aligns these idiosyncratic representations in a common information space, the 

response pattern at each time point in model space dimensions will be more similar across 

brains, leading to higher time segment classification accuracies. Previous hyperalignment 

studies have used 15 s segments (Haxby et al. 2011; Guntupalli et al. 2016, 2018), which 

contain more neural information and are therefore more easily classified. We opted here for 

a more exacting classification task with 5 s segments.

2.5.3. Data folding—We used a leave-one-run-out data folding scheme to validate 

hyperalignment training on an unseen portion of data. For each movie, hyperalignment 

parameters for each subject were trained on all but one run, and the held-out run was 

mapped into the trained space using the derived transformation matrix. Once this unseen 

data was mapped into the common model, alignment performance was benchmarked using 

our three chosen tests of intersubject alignment: response profile ISC, dense connectome 

ISC, and movie segment classification. ISC and classification analyses were therefore 

iteratively performed on every run of every movie after deriving a common space from all 

other runs from the same movie. Correlations and classification accuracies are reported as 

the average of these measures across data folds for each movie.

3. Results

3.1. Intersubject correlation

3.1.1. Response profiles—All three hyperalignment algorithms in all three data sets 

yielded significant improvements in intersubject correlation of vertex time series response 

profiles across participants relative to AA alone (p < 0.001 for all). Further, H2A aligned 

response profiles significantly better than RHA in all three data sets. In the Budapest data 

set, AA produced an average ISC of 0.179, while RHA, CHA, and H2A produced ISCs of 

0.411, 0.349, and 0.495, respectively (Figs. 2, 3). RHA and H2A aligned response profiles 

significantly better than CHA (p < 0.001 for both), and H2A aligned response profiles 
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significantly better than RHA (p < 0.001). In the Raiders data set, AA produced an average 

ISC of 0.160, while RHA, CHA, and H2A yielded ISCs of 0.378, 0.314, and 0.462, 

respectively (Fig. 3). Again, RHA and H2A significantly outperformed CHA (p < 0.001 for 

both), and H2A significantly outperformed RHA (p < 0.001). Finally, in the Whiplash data 

set, AA produced an average ISC of 0.175, while RHA, CHA, and H2A produced ISCs of 

0.324, 0.282, and 0.408, respectively (Fig. 3). In this dataset RHA and H2A performed 

significantly better than CHA (p < 0.001 for both), and H2A performed significantly better 

than RHA (p < 0.001). Of note, the Whiplash data set was only about half the duration of the 

other two data sets, which may partially account for why the ISCs across alignment 

methodologies are lower for these participants.

3.1.2. Dense connectivity profiles—All three hyperalignment procedures 

significantly improved the intersubject alignment of dense connectivity profiles relative to 

AA alone across data sets (p < 0.001 for all), with H2A consistently producing the highest 

ISCs of any method. In the Budapest data set, AA produced an average ISC of 0.437, while 

RHA, CHA, and H2A produced ISCs of 0.800, 0.807, and 0.902, respectively (Fig. 4A, B). 

The ISCs of CHA and RHA were not significantly different (p = 0.848), but the ISC of H2A 

was significantly higher than both CHA and RHA (p < 0.001 for both). In the Raiders data, 

AA produced an average ISC of 0.417, and RHA, CHA, and H2A yielded ISCs of 0.762, 

0.790, and 0.884, respectively (Fig. 4B). Again, the ISCs of CHA and RHA were not 

significantly different (p = 0.985), but the ISC of H2A was significantly higher than both 

CHA and RHA (p < 0.001 for both). Finally, in the shorter Whiplash data set, AA had an 

average ISC of 0.135, and RHA, CHA, and H2A resulted in ISCs of 0.450, 0.568, and 0.679, 

respectively (Fig. 4B). In this data set, the ISCs of both CHA and H2A were significantly 

greater than RHA (p < 0.001 for both). Further, the ISCs of H2A were significantly greater 

than those of CHA (p < 0.001). The shorter duration of the Whiplash movie-viewing session 

may partially account for the lower ISCs across alignment algorithms.

3.2. Movie segment classification

Hyperalignment, regardless of the specific algorithm, showed significant improvements 

relative to AA in classifying 5 s movie segments (p < 0.001 for all). In nearly every common 

space across data sets, the individual with the lowest hyperaligned classification accuracy 

had better accuracy than the individual with the highest AA accuracy (Fig. 5B). We present 

results here as the average classification accuracy across searchlights, participants, and data 

folds. In the Budapest data set, AA produced an average accuracy of 0.023, while RHA, 

CHA, and H2A had accuracies of 0.166, 0.115, and 0.162, respectively (Fig. 5A, B). In this 

data set, RHA and H2A both classified time segments better than CHA (p < 0.001 for both), 

and RHA significantly outperformed H2A (p = 0.049). In the Raiders data set, AA produced 

an average classification accuracy of 0.015, and RHA, CHA, and H2A yielded accuracies of 

0.117, 0.076, and 0.108, respectively (Fig. 5B). Again, RHA and H2A were both 

significantly better than CHA at classifying time segments (p< 0.001 for both), but RHA and 

H2A were not significantly different from each other in accuracy (p = 0.083). Finally, in the 

Whiplash data set, AA had an average accuracy of 0.022, while RHA, CHA, and H2A 

produced accuracies of 0.129, 0.086, and 0.137 (Fig. 5B). In this data set RHA and H2A 
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significantly outperformed CHA (p < 0.001 for both), and again, RHA and H2A were not 

significantly different from each other in accuracy (p = 0.808).

4. Discussion

A major objective of the hyperalignment algorithm is to map the shared information 

originally found in idiosyncratic cortical topographies into a common space in which this 

information is better aligned across participants. Previously, RHA was shown to align 

response-based data better than CHA, whereas CHA was shown to better align connectivity-

based data than RHA. In this study we used three separate data sets to show that a hybrid 

hyperalignment algorithm, H2A, which uses both response and connectivity information 

from the same dataset, is capable of aligning both types of data in a single common 

information space. Adding response information in the derivation of the common 

information space clearly improves the alignment of connectivity information. Adding 

connectivity information clearly improved alignment of response information on one 

measure - ISC of response profiles - and maintained performance on another - bsMVPC of 

movie time segments.

H2A showed significantly greater ISCs of response profiles than both RHA and CHA across 

all 3 data sets. H2A also showed significantly larger ISCs of dense connectivity profiles than 

both RHA and CHA across all 3 data sets. Finally, in the most stringent test of the alignment 

of cortex-wide response patterns, we classified 5 s movie time segments by comparing each 

individual’s response pattern to the average group response pattern (See Movie Segment 

Classification above). In the Budapest data, RHA outperformed H2A in classification 

accuracy by a difference of 0.004 (p = 0.049). In both the Raiders and Whiplash data sets, 

RHA and H2A classification accuracies were not significantly different. Together, these 

results show that H2A produces a single common information space that aligns both 

response and connectivity information as well as or better than RHA or CHA can alone.

Our findings indicate that functional alignment based upon either response or functional 

connectivity information alone provides an imperfect estimate of an optimal common space 

that would maximize the shared information we can account for between brains. By 

combining both types of information, H2A provides a significantly better estimate of this 

single optimal common space. However, the sequential nature of the H2A method is crucial 

in aligning both types of information. Anatomical alignment provides poor correspondence 

of connectivity information (Fig. 4, AA bars; S3, S7, S11). Thus, using anatomically defined 

data to compute the functional connectome for H2A provides a more noisy estimate of the 

common space. To address this, we first hyperaligned participants’ response information and 

then computed the functional connectome within the RHA common space. Because this 

information passed to H2A is better aligned across participants, the connectivity targets are 

better aligned for calculating the connectivity patterns that serve as input for H2A (Figs. S3, 

S7, S11).

We applied a multiplier to the H2A input data such that the Frobenius norms of both the 

response and connectivity data matrices were equal. One consideration for future exploration 

is whether equal Frobenius norms for both information types are optimal. It is possible that 
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unequal weighting of the two types of data may in fact be optimal for deriving H2A 

transformation matrices. For example, it may be preferable to weight RHA more heavily in 

visual areas and CHA more heavily in prefrontal areas. We plan to investigate this idea 

further in future studies.

Despite H2A’s evident improvement in aligning functional connectomes compared with 

CHA, there are some intrinsic limitations that apply to H2A but not CHA. H2A and RHA 

both require that participants share the same time-locked stimulus with the same number of 

time points, so they cannot be applied to resting-state data or data sets that implement 

different stimuli. Because CHA aligns functional connectivity profiles rather than time series 

data, it alone can be used with datasets that don’t have time-locked stimuli (Guntupalli et al. 

2018; Nastase et al., 2020). Although we derive the RHA and CHA estimates from the same 

movie stimulus in the current application of H2A, the CHA component of the algorithm 

could also be applied to subjects with both movie and resting-state scans.

In comparison to other methods of functional alignment, our novel H2A method aligns both 

response and connectivity information using a single algorithm. Many researchers are 

interested in discerning both specific vertex-wise patterns of activation and patterns of 

functional network connectivity that correspond to different cognitive states. Previously, 

fully leveraging hyperalignment to conduct both of these types of analyses would require 

implementing RHA to derive a response-based common information space and 

implementing CHA separately to derive a connectivity-based common information space. 

With H2A researchers can investigate both types of neural information with an estimate of 

the single optimal information space.

5. Conclusions

Our results show that a single common information space can model both response and 

connectivity information that is shared across brains. If optimization of shared response and 

connectivity information resulted in two separate common spaces, the derivation of a single 

common space using both types of information should vitiate its alignment capabilities. 

Instead, we found that a hybrid common space aligns response data better than RHA and 

connectivity data better than CHA. This suggests that the two methods individually produce 

imperfect estimates of a single optimal information space. The H2A algorithm capitalizes on 

the strengths of different types of information to provide a more robust estimate of this 

optimal information space. This makes the H2A algorithm a preferable method for aligning 

stimulus response data when one wants to evaluate both connectivity and response data. 

However, H2A does require data collected while participants are shown a time-locked 

stimulus such as a movie. In cases where this type of data is unavailable, CHA can still be 

used to align shared information. Our new algorithm is a powerful tool for elucidating the 

underlying space that encodes various forms of information represented in the brain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The Hybrid Hyperalignment Algorithm. Orange arrows indicate a data matrix being passed 

to searchlight hyperalignment. (A) In Anatomical Alignment (AA) response profiles are 

aligned to a common anatomical template with t movie time points as rows and n cortical 

vertices as columns. (B1) To perform Response Hyperalignment (RHA), AA data are passed 

directly to the searchlight hyperalignment algorithm to derive transformation matrices based 

on local response patterns. Dimensions in the RHA common space are associated with the 

cortical vertices in a reference brain (Guntupalli et al. 2016). (B2) After mapping AA data 

into the newly derived RHA common space, the time series of each cortical vertex is 

correlated with the average time series of vertices aggregated into coarse connectivity targets 

across the brain (here, 1076 searchlights). The resulting connectome has k connectivity 

targets as rows and n cortical vertices as columns. (C) In our new method, Hybrid 

Hyperalignment, the response-hyperaligned time series from B1 and the corresponding 

functional connectome from B2 are combined, resulting in (t movie time points + k 
connectivity targets) rows and n cortical vertices as columns. This combined data matrix is 

then passed to the searchlight hyperalignment algorithm to derive transformations based on 

both local response and brain-wide connectivity profiles (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.).
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Fig. 2. 
The intersubject correlation of response profiles using the Budapest data for each type of 

alignment algorithm. Correlations are presented for each vertex on the cortical surface 

averaged over data folds and participants. Subsequent figures show only left lateral 

hemisphere views of results. Brain image figures of results for all three datasets with lateral, 

medial, and ventral views are shown in Supplemental Figs. S1,S2.
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Fig. 3. 
The average intersubject correlation of response profiles is shown for each alignment 

algorithm for each data set. Bars represent the average intersubject correlation over all 

vertices, data folds, and participants. Circles represent the average intersubject correlation 

for an individual participant over all vertices and data folds.

Busch et al. Page 16

Neuroimage. Author manuscript; available in PMC 2021 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The average intersubject correlation of connectivity profiles. (A) Correlations are presented 

for each vertex on the left lateral cortical surface averaged over data folds and participants. 

Brain image figures of results with lateral, medial, and ventral views of both hemispheres 

are shown in Supplemental Figs. S4–S6. (B) Correlations are shown for each alignment 

algorithm for each data set. Bars represent the average intersubject correlation over all 

vertices, data folds, and participants. Circles represent the average intersubject correlation 

for an individual participant over all vertices and data folds.
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Fig. 5. 
Average time segment classification accuracies. (A) Accuracies are presented for all 

searchlights on the left lateral cortical surface averaged over data folds and participants. 

Brain image figures of results with lateral, medial, and ventral views of both hemispheres 

are shown in Supplemental Figs. S8–S10. (B) Correlations are shown for each alignment 

algorithm for each data set. Bars represent the average classification accuracies over all 

searchlights, data folds, and participants. Circles represent the average classification 

accuracy for an individual participant over all vertices and data folds.
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