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A B S T R A C T   

Background and purpose: Automatic review of breast plan quality for clinical trials is time-consuming and has 
some unique challenges due to the lack of target contours for some planning techniques. We propose using an 
auto-contouring model and statistical process control to independently assess planning consistency in retro
spective data from a breast radiotherapy clinical trial. 
Materials and methods: A deep learning auto-contouring model was created and tested quantitatively and qual
itatively on 104 post-lumpectomy patients’ computed tomography images (nnUNet; train/test: 80/20). The auto- 
contouring model was then applied to 127 patients enrolled in a clinical trial. Statistical process control was used 
to assess the consistency of the mean dose to auto-contours between plans and treatment modalities by setting 
control limits within three standard deviations of the data’s mean. Two physicians reviewed plans outside the 
limits for possible planning inconsistencies. 
Results: Mean Dice similarity coefficients comparing manual and auto-contours was above 0.7 for breast clinical 
target volume, supraclavicular and internal mammary nodes. Two radiation oncologists scored 95% of contours 
as clinically acceptable. The mean dose in the clinical trial plans was more variable for lymph node auto-contours 
than for breast, with a narrower distribution for volumetric modulated arc therapy than for 3D conformal 
treatment, requiring distinct control limits. Five plans (5%) were flagged and reviewed by physicians: one 
required editing, two had clinically acceptable variations in planning, and two had poor auto-contouring. 
Conclusions: An automated contouring model in a statistical process control framework was appropriate for 
assessing planning consistency in a breast radiotherapy clinical trial.   

1. Introduction 

Clinical trials in radiation therapy drive treatment advancements, 
impacting patient outcomes. Hence, maintaining consistent patient 
treatment in trials by following a quality assurance (QA) protocol is 
crucial. In fact, failure to comply to a QA protocol leads to poor quality 
of radiotherapy treatment in trials, which is associated with increased 
trial failure rates, reduced survival, and a possible increase in toxicity 

[1–4]. 
The pre-treatment review of radiotherapy plans for clinical accept

ability and protocol compliance is especially important in the QA pro
cess, as most of the errors that violate protocol compliance are found in 
the planning process [5]. Taylor et al. conducted a failure modes and 
effect analysis on clinical trial QA methods and concluded that failures 
in pre-treatment contouring and plan review were a high risk to the 
patient [6]. In a gastrointestinal radiotherapy clinical trial, the 
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implementation of a prospective treatment plan review reduced the 
unacceptable plan deviation rate from 42% to 2–4% [7]. 

Yet, many radiotherapy trial protocols lack pre-treatment QA [8]. 
Even when required, QA compliance can be heterogenous [7,8]. This 
may be due to the difficulty and high cost associated with experts 
evaluating every plan and each contour for proper delineation of targets, 
dose coverage to targets, and appropriate doses to normal tissues. 
Furthermore, for breast radiotherapy specifically, there can be an 
additional challenge in plan review. Many physicians treating breast 
cancer may not delineate target contours, as traditional 3D conformal 
radiation therapy (3DCRT) treatment techniques, which are still com
mon, do not require target contours, as they are based on the patient’s 
overall geometry. This poses more difficulty in verifying the consistency 
of the treatment plans. QA requirements also differ based on the 
complexity of treatment [6]—for example, volumetric modulated arc 
therapy (VMAT) in comparison to 3DCRT. 

In this work, we propose an automated approach to pre-treatment 
plan verification in breast radiotherapy for different modalities. This 
approach consists of, first, developing an automated contouring model 
for breast target structures and, second, using the model to retrospec
tively evaluate 3DCRT and VMAT plans in a breast radiotherapy clinical 
trial via a statistical process control (SPC) approach to investigate this 
method’s potential in assessing the consistency of treatment plans. The 
approach is applicable to clinical trials (as tested here) and routine 
clinical plan review and is independent of and does not require any 
clinical contours. In this work, we aim to develop a novel approach to 
automatic plan quality review for breast radiotherapy treatment plans. 

2. Materials and methods 

2.1. Auto-Contouring model 

A set of 104 post-lumpectomy breast cancer patients with regional 
lymph node involvement who received post-operative radiation was 
selected retrospectively from the University of Texas MD Anderson 
Cancer Center patient dataset. Forty-nine patients had left-sided treat
ment, and 55 had right-sided treatment. The dataset included only pa
tients treated in a supine position; 9 patients had one arm above the 
head, and 95 had two arms above the head. The patients’ planning 
computed tomography (CT) scans were obtained with no contrast, and 
the selection included an equal mix of breath-hold and free-breathing 
scans. A total of 101 patients were scanned using a GE LightSpeed 16 
Slice CT, and 3 patients were scanned using a Siemens Somatom Defi
nition Edge. These scans had a median slice thickness of 3 mm and a 
median pixel spacing of 1.2 mm. The use of this data was approved by 
the institutional review board of MD Anderson (IRB: PA16-0379). 

To ensure consistent training data, the MD Anderson breast radiation 
oncology group set consensus guidance for manually contouring the 
breast target structures. Nine radiation oncology residents followed 
those instructions and delineated the following structures: breast clinical 
target volume, supraclavicular lymph node clinical target volume, and 
internal mammary lymph node clinical target volume (CTV). Contour
ing consistency was maintained by peer review where each resident’s 
contours were reviewed by another. Only the mentioned contours were 
used for this study, as they were consistently treated with no resection in 
all clinical trial patients. 

Two models were trained with nnU-Net deep learning algorithm [9], 
with one model for the 55 patients with right-sided treatment and a 
second model for the 49 patients with left-sided treatment. Both models 
used an 80/20 training/testing ratio with 5-fold cross-validation. The 
selected algorithm used a 3D full-resolution U-Net architecture with a 
stochastic gradient descent optimizer and a combined loss function of 
Dice with cross-entropy. Quantitative metrics, namely the Dice simi
larity coefficient (DSC) and mean surface distance (MSD), were used to 
evaluate the test dataset (21 patients) by comparing the automatically 
generated contours to the manual ones. In addition, the model was 

assessed qualitatively by two breast radiation oncology attending phy
sicians, that did not participate in the delineation of the training data, on 
the clinical acceptability of the automated contours using a 5-point 
Likert scale (5: use as is, 4: use with minor edits, 3: use with major 
edits, 2: requires major edits, 1: unusable). We define our criteria for 
clinical acceptability as a contour receiving a score of 3 or above. 

2.2. Consistency evaluation 

A total of 127 patients were selected retrospectively from the 
Shortening Adjuvant PHoton Irradiation (SAPHIRe) clinical trial 
(NCT02912312), an MD Anderson trial that investigated the occurrence 
of lymphedema after hypofractionated versus conventionally fraction
ated radiation therapy for patients with locally advanced invasive breast 
cancer requiring radiation to the regional nodes. The dataset included 
only patients who had undergone breast-conserving surgery. A total of 
105 patients had adjuvant 3DCRT using tangential fields on the breast 
target with regional lymph node irradiation, and the remaining 22 pa
tients had VMAT to the same targets. All patients received either a 
conventional dose regimen of 50 Gy to the breast and 45 Gy to the lymph 
nodes (mandatory treatment of supraclavicular and internal mammary 
nodes) in 25 fractions or a hypofractionated regimen of 40.5 Gy to the 
breast and 37.5 Gy to the lymph nodes in 15 fractions. These exported 
plans were approved for clinical use, having been through our in
stitution’s extensive peer review process that on average involves 5 
breast radiation oncology attending physicians. The use of this data was 
also approved by the institutional review board of MD Anderson (IRB: 
PA16-0379). 

Statistical process control (SPC) was selected as the plan verification 
method. This technique has long been used for monitoring the quality of 
a process in the manufacturing industry. In radiotherapy specifically, 
SPC has been used for QA, e.g., monitoring linac beam quality and 
machine performance [10–15] and verifying intensity-modulated radi
ation therapy plans [16–19]. More recently, SPC was used for moni
toring the performance of an automated planning tool, the Radiation 
Planning Assistant [20]. The success of SPC in the different aspects of QA 
in radiotherapy is a positive indicator for its use in the present work’s 
target coverage consistency evaluation. 

SPC uses statistical tools to assess the performance of a process [21]. 
This is done by modeling a mathematical variable. Control Charts, a 
common SPC tool, define accuracy as the mean of this variable and 
precision as the spread. The spread is usually set at three times the 
standard deviation from the mean covering over 99% of a normally 
distributed data [21]. These distances, labeled as upper and lower 
control limits, detect errors for current and future datapoints. If a pro
cess is steady, all points should be within those control limits, not 
following any trends. In our work, we used SPC to assess the consistency 
of dose coverage. We focused on average dose to automated contours 
and flagged any point that lied outside of the control limits for possible 
inconsistencies. 

The first step in this methodology was the application of our auto- 
contouring model to all 127 CT scans from the clinical trial to obtain 
breast target contours. This is done to measure target doses independent 
of clinical contours and in case they don’t exist. Four patients from the 
clinical trial were not analyzed: one due to the failure of the auto- 
contouring model to produce usable contours, one due to a problem in 
exporting a plan related to data transfer between different treatment 
planning software, and two due to the use of two different treatment 
plans, which made obtaining the total dose to auto-contours difficult. 
Thus, 102 patients given 3DCRT and 21 patients given VMAT were 
included in the final analysis. Control charts were plotted for the 3DCRT- 
and VMAT-treated patients separately to assess the consistency of the 
target coverage between the different methods. Specifically, we used the 
ratio of the mean dose of clinical target volumes to the prescribed dose 
as the mathematical variable to be monitored across individual patients. 
The plots were assessed for process control, i.e., the consistency of the 
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target coverage and the presence of outliers. Two attending physicians 
reviewed the plans of the outlier points and assessed whether the plan 
variation was clinically acceptable. If the outliers were caused by poor 
automated contours, the limits were recomputed without those data 
points to better represent the sample’s distribution. 

3. Results 

3.1. Auto-Contouring model validation 

The mean DSC, between auto-contoured and manual structures, was 
above 0.7 for all structures, and the average MSD was below 3 mm 
(Table 1). 

As for qualitative assessment, attending physician review scored the 
majority of automated contours (20 of 21) for breast CTV, axilla levels I, 
II, and III, supraclavicular nodes, and internal mammary nodes as clin
ically acceptable (receiving a Likert score of three or more). The one 
breast auto-contour receiving a score of two (major edits) had a cranial 
border 2.7 cm superior of the acceptable limit. 

3.2. Statistical process control charts 

Fig. 1 shows the SPC charts of breast CTV, supraclavicular node CTV, 
and internal mammary nodes CTV with all patients and control limits for 
3DCRT and VMAT methods. For both methods, the control limits were 
wider for the lymph nodes than for the breast, indicating an increased 
variability in dose coverage of the lymph nodes’ automated contours 
between patients. Notably, the control limits were different and nar
rower for VMAT than for 3DCRT (average of the relative standard de
viation (standard deviation over the mean of the data), 4.2% for 3DCRT 
and. 1.4% for VMAT). 

In total, three outliers were flagged from the charts. For one plan 
(auto-contoured supraclavicular node mean dose, 89%), the reviewing 
physicians indicated that they would prefer to have improved coverage 
of the supraclavicular CTV (e.g. by changing the gantry angle) (Fig. 2). 
The other outliers were poor auto-contours (auto-contoured breast CTV 
mean dose, 64%, and 87%). The control limits for the breast CTV were 
then recomputed excluding the falsely flagged points. Two additional 
outliers were flagged (Fig. 3), both representing clinically acceptable 
planning variations (auto-contoured breast mean dose, 92% and 105%). 

4. Discussion 

In this work, we investigated the use of SPC and an auto-contouring 
model to assess the consistency of breast target dose coverage in a 
clinical trial, comparing different treatment approaches. Overall, a low 
flagging rate was expected in this preliminary study, as the plans had 
already been approved for clinical use. We were, however, able to 
identify one outlier using this approach (a supraclavicular node 3DCRT 
field for which modification was suggested). We also showed an increase 
in variability in the supraclavicular and internal mammary lymph nodes 
auto-contours’ dose. This could be attributed to contouring variability 
for these small structures in addition to the use of a single treatment field 

instead of opposing ones that are less sensitive to contouring changes. 
We also demonstrated that different treatment approaches required 
distinct tolerance levels, with traditional plans (3DCRT tangents) 
showing more variability than VMAT. Using the auto-contouring tool 
and SPC provided insights into dose coverage variability in a clinical 
trial dataset. it also successfully flagged a plan for review, highlighting 
its potential for QA in treatment planning. 

Usually, pre-treatment QA involves labor intensive dose checks for 
individual patients plans. This work automates this process, turning it 
into an independent, population-based reviewed, thus saving time and 
costs. Implementing our automated QA tool in clinical trials’ protocols 
could standardize pre-treatment plan QA, ensuring consistent patient 
care and reliable trial results. This approach also benefits non trial pa
tients undergoing the same treatment regimen (e.g., 3DCRT or VMAT). 
This process is also translatable to different disease sites using different 
auto-segmentation models. 

Peer review is often used for plan checks, but it is not very effective in 
identifying detectable errors (55% detection rate for physician chart 
rounds [22] and 32% [23] and 38% [24] for physics plan checks). 
Automated plan checks, however, have been shown to improve this 
detection rate [24,25]. Our method for automating part of the plan 
check could enhance the detection of plan inconsistencies. The latest 
work in automating plan checks includes automated contour QA, as in 
the work of Rhee et al. [26], who developed an independent automated 
contouring system to verify auto-contours. Similarly, automated plan 
QA was demonstrated by Gronberg et al. [27], who created a dose 
prediction model to identify suboptimal plans. In the current work, we 
investigated a unique approach by using an automated contouring sys
tem independent from clinical contours to verify treatment plans 
automatically. 

In a similar work, Jung et al. automatically segmented cardiac sub
structures using atlas-based methods to assess dose to structures 
compared to manual contours for toxicity related QA. [28]. While atlas- 
based segmentation was explored for breast structures, deep-learning 
methods showed superior performance [29]. Vaassen et al. also 
showed that CTV automated contouring of the breast required minimal 
edits for clinical planning use (<5% DSC difference between automated 
and edited contour) which validates our physician review results [30]. 
In addition, SPC presents a more streamlined, patient based, analysis 
method in comparison to simple dose difference evaluation. This is also 
true when looking at the work done by Simoes et al. where they 
compared the difference in PTV coverage for breast using a relative 
difference of the V95% metric between the dose on the deep learning 
generated and manual contours [31]. 

The tools described in this work may also have wider application in 
understanding the results of clinical trials. The ACOSOG Z0011 (Alli
ance) Trial surprisingly showed that axillary dissection showed no 
benefit for local control or survival as compared to sentinel node biopsy 
alone in patients with node positive disease. All of these patients 
received radiation to the whole breast, leading to speculation that the 
axilla may have inadvertently received radiation, which would have 
treated the undissected axilla. Jagsi et al. retrospectively assessed the 
charts from this trial, using proximity of the superior border to the 

Table 1 
Evaluation of auto-contoured structures. Quantitative: mean surface distance and Dice similarity coefficient, and qualitative: Likert scores for the clinical acceptability 
of breast clinical target volume, supraclavicular nodes, and internal mammary nodes.   

Quantitative Qualitative 

Structure Mean Dice Similarity 
Coefficient 

Mean surface 
distance (mm) 

5: Use as 
is 

4: Minor edits that are not 
necessary 

3: Minor edits that are 
necessary 

2: Major 
edits 

1: 
Unusable 

Breast clinical target 
volume 

0.9 ± 0.0 3.5 ± 2.1 10% 10% 75% 5% 0 

Supraclavicular nodes 0.7 ± 0.1 2.4 ± 1.0 5% 0 95% 0 0 
Internal mammary 

nodes 
0.7 ± 0.1 1.8 ± 1.2 100% 0 0 0 0  
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humeral head as a surrogate to assess dose to the axilla [32]. While 
hypothesis generating, definite conclusions could not be drawn from the 
analysis. The current proposed method has the potential to robustly 
answer questions about delivered target and OAR dose to help answer 
questions about clinical outcome on large randomized trials. Retro
spective assessment of DICOM data submitted for routine QA could be 
subjected to evaluation using AI tools to help answer many clinically 

relevant questions regarding optimal dosing on multi-institutional trials. 
Our automated contouring model was trained using 50 patients. This 

is adequate since nn-Unet does not require a large dataset to give 
acceptable results when the training set is consistent with patients un
dergoing standardized simulation and imaging protocol such as ours 
(DSC plateaus starting 25 patients for training) [33,34]. Chung et al. 
developed a similar automated contouring model for breast targets using 

Fig. 1. Statistical process control charts of both 
modalities in each structure. Shown are 3D 
conformal radiation therapy (3DCRT) and volu
metric modulated arc therapy (VMAT) doses to 
breast critical target volume, internal mammary 
nodes (IMN), and supraclavicular nodes (SCLV) 
auto-contours. The green line shows the mean of 
the points, and the red lines show the upper and 
lower control limits (UCL and LCL). (For interpre
tation of the references to colour in this figure 
legend, the reader is referred to the web version of 
this article.)   
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a 3D Unet algorithm and used DSC as one of their evaluation metrics 
[35]. Their results were comparable to ours with DSC differences on the 
hundredth level. Although not addressed in this work, the use of an 
automated contouring model was important to reduce interobserver 
variability in delineating breast structures. The extent of this variability 
has been shown by Li et al. who conducted a study to determine the inter 
and intra-observer variability in delineating breast targets and normal 
structures. They determined that the percent overlap between internal 
mammary contours drawn by 9 physicians from 8 different institutions 
on a patient scan was as low as 10%. In addition, the supraclavicular 
nodes contours had a standard deviation of 60% in volumetric variation. 
The breast contours also showed variation in border delineation be
tween physicians [36]. Knowing that there are variations in manual 
contours that translate to variations in the dose distribution to these 
structures, we aimed to select a plan quality metric that is not overly 
sensitive to these variations on automated contours. In our preliminary 
work, we investigated the use of different dosimetric parameters such as 

D95%, D90% and V95%, however, the impact of dose variation in the 
automated contours seems to be exacerbated in the SPC analysis for 
those metrics such that it hindered the sensitivity of the control charts to 
detect any errors. For this reason, we focused on mean dose for this 
current study. Additional parameters could be examined further when 
more data is available. In addition, the incorporation of three standard 
deviations as a fundamental approach in SPC studies is widely recog
nized and accepted across industries. Alternative limits should be 
explored when a larger dataset from diverse institutions, coupled with 
an accurate understanding of the true failure rate of the plans is 
available. 

The next step for this work is to expand SPC testing to a larger patient 
dataset, including patients from other institutions. This will help us 
assess SPC’s ability to detect unacceptable inconsistencies in cases with 
more variations in clinical practice. Our evaluation is not sensitive to 
systematic errors for our internal data, as the dataset was obtained from 
patients treated with the same institutional protocols, planned on the 
same treatment planning software and underwent the same quality 
assurance. Nevertheless, SPC could be effective in identifying systematic 
differences when analyzing data from various institutions. This dual 
capacity emphasizes the versatility and credibility of SPC, making it an 
indispensable tool for ensuring quality control. 

In conclusion, we have shown that using an auto-contouring model 
in an SPC framework can successfully assess planning variability and has 
potential for identifying inconsistencies in a breast radiotherapy clinical 
trial. 
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