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A B S T R A C T   

Gallic acid (GA) is a known phenolic compound with anti-inflammatory, antioxidant, and anti-cancer activities. 
The objective of this research is to evaluate the preventive role of GA against carbon tetrachloride (CCl4) induced 
liver fibrosis. Thirty-five (35) male Wistar rats were used in this study and were equally distributed into five 
groups (7 rats each). All groups were acclimatized for a week, Group I (control) rats were administered distilled 
water only. Group II rats were induced with a single dose of CCl4 (1.25 mL/kg in olive oil (1:1); IP) to cause 
hepatic damage, while Groups III, IV, and V, rats were intoxicated with CCl4. After 24 h the rats in groups III, IV, 
and V were given 50 mg/kg of silymarin, 50 mg/kg of GA, and 100 mg/kg of GA daily for one week respectively. 
Rats were sacrificed and fasting blood was estimated for biochemical analysis while the liver was excised for 
molecular studies. Results from this study revealed that GA significantly decreases serum hepatic enzymes, 
down-regulate the expression of pro-inflammatory cytokines, interleukin 1 beta (IL-1B), interleukin 6 (IL-6), 
cyclooxygenase 2 (COX 2), and tumor necrosis factor-alpha (TNF α), and up-regulate antioxidant gene expression 
(superoxide dismutase and catalase). The use of gallic acid as natural antioxidants can be promising in 
ameliorating liver diseases.   

1. Introduction 

The liver is an essential organ involved in more than five hundred 
metabolic reactions in the biological system and one of its major func-
tions is the detoxification of poison or harmful substances, but can also 
be injured by the toxicants, which in the process may distort the meta-
bolic activities of the liver, leading to acute liver failure [1]. Carbon 
tetrachloride (CCl4) is a hepatotoxin, which causes liver necrosis, 
fibrosis, and cirrhosis when injected or orally given to experimental 
animals [2,3]. Although the mode of action of CCl4 induced hepatic 
injury is hydra-headed, but there is a piece of evidence that several 
mediators of inflammation and oxidative stress may play a role in the 
pathophysiology of CCl4 induced hepatic damage. The inflammatory 

initiators responsible for liver injuries are IL-1β, IL-6, TNF-α, iNOS, and 
COX-2 [4]. 

The crosstalk linking Nrf2 and NF-κB is implicated in hepatic injury. 
Nrf2 is a transcription factor involved in the enhancement of the cellular 
defense system to halt oxidative damage and inflammation. It induces 
the expression of antioxidant target genes such as catalase, superoxide 
dismutase, glutathione, and heme oxygenase 1, and in the process hin-
ders the activation of the pro-inflammatory transcription factor NF-κB 
thereby preventing the transcription of pro-inflammatory mediator 
[5–7]. Nrf2 is found in association with a protein called kelch-like 
ECH-associated protein 1 (Keap1), which keeps Nrf2 from undergoing 
degradation. Under the condition of oxidative stress, Nrf2 dissociates 
from Keap1 protein in the cytoplasm and translocate to the nucleus 
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which then binds to the antioxidant response element (ARE) located 
within the promoter region of specific target genes where it triggers the 
expression of cytoprotective enzymes [8–10]. Previous studies revealed 
that the interference between Nrf2 and Keap1 interactions can lead to 
the stabilization and nuclear translocation of Nrf2 [11]. Therefore, 
molecules that can competitively inhibit Keap1 from binding to the Nrf2 
site would provide an alternative pathway for the activation of Nrf2. The 
pharmacological stimulation of Nrf2 is a promising medicinal target by 
GA for the treatment and prevention of hepatic damage associated with 
oxidative stress and inflammation. 

The liver is prone to several pathologies, because of its incessant 
exposure to an environmental toxin, drug abuse, chronic alcohol intake, 
viral infections, and autoimmune diseases [12]. Despite remarkable 
improvements in modern medicine, the management of liver diseases is 
challenging. Currently, the search for alternative and complementary 
medicines with antioxidant properties has become the point of focus in 
the management of liver problems. Now there is an increasing interest in 
phytoconstituents, especially phenolic compounds, due to their benefi-
cial effects on disease prevention and longevity [13]. 

Gallic acid is a secondary metabolite with a phenolic ring (Fig. 1) 
that is found in grapes, oak bark, green tea, apple peels, strawberries, 
pineapples, banana, and lemon [14]. Gallic acid and its derivatives 
possess numerous biological activities such as antiviral, antifungal, 
antioxidant, and anticancer properties [15]. Therefore, the treatment of 
liver fibrosis by GA could be linked to the down-regulation of inflam-
matory responses mediated by cytokines and the up-regulation of anti-
oxidant genes [16]. The purpose of this research project is to investigate 
the hepatoprotective, anti-oxidative, and anti-inflammatory activities of 
gallic acid in CCl4 induced hepatic damage in Wistar rats. 

2. Materials and methods 

2.1. Chemicals 

All substances were purchased from Sigma-Aldrich Chemical (St. 
Louis, MO, USA) unless otherwise stated. The test substances were dis-
solved in distilled water and prepared fresh daily for administration to 
the animals 

2.2. Animals 

Eight weeks old Wistar rats, weighing between 150− 170 g, bred in 
the Department of Biochemistry, Faculty of Life Sciences, University of 
Benin was used for the research. They were kept in clean cages in a 12 h 
light/dark cycle with litter changed daily. The animals were housed in 
galvanized rat cages and acclimatized on rat chow. Animal experimen-
tation followed strictly the care and use of animals [17] and was 
approved by the local University Ethics Committee for Animal Research 
with approval number LS20014 

2.3. Experimental protocol 

Thirty-five male Wistar rats were used in this study and were 
distributed equally into five groups (7 rats each). All groups were 
acclimatized for a week, Group I rats which serve as control was given 
distilled water only, Group II rats were induced with single-dose CCl4 
(1.25 mL/kg in olive oil (1:1); IP) to cause hepatic damage, while Groups 
III, IV, and V, rats were intoxicated with CCl4 (1.25 mL/kg, in olive oil 
(1:1); IP) and after 24 h the rats in group III were given 50 mg/kg of 
silymarin daily for 7 days, while groups IV and V were given 50 and 100 
mg/kg of GA daily for one week respectively. On the 8thday, blood 
samples were collected from overnight fasted rats via decapitation and 
the serum was separated for biochemical analysis, while the liver was 
excised for antioxidant and molecular studies. 

3. Biochemical analysis 

3.1. Determination of hepatic enzymes 

Alanine aminotransferase (ALT) and aspartate aminotransferase 
(AST) were determined using the method of Reitman and Frankel [18]. 
For the determination of ALT activity, the serum sample was added to 
the buffered solution containing DL-alanine and α-ketoglutarate (pH 
7.4) and incubated for 30 min at 37 ◦C. After incubation 1.0 mM, DNPH 
was added, followed by the addition of 0.4 M NaOH and absorbance 
read at 500 nm, while AST activity; the serum sample was added to the 
buffered solution containing L-aspartic and α-ketoglutarate (pH 7.4) and 
incubated for 1 h at room temperature. After incubation 1.0 mM, DNPH 
was added, followed by the addition of 0.4 M NaOH and absorbance 
read at 500 nm. 

ALP activity was determined using a Teco kit and method described 
by Kochmar and Moss, [19]. Precisely 0.5 mL of alkaline phosphatase 
substrate was placed into test tubes and equilibrated for 3 min at 37 ◦C. 
At the timed interval, 0.05 mL for each standard, control, and the sample 
was added to their respective test tubes, mix gently and incubate for 10 
min. at 37 ◦C. Alkaline phosphatase color developer (2.5 mL) was added 
to the respective test tubes and absorbance read at 590 nm 

Determination of GGT activity [20] the serum sample was added to a 
substrate solution containing glycylglycine, MgCl2, and γ-gluta-
myl-p-nitroanilide in 0.05 M Tris (free base) pH 8.2. The mixture was 
incubated at 37 ◦C for 1 min and absorbance read at 405 nm at 1 min 
interval for 5 min. The activity of GGT was calculated from the absor-
bance value using the formula. 

3.2. Determination of plasma proteins and bilirubin 

Albumin and Total protein were evaluated using standard Radox kit 
and described by Tietz [21], while Total bilirubin was determined using 
Radox kit and the method described by Jendrassik and Grof [22] 

3.3. Superoxide dismutase (SOD) activity 

The level of SOD activity was determined according to the method of 
Misra and Fridovich, [23]. The liver fraction was reacted with 
epinephrine solution and the rate of inhibition of adrenochrome solution 
from the autooxidation of epinephrine was measured spectrophoto-
metrically at 480 nm. 

3.4. Catalase activity 

Catalase activity in the liver was determined as previously described 
by Asru [24]. The liver fraction was added to 0.2 M H2O2 solution and 
samples of this mixture were withdrawn at various intervals into a 
dichromate/acetic acid buffered solution. The rate of decomposition of 
hydrogen peroxide was determined spectrophotometrically at 480 nm. Fig. 1. Structure of gallic acid.  
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3.5. Reduced glutathione 

The determination of reduced glutathione (GSH) level of tissue was 
based on the measurement of the absorbance of 2 nitro 5-thiobenzoic 
acid formed, at 412 nm [25], when Ellman’s reagent reacted with 
GSH. An aliquot of the liver fraction was deproteinized in 4% sulpho-
salicylic acid and centrifuged at 17,000 rpm for 15 min at 4 ◦C. The 
supernatant was reacted with Ellman’s reagent and the absorbance of 
the complex formed read at 412 nm. The amount of GSH in the liver 
fraction was determined from a standard GSH calibration curve. 

3.6. Determination of lipid peroxidation 

Lipid peroxidation was assessed in terms of malondialdehyde (MDA) 
formation in the rat liver and was performed as described previously by 
Beuge and Aust [26]. Precisely 1 mL of homogenate was added to 2 mL 
of TCA-TBA-HCL reagent followed by thorough mixing by swirling. The 
resulting solution was heated for 15 min in a boiling water bath. The 
flocculent precipitate, after cooling, was removed via centrifugation at 
10,000 revolutions for 10 min. The absorbance of the clear supernatant 
was taken at 535 nm against a reference blank. 

4. Molecular studies 

4.1. Gene expression by RT-PCR 

The gene expression by RT-PCR is described by placing the liver 
samples in RNA later inside the Eppendoff tube for RNA analysis. Three 
hours later, cells were collected and total RNA extracted using Trizol 
(Ambion, Austin, TX, USA), following the manufacturer’s instructions. 
RNA samples were quantified with the NanoDrop 2000 Spectropho-
tometer (Thermo Scientific, Wilmington, DE, USA), and 2 μg of RNA was 
reverse transcribed using oligo (dT) primers (Promega, Madison, WI, 
USA). Real-time quantitative PCR amplification and detection were 
performed on optical-grade 48-well plates in an Eco Real-Time PCR 
System (Illumina, CA, USA) with 20 ng of cDNA, the SYBR qPCR Master 
Mix (Kapa Biosystems, Inc., Wilmington, MA, USA), and specific primers 
at their annealing temperature (Table 1). To normalize mRNA expres-
sion, the expression of the housekeeping gene glyceraldehydes3- 
phosphate dehydrogenase (GAPDH) was measured for comparative 
reference. The mRNA relative quantitation was calculated using the 
ΔΔCT method 

5. Histological analysis 

Histological analysis was done according to the method described by 
Kumar et al. [27]. The liver samples were processed distinctly for his-
tological observation. The sections were cut and stained with hema-
toxylin and eosin and examined microscopically for histopathological 

changes. The histopathological slide was read by an expert in histology. 

6. Statistical analysis 

Data were expressed as the mean ± S.E.M using SPSS 26 software. 
Statistical significance was calculated by one-way analysis of variance 
by multiple comparisons. Differences between means were estimated by 
Duncan’s multiple range tests and a value of p < 0.05 was taken as 
statistically significant 

7. Results 

7.1. Hepatoprotective potential of gallic acid on hepatic enzymes in CCl4 
induced liver damage in Wistar rats 

The inhibitory effect of GA on serum hepatic enzymes in CCl4 
induced liver damage in Wistar rats are shown in Fig. 2. It was observed 
that rats injected with CCl4 intraperitoneally caused a significant in-
crease (p < 0.05) in ALT, AST, ALP and GGT activities by 80.00 %, 62.94 
%, 51.27 %, and 34.71 % respectively when compared with rats in group 
1. However, administration of GA (50 mg/kg body weight) to the rats for 
7 days after injecting rats with CCl4 protected the liver by 53.63 % for 
ALT, 64.92 % for AST, 9.6 % for ALP, and 35.59 % for GGT when 
compared to rats induced with CCl4 only (Group II). Similarly, treatment 
of the rats with 100 mg/kg of GA for 7 days after the administration of 
CCl4 protected the liver from damage with ALT, AST, ALP, and GGT 
having percentage protection of 55.85 %, 62.32 %, 31.03 %, and 38.61 
% respectively. Also, treatment of group III rats with standard drug, 
silymarin (50 mg/kg) for 7 days protected the liver from damage with 
ALT, AST, ALP, and GGT having percentage protection of 60.1 %, 59.0 
%, 37.19 %, and 41.8 % respectively when compared to group II rats. 

7.2. Hepatoprotective potential of gallic acid on albumin, bilirubin and 
total protein concentration in CCl4 induced liver damage in Wistar rats 

The hepatoprotective effect of gallic acid on some biomolecules in 
CCl4 induced liver damage in Wistar rats is shown in Table 2. Results 
show that there was a significant increase in albumin concentration in 
rats intoxicated with CCl4 when compared to control rats. However 
treatment with GA at a dose of 100 mg/kg significantly reduces albumin 
concentration when compared to group II, but at a lower dose of GA (50 
mg/kg), there was a significant increase in albumin concentration when 
compared to group II rats. Also, there was a non-significant increase in 
total protein concentration in rats intoxicated with CCl4 when compared 
to control, but treatment with GA at doses of 50 and 100 mg/kg body 
weight significantly increases total protein concentration in a dose- 
dependent manner when compared to group II rats. 

Consequently, it was observed that gallic acid at both doses (50 and 
100 mg/kg respectively) significantly reduce the increased concentra-
tion of bilirubin caused by CCl4 insult. There was also a significant rise in 
total protein and albumin concentrations in rats administered with 
silymarin (50 mg/kg) and a significant decrease in serum bilirubin 
concentration. 

7.3. Inhibitory cause of gallic acid on malondialdehyde levels in CCl4 
induced hepatotoxicity in rats 

The inhibitory cause of gallic acid on liver malondialdehyde levels as 
a marker of lipid peroxidation in CCl4 induced liver damage is shown in 
Table 3. The result shows that there was a significant increase in 
malondialdehyde (MDA) levels in rats given CCl4 when compared to the 
control. However, treatment with 100 mg/kg of gallic acid significantly 
reduce MDA levels compared to rats induced with CCl4 only, but showed 
a non-significant difference in rats administered the lower dose of gallic 
acid. Similarly, treatment of group III rats with the standard hep-
atoprotective drug, silymarin, caused a significant reduction in the MDA 

Table 1 
Primer sequences the genes used for real-time RT-PCR.  

Gene Primer Sequence 

IL-1β primers Forward 5’-CCTTCCAGGATGAGGACATGA 3’ 
Reverse 5’-TGAGTCACAGAGGATGGGCTC-3’ 

IL-6 primers 
Forward 5’-GAGGATACCACTCCCAACAGACC -3’ 
Reverse 5’-AAGTGCATCATCGTTGTTCATACA-3’ 

COX-2 primers 
Forward 5’-CAGACAACATAAACTGCGCCTT-3’ 
Reverse 5’-GATACACCTCTCCACCAATGACC-3’ 

TNF α primers Forward 5’-TCAGCCGATTTGCTATCTCATA-3’ 
Reverse 5’-AGTACTTGGGCAGATTGACCTC-3’ 

CAT 
Forward 5’-GAGGCAGTGTACTGCAAGTTCC-3’ 
Reverse 5’-GGGACAGTTCACAGGTATCTGC-3’ 

SOD 
Forward 5-’GCAGAAGGCAAGCGGTGAAC-3’ 5’- 
Reverse TAGCAGGACAGCAGATGAGT-3’ 

GAPDH 
Forward 5’-CCCATCACCATCTTCCAGGAGC-3’ 
Reserve 5’-CCAGTGAGCTTCCCGTTCAGC-3’  
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level compared to group II rats (CCl4 only). 

7.4. The stimulating effect of gallic acid on antioxidant status in CCl4 
induced liver damage in Wistar rats 

The effect of gallic acid on antioxidant status in CCl4 induced liver 
damage in Wistar rats is shown in Table 4. Findings from this study 

showed that there was a significant decrease in superoxide dismutase 
(0.67 U/mg protein) and catalase (0.45 μmolH2O2 consumed/min/mg 
prot) activities in rats given CCl4 only when compared to the control. 
Treatment of oxidatively stressed rats with gallic acid significantly in-
crease SOD (1.05 U/mg protein) and CAT (0.75 μmolH2O2 consumed/ 
min/mg prot)) activities in a dose-dependent manner. It was also 
observed that rats intoxicated with CCl4 resulted in the depletion of GSH 

Fig. 2. Hepatoprotective potential of gallic acid on hepatic enzymes in CCl4 induced liver damage in Wistar rats. Data are represented as mean ± SEM, n = 7. * The 
mean is significant (P < 0.05) in comparison to the control; **The mean is significant (P < 0.05) in comparison to CCl4. 

Table 2 
Hepatoprotective potential of gallic acid on albumin, bilirubin and total protein 
concentration in CCl4 induced liver damage in Wistar rats.  

Groups/Treatment Total Prot.(g/dl) Bilirubin(mg/dl) Albumin(g/dl) 

Group I 
2.31 ± 0.05a 0.52 ± 0.04a 0.44 ± 0.08a 

Control 
Group II 

2.45 ± 0.13a 0.74 ± 0.02b 1.15 ± 0.21b 
CCl4 only 
Group III 3.98 ± 0.19b 0.58 ± 0.06c 0.75 ± 0.07c 
CCl4+Sil(50 mg/kg) 
Group IV 2.33 ± 0.29a 0.66 ± 0.06c 1.33 ± 0.54c 
CCl4+GA(50 mg/kg) 
Group V 

2.84 ± 0.17a 0.51 ± 0.12c 0.90 ± 0.15c 
CCl4+GA(100 mg/kg) 

Data are represented as mean ± SEM, n = 7. Values with different alphabets are 
statistically significant at p < 0.05. 

Table 3 
Inhibitory effect of gallic acid on malondialdehyde (MDA) levels in CCl4 induced 
hepatotoxicity in rats.  

Groups/Treatment MDA(nmol/g tissue) X 10− 3 

Group I 
Control 

1.81 ± 0.01 

Group II 
CCl4 only 

3.71 ± 0.11a 

Group III 
CCl4 + Sily(50 mg/kg) 

1.15 ± 0.02b 

Group IV 
CCl4 + GA (50 mg/kg) 

3.16 ± 0.84a 

Group V 
CCl4 + GA (100 mg/kg) 

2.58 ± 0.05b 

Values are Mean ± SEM, n = 7 rats in each group. Values with different al-
phabets are statistically significant at p < 0.05. 
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compared to rats in the control group (p < 0.05; Table 4). Interestingly, a 
significant increase in GSH content was observed after post-treatment 
with gallic acid in a dose-dependent manner for 7 days. Similarly, sily-
marin caused a significant improvement in the oxidative status of the 
rats with values of 1.13 U/mg protein for SOD, 0.79 μmolH2O2 
consumed/min/mg prot for CAT, and 5.64 μmol/g protein for GSH when 
compared to rats induced with CCl4 only. These data reveal that gallic 
acid alleviated liver oxidative injuries. 

7.5. Stimulating effect of gallic acid on antioxidant (SOD and CAT) gene 
expression 

The stimulating effect of gallic acid on antioxidant gene expression 
was evaluated in Fig. 3. The result shows that rats induced with CCl4 
caused a down-regulation of the antioxidant gene compared to the 
control rats, but administration of gallic acid at a dose of 50 and 100 mg/ 
kg up-regulated SOD and CAT gene. It was also observed that silymarin 
(50 mg/kg) significantly increase the SOD and CAT gene expression. 

7.6. Inhibitory cause of gallic acid on some pro-inflammatory markers 

The inhibitory cause of GA on some pro-inflammatory markers; 
tumor necrosis factor (TNF-α), cyclooxygenase 2(COX-2), interleukin 1 
beta, and 6 (IL-1β, and IL-6) were evaluated as shown in Fig. 4. The 
expression levels of the pro-inflammatory markers in rats intoxicated 
with CCl4 were remarkably increased compared to the control group (p 

< 0.05), however, treatment with gallic acid at the lower and higher 
doses was able to down-regulate the pro-inflammatory markers when 
compared to the CCl4 intoxicated group only. In the charts below, gallic 
acid reduces the fold increase of the pro-inflammatory cytokines; COX-2, 
IL1 β, IL-6, and TNF-α. It was observed that the 100 mg/kg dose is more 
effective in reducing the expression of cytokines. Furthermore, silymarin 
significantly decreases COX-2, IL1 β, IL-6, and TNF-α expression 
compared to rats induced with CCl4 only. 

7.7. Histological results 

It was observed from the histological results that rats induced with 
CCl4 only causes large intracytoplasmic fat vacuoles (macrovesicular 
steatosis), vascular congestion, heavy periportal inflammatory in-
filtrates in the central vein, but treatment with silymarin and gallic acid 
protected the damaged liver. It was examined that the higher GA dose of 
100 mg/kg showed remarkable liver regeneration with improved fea-
tures like normal hepatocytes, mild portal vascular Congestion, and 
kupffer cell activation (Figure 5). 

8. Discussion 

Gallic acid (GA) is a naturally occurring phenolic compound with 
known antioxidant activities [28]. The current study showed that gallic 
acid possesses antioxidant, hepatoprotective, and anti-inflammatory 
effects as supported by the increased antioxidant enzyme activities, 
decreased plasma hepatic enzyme markers, and pro-inflammatory 
markers expression induced by carbon tetrachloride. Carbon tetrachlo-
ride (CCl4), a known model for causing liver injury, is enzymatically 
transformed by hepatic cytochrome P450 (CYP2E1) to produce tri-
chloromethyl free radicals which are the toxic metabolite [29]. Tri-
chloromethyl free radical initiates lipid peroxidation of the membrane of 
the endoplasmic reticulum and causes oxidative damage. Also, there are 
alterations of transport function and membrane permeability in the 
damaged liver, which results in leak enzymes and other vital molecules 
from the cells into the bloodstream. Therefore, the excessive concen-
tration of hepatic enzymes into the bloodstream indicates acute liver 
damage due to CCl4 intoxication [30]. 

In this study, a single dose of carbon tetrachloride administered to 
rats caused significant elevations of AST, ALT, ALP, and GGT activities 
when compared to the control group. Our results correlated with a 
previous report [31]. Conversely, treatment with GA at both the lower 
and higher doses attenuated the increased serum enzymes activities in 
CCl4-induced hepatic damage in Wistar rats (Fig. 2), which is in agree-
ment with the report from other authors that “gallic acid decreased 

Table 4 
Inhibitory effect of gallic acid on superoxide dismutase and catalase activities in 
CCl4 induced hepatotoxicity in rats.  

Groups/ 
Treatment 

SOD (Units/ 
mg prot.) 

CAT(μmolH2O2 consumed/ 
min/mg prot.) 

GSH (μmol/g 
prot.) 

Group I 2.00 ± 0.001 0.92 ± 0.05 6.42 ± 0.21 
Control 
Group II 0.67 ± 0.001a 0.45 ± 0.01a 2.81 ± 0.14a 
CCl4 only 
Group III 

1.13 ± 0.020b 0.79 ± 0.01b 5.64 ± 0.11b CCl4+Sil(50 mg/ 
kg) 

Group IV 
1.05 ± 0.070b 0.75 ± 0.05b 3.75 ± 0.35 CCl4+GA(50 

mg/kg) 
Group V 

4.50 ± 0.700b 0.64 ± 0.01b 5.11 ± 0.15b CCl4+GA (100 
mg/kg) 

Values are Mean ± SEM, n = 7 rats in each group. p < 0.05, a as compared with 
the normal control group; b as compared with the CCl4 only (group II). 

Fig. 3. Inhibitory effect of gallic acid on SOD and CAT gene expressions determined by qPCR in CCl4 induced liver damage. Data are expresses as mean ± SEM (n =
7). * The mean is significant (P < 0.05) in comparison to the control; **The mean is significant (P < 0.05) in comparison to CCl4. 
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plasma AST and ALT activities that had been raised by acute hepatic 
damage” [32]. Wang et al. [33] observed that GA (15 mg/kg) reduced 
ALT, AST, and GGT when compared to CCl4-injured group. Adminis-
tration of a known flavonoid, rutin at doses 50 and 70 mg/kg in the 
treatment of hepatotoxic CCl4-induced rat model showed similar results, 
with a significant reduction in the activities of serum enzymes ALT, AST 
and GGT [34]. The hepatoprotective potential of GA could have pre-
vented the leaked intracellular enzymes by stabilizing the membrane 
and improving the antioxidant status. Furthermore, GA being an anti-
oxidant may have mopped up free radicals produced in lipid peroxida-
tion stimulated by CCl4 in vivo, in the process inhibiting the chain of 
reactions. It has also been reported that gallic acid reversibly inhibited 
CYP3A activity in human hepatic microsomes in vitro [35]. 

To further support our results that CCl4 caused injury to the liver, 
serum protein, and bilirubin were accessed (Table 2). It was observed 
that there was a significant increase in albumin concentration in rats 
intoxicated with CCl4 when compared to group I rats. However treat-
ment with GA at a dose of 100 mg/kg significantly reduces albumin 
concentration when compared to group II, but at a lower dose of 50 mg/ 
kg of GA there was a significant increase in albumin concentration when 
compared to group II rats. This was in agreement with Perazzoli et al. 
that plasma albumin level decreases after CCl4 intoxication and the ef-
fect recovered after GA and Dodecyl gallate treatments [36]. Also, there 
was a non-significant increase in total protein concentration in rats 

intoxicated with CCl4 when compared to the control. Treatment with GA 
at doses of 50 and 100 mg/kg body weight significantly increase total 
protein concentration in a dose-dependent manner when compared to 
group II rats. 

Consequently, it was observed that gallic acid at both doses (50 and 
100 mg/kg respectively) significantly reduce the increased concentra-
tion of bilirubin caused by CCl4 insult. There was also a significant in-
crease in total protein and albumin concentrations and a significant 
decrease in serum bilirubin concentration in rats administered silymarin 
(50 mg/kg) when compared to group II. Marshall and Bangert reported 
that “plasma proteins are synthesized in the liver and its concentration 
in the plasma is in part a reflection of the functional capacity of the liver 
and its concentration tends to decrease in chronic liver diseases but is 
usually normal in the early stages of acute hepatitis owing to its long 
half-life” [37]. In liver diseases, bilirubin leaks out from either hepato-
cytes or the biliary system into the bloodstream when the usual route of 
excretion is obstructed (cholestasis). 

To evaluate the oxidative stress parameters in CCl4 induced liver 
damage. Rats induced with CCl4 triggered a remarkable increase (p <
0.05) in the MDA levels caused by oxidative stress. This is in agreement 
with the research work of Ojeaburu and Oriakhi [38]. Szymonik et al. 
reported that “CCl4 metabolites react with polyunsaturated fatty acids to 
form covalent adducts with lipids and proteins that trigger the chain 
reaction of lipid peroxidation and the destruction of cell membranes 

Fig. 4. Effects of gallic acid on COX-2, IL-1, IL 6, and TNF-α expressions determined by qPCR in CCl4 induced liver damage. Data are expressed as Means ± SEM (n =
5)”. * The mean is significant (P < 0.05) in comparison to the control; **The mean is significant (P < 0.05) in comparison to CCl4. 
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with consequent hepatic damage” [39]. MDA is commonly used as a 
biomarker of lipid peroxidation. The elevated level of MDA in the CCl4 
treated group (50 and 100 mg/kg of GA) was significantly (p < 0.05) 
decreased in comparison to the control group (Table 3). Similarly, there 
were significant decrease in the SOD, CAT activities, and GSH level due 
to hepatic injury caused by CCl4.This could be linked to the exhaustion 
of the antioxidant enzymes as a result of oxidative stress caused by CCl4 
[39]. However, treatment with lower and higher doses of gallic acid 
significantly (p < 0.05) increase SOD and CAT activities in rats induced 
with CCl4. Also, a significant increase in GSH content was observed after 
post-treatment with gallic acid in a dose-dependent manner for 7 days 
(Table 4). 

At the molecular levels, rats induced with CCl4 caused down regu-
lation of SOD and CAT genes but treatment with gallic acid and sily-
marin up-regulated the antioxidant gene. Antioxidants mop up reactive 
oxygen species induced cellular damage thereby protecting the cells 
from injury [40]. In this study treatment with GA improved the anti-
oxidant status of the oxidatively stressed rats. Our previous research 
suggested that “antioxidants exert their action in vivo by inhibiting the 
generation of reactive oxygen species by suppressing the CytP450 bio-
activation of chemicals and drugs to reactive metabolites” [41]. Also, 
Aruoma and Kamalakkannan et al. reported that “antioxidants also carry 
out their mechanism of action by directly scavenging free radicals, a 
process known as mopping up, by up-regulating the expression of the 
genes coding for SOD, CAT, glutathione peroxidase and glutathione 
reductase” [42,43]. This could be realized by stimulating “nuclear 
transcription factor erythroid-derived 2-like” causing the trans-
activation of antioxidant enzymes genes [44]. Gallic acid may cova-
lently bind the sulfhydryl groups on Keap 1, causing the activation of 
Nrf2 [45], in the process, stimulates the antioxidant response elements 
(AREs) associated with NRF2 [46]. Therefore, the use of compounds 
able to activate NRF2-KEAP1 pathway and induce genes involved in 

antioxidant defense appears to be a possible strategy in liver diseases 
[47]. 

Previous studies have also shown that green tea polyphenols such as 
(-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate 
(ECG) are known NRF2 activators showing potent induction of ARE- 
mediated luciferase activity [48]. EGCG potentiates cellular defense 
capacity against chemical carcinogens, UV, and oxidative stress via 
NRF2-mediated induction of genes coding for antioxidants, modulators 
of inflammation, cell growth, apoptosis, cell adhesion, etc. [49]. 

Acute hepatic injury by carbon tetrachloride is a well-established 
animal model. In acute liver disease the liver is inflamed and the 
inflamed cells of the liver releases cytokines and these cytokines 
modulate gene expression in hepatocytes. The present study revealed 
the increased expression of the pro-inflammatory cytokines; COX 2, IL- 
1ß, IL-6, and TNF-α after inducing liver damage with CCl4. Conversely, 
treatment with gallic acid at lower and higher doses significantly (p <
0.05) reduces the increased expression of these cytokines. These findings 
corroborated previous report that “gallic acid suppresses hepatoxicity by 
down-regulating both mRNA and protein levels of inflammatory cyto-
kines including, cyclooxygenase-2, interleukin-1, IL-6, and TNF-α” [50]. 
Upregulation of the pro-inflammatory cytokines in CCl4 induced liver 
damage may have activated the NF-κB signally pathway, which plays a 
key role in the up-regulation of cytokines [51–53]. Administration of 
gallic acid for 7 days suppresses the activation of the mRNA expression 
of the pro-inflammatory cytokines in the rats administered CCl4 (groups 
IV and V). Therefore gallic acid attenuated CCl4-intoxicated hepatic 
damage in rats, probably by stimulating Nrf2-mediated antioxidant 
enzymes and downregulating the inflammatory mediators through the 
NF-κB inhibition pathway. Histological analysis of rats induced with 
CCl4 revealed centrilobular necrosis, vascular congestion, and hepatic 
necrosis, but the groups treated with silymarin, and gallic acid had liver 
returned to normalcy. The protective effect of gallic acid in the 

Fig. 5. Photomicrograph of liver sections I- 
Control, rats given water only, A: normal he-
patocytes, B: sinusoids, C: central vein and D: 
portal vein, II- rat given CCl4 only showing A: 
large intracytoplasmic fat vacuoles (macro-
vesicular Steatosis), B: vascular congestion and 
C: heavy periportal inflammatory infiltrates, 
III-rats given CCl4+Sylimarin showing A: 
normal hepatocytes, B: mild portal congestion 
and C: mild periportal inflammatory infiltrates, 
IV-rat given CCl4+ 50 mg/kg gallic acid, 
showing A: normal hepatocytes, B: portal 
vascular Congestion and C: kupffer cell activa-
tion V-rat given CCl4+100 mg gallic acid 
showing A: normal hepatocytes, B: mild portal 
vascular Congestion and C: kupffer cell activa-
tion (H&E X100).   
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compromised liver may be as a result of its antioxidant properties 
(Figure 5). 

9. Conclusion 

In summary, it is important to note that the hepatoprotective effect of 
GA is arbitrated through the scavenging of free radicals, inhibition of 
malondialdehyde levels, activation of antioxidant enzymes, and down- 
regulation of pro-inflammatory markers. 
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