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Abstract: The present study deals with the assessment of pollution caused by a large industrial
facility using multivariate statistical methods. The primary goal is to classify specific pollution
sources and to apportion their involvement in the formation of the total concentration of the chemical
parameters being monitored. This aim is accomplished by intelligent data analysis based on cluster
analysis, principal component analysis and principal component regression analysis. Five latent
factors are found to explain over 80% of the total variance of the system being conditionally named
“organic”, “non-ferrous smelter”, “acidic”, “secondary anthropogenic contribution” and “natural”
factor. The apportionment models designate the contribution of the identified sources quantitatively
and help in the interpretation of risk assessment and management actions. Since the study takes
into account pollution uptake from soil to a cabbage plant, the data interpretation could help in
introducing biomonitoring aspects of the assessment. The chemometric expertise helps in revealing
hidden relationships between the objects and the variables involved to achieve a better understanding
of specific pollution events in the soil of a severely industrially impacted region.

Keywords: trace metals; transfer factor; multivariate statistics; pollution source identification;
biomonitoring

1. Introduction

The industrial impact of non-ferrous metals mining and smelting activities on heavy metal
pollution and its long-term effect on the environment and population is the object of a significant
number of studies [1–12]. These investigations show that the contamination emitted to the
environment affects not only the neighboring locations but a much larger region that is dependent
on geographical specification (landscape, height above the sea level, underground waters, river
catchments), transportation net, climate indicators (wind direction, temperature, humidity) as well
as the size, chemical and mineralogical composition emitted by the smelters’ particulate matter. The
seriousness of the problem is supported by evidence for high concentrations of heavy and toxic metals
in soils in the areas around historic smelters even if they have not been operational for centuries [12].
Because heavy metals are also a natural presence, any assessment of their industrial impact should be
keep in mind in the background of geology as well [2,4,12].

The uptake of contaminants in the plant species via roots or by direct atmospheric deposition onto
the plant surfaces are two of the major exposure routes for humans, along with ingestion/inhalation of
the aerosols and dust re-suspension. [4,6–9,11]. Studies indicate that the uptake and bioaccumulation
of metals depend not only on the plant type but also on many other factors such as soil composition
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and physicochemical properties, climate, anthropogenic sources like road traffic, and transport of
long-distance aerosols.

An important issue is source tracing in the smelter-affected environmental systems to apportion
the pollution impact of the smelter from other sources. It helps in decision making and risk
management over the whole region of interest. One of the methods for tracing the origin and
fate of contaminants near non-ferrous metal smelters is the Isotope Ratio Analysis, which is well
cited and discussed in [12]. The most used Pb isotope systems are referenced in the following
studies [2,11,13–15]. However, this approach has some limitations [12,15] that require additional
studies of local mineralogical composition.

Chemometric methods for data mining and modeling, such as principal components analysis
(PCA) or principal components regression (PCR) are often used for the identification of factors
influencing the soil pollution and the bioavailability of heavy metals [9–11,16]. Some useful
chemometric methods for source apportionment include [11,17,18].

The present research studied the soil and cabbage leaves heavy metal pollution in the area around
a large-scale non-ferrous metal smelter (the largest Bulgarian producer of lead and zinc, the KCM
AD). The smelter has been in operation since 1961. Although significant technological improvements
were introduced in the early 1990s, in order to reduce smelter emissions, numerous studies around
2004 indicate that the local soil still possesses high accumulated heavy metals pollution (especially
Cd, Pb, Zn) due to the long-term operation of the smelter, which is reflected in human health and life
quality [1,2,19,20]. Based on the Pb isotopic analysis, the authors of [2] concluded that the primary
source of atmospheric lead deposition is the ore material used in the smelter and up to 12% could
originate from other sources such as petrol lead. To assess the alternations throughout the years
and the impact of the smelter, the present research aims to determine the soil and cabbage leaves
heavy metal pollution in the area around the smelter using chemometrics. The soil and cabbage
(Brassica oleracea) samples were taken over three consecutive years from several places in different
geographical directions in the cross point around the smelter. Soil structure and physicochemical
parameters (soil capacity, organic and total organic carbon, pH, CEC and others), soil nutritional
components (Mg, P, K, N), soil and leaves pollution by Hg, Cd, Zn, Cu, Pb were monitored. The
chemometric expertise applied had the following goals: 1) to find patterns of similarity between
the soil parameters, nutritional components, soil, and leaves contamination by heavy metals, as
well as between locations using clustering approaches; 2) to identify the potential sources of heavy
metals applying principal component analysis and the source apportioning model. Thus, it becomes
possible to quantify the actual contribution of the non-ferrous metal smelter to the overall pollution of
the studied area since the apportionment procedure allows us to identify other potential sources of
pollution, keeping in mind not only the industrial activity but also agricultural impacts, traffic routes,
high population density, long-distance transfer, etc.

The specific novelty in the present study is the introduction of apportionment procedure (being
typical for air pollution receptor modeling) that separates the overall soil pollution into ‘fractions”
originating from different anthropogenic (or natural) sources in the vicinity of the receptor region.

2. Input Data Set

2.1. Objects

The non-ferrous metal smelter (elevation 179 m) is located at the B south-western part of the
Thracian Plain nearby the road connecting the second largest town in Bulgaria, Plovdiv (180 m), and a
smaller town called Asenovgrad (231 m) (Figure 1).
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Figure 1. Sampling locations.

In the vicinity of the smelter is the agricultural land of the village of Kuklen, which is supposed to
be highly contaminated. This location is noted as KAGRI. For comparison, the other samples (location
K) were taken from the soil in the village Kuklen (287 m), situated about 4 km south of the smelter, on
the outskirts of the northern slopes of the Rhodope Mountains and upwind of the smelter. The next
location, KRM, is in the plain (Krumovo, 180 m) in the north direction from the smelter. To study the
impact of the transport nearby the smelter, as well as the effect of the other human activities the other
two locations that were chosen (Plovdiv and Asenovgrad) lay on the road and were the same distance
(7 km) from the smelter but in opposite directions: NW and SE. The agriculture land in the vicinity of
Plovdiv is marked as PB. The land from Asenovgrad is noted as AS. Spot samples from soil and leaves
were taken from the urban center of Plovdiv (location PBUR—only one sample).

The samples were collected over a period of three consecutive years (2010–2012), and they are
marked, for example, as KAGRI_10. The first is the location, and the number shows the year of
sampling. The total number of objects is 16. The input data set is presented as Table S1 in the
Supplementary part. The basic stastistics table is also given there as Table S2.

2.2. Cheimical Variables

Topsoil samples and samples of cabbage were collected in the period of September
2010–September 2012. The 12 soil parameters, as well as the content of six heavy metals in the
soil and cabbage leaves, are monitored. All they form 22 variables in the input data set, conditionally
combined into four groups, shown in Table 1.
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Table 1. The conditional groups and variables belonging to each of them.

Groups of Variables Variables Notation, e.g.,

soil structural (Hh, CEC, TEB) and
physicochemical parameters

hydraulic activity;
soil capacity;

base exchange capacity; organic
carbon;

total organic carbon;
pH, measured in KCl extract;

pH, measured in water extract;
saturation

Hh
CEC
TEB

C_org
TOC

pH_KCl
pH_w

V

soil nutritional components Mg, P, K, N Mg_bio;
N

soil pollution by heavy metals Hg, Cd, Zn, Cu, Pb Hg_soil

cabbage leaves pollution by heavy metals Hg, Cd, Zn, Cu, Pb Hg_leavs

3. Results and Discussion

The original data (including calculated transfer factors) are available on request. The transfer
factor was not included in the chemometric expertise since it was calculated from the concentration
values of the chemical variables in the soil and the plant leaves and, in this way, was correlated to
these variables. It is used for some explanation of the uptake.

3.1. Cluster Analysis

Hierarchical and non-hierarchical cluster analyses treated a data matrix consisting of 16 objects
and 22 variables. Both clustering approaches give four significant clusters for the variables and
objectives with the same members of each identified cluster. This proves that the separation into
four groups of similarity is stable and reliable. The clustering of the 22 variables will be shown as an
example for hierarchical clustering, and grouping of the objects (locations and year) will be presented
as an example for the non-hierarchical mode.

3.1.1. Clustering of the Variables

In Figure 2 the graphical output of the hierarchical clustering mode (dendrogram) is disclosed.
It might be concluded that four significant factors regulate the data structure. Depending on the

prevailing type of variables, the included elements could be conditionally named as follows: structural
and soil pollution factor (C1), organic factor (C2), cabbage leaves Pb, Cu, Hg accumulation factor (C3),
and soil acidity factor (C4).

The soil pollution (C1) with heavy metals is linked to the soil structural characteristics, which is
consistent with the results from the Pearson’s correlation analysis [6]. The variable “leaves” for Zn and
Cd belong to the same cluster, showing that these metals are accumulated in the cabbage leaves by the
high level of correlation. Copper “soil” and “leaves” variables are also linked together but, in another
cluster, (C3). For Hg and Pb one finds the separation between these two types of variables. It should
be noted that the same relationship between Cd, Zn, and Cu content in 44 soils and the majority of the
283 vegetables was established in [9]. The trend in the calculated soil-to-plant transfer factor decreases
in the order Zn > Cd > Cu > Hg > Pb, being much higher for the first two metals than for the Hg and
Pb, and middle for Cu. Such a ratio between accumulation factors for Zn and Cd to that for Hg and Pb
is established in Refs. [7,11]. The separation of “soil” and “leaves” variables for Hg and Pb is logical,
taking into account their low transfer factor and reported conclusions, that the most important source
for vegetable pollution with these metals is the airborne metal-containing dust from the smelter and
distant aerosols [1,6,7,9,11,21].
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The nutritional components (Figure 2) are not parted as a formation in a single cluster but are
dispersed in along different groups. The incorporation of these components in the input data set
allows us to reveal a specific pattern of similarity: the leaves pollution with a given heavy metal is
connected to the given soil nutritional component. The accumulation of Zn and Cd (cluster 1) is linked
to the phosphorus nutrient P_bio, while leaves pollution with Cu, Hg and Pb (cluster 3) are related to
nutrient K_bio. The transfer pathway for Zn and Cd from soil to edible tissues of vegetables is through
root uptake, and the phosphorus has an essential significance in the early period of plant development
by the root growth. The dominant pathway for entering of Pb and Hg in the vegetables is the uptake of
deposited particulate matter through the above-ground plant tissues. Therefore, the leaves pollution
depends on the K nutrient, which is vital for photosynthesis and is involved in osmoregulation.

To indicate the reason for the data structure observed, the averages of z-standardized values
of the variables for each cluster and each sampling location are presented in Figure 3. It should
be noted that this presentation is obtained by K-means non-hierarchical clustering based on the
preliminary hypothesis for the existence of 4 clusters of variables (hierarchical method). Indeed,
the non-hierarchical mode for the preselected four groups of variables gave the same results as the
hierarchical approach.

One could easily find the relationship between the different factors and the sampling locations
and conditions. For instance, cluster 1 (structural and soil pollution factor) shows a positive deviation
in respect to the limited zero value for all samples in the vicinity of the non-ferrous metal smelter
(KAGRI) and from the town Asenovgard (AS) for the period studied. It should be noted that the soil in
the Asenovgrad area is clay-rich and naturally enriched with Pb and probably other heavy metals [2].
Our data for metal contents in the soil prove this because in many of the AS soil samples the specific
metal content (Zn, Cu, Pb, Hg) is higher than or equal to that around the smelter. However, the highest
deviations for this cluster are registered for locations such as KAGRI, showing the industrial impact
of the lead-zinc smelter. The locations K and KRM show negative differences from the conditional
zero value.
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The trend in the deviations of soil carbon and N nutrient (C2) is opposite to that of the soil
pollution; logically, taking into account their origin and their chemical and biological specificity.

The trend in the z-standardized values for cabbage leaves Pb, Cu, Hg accumulation factor (C3) on
first glance is incomprehensible, because in almost all cases the deviations from the average values are
opposite to that of cluster 1. However, it can be explained with the low transfer soil-to-leaves factor
for Hg and Pb and their entrance pathway mentioned above. Other anthropogenic activities mainly
traffic, and roadside pollution affects the levels of leaves pollution. The evidence is the maximum
positive deviation established for the Plovdiv urban area and high standards for location Kuklen. As
has been shown in [2] the Cd, Zn, Cu, Pb contents in roadside soil beside position Kuklen were higher
than in the surface soil level (0–20) in period 2003–2004, as a result of ore transport from the mine to
the smelter.

The acidity factor (C4) is distributed quite homogeneously in the area studied because the acidity
of almost all the soil samples is the same, which is close to neutral.

3.1.2. Clustering of the Objects

The classification of the objects (performed by the non-hierarchical mode) from the sampling net
follows spatial patterns: one detects the grouping of the locations of Krumovo and agricultural land of
Plovdiv; agricultural land of Kuklen as subject to industrial pollution (KAGRI) but separated from the
property of the village Kuklen (K). The fourth cluster includes samples from the vicinity of the town
of Asenovgrad.

The clusters are as follows:

C1 (KRM_10, KRM_11, KRM_12, PB_10, PB_11, PB_12)
C2 (KAGRI_10, KAGRI_11, KAGRI_12, AS_10)
C3 (K_10, K_11, K_12, PBUR)
C4 (AS_11, AS_12)

It is important to determine the discriminant variables responsible for the object clustering. In
Figure 4 the mean values (z-standardized) of the measured variables included in each of the identified
clusters of location are presented.
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It is shown that for locations KRM and PB (C1) almost all variables are distributed uniformly
around the mean value. Specific features are the lowest level of soil pollution and the lowest level
of the organic factor. One and the same level of organic element is seen for the all the samples of
KAGRI-area in the vicinity of the smelter (C2), however the discriminating variable for this cluster
is the highest positive deviations for soil pollution, with almost all studied heavy metals: Zn, Cd,
Hg, Pb. Surprisingly, copper has the lowest negative deviation. The soils in cluster 3 (locations K
and PBUR) could be considered as “uncontaminated,” except at a high level of Cu. These locations
are distinguished by the highest levels of soil organic factor, which shows the importance of the
geographical area and the disposal of domestic waste. Particular structural soil characteristics allow
the separation of samples from location AS (C4). As mentioned above, in the vicinity of the town
of Asenovgrad the soils are more clay-rich than at the other sampling locations, and the ability of
soil to adsorb cations is greater. Besides, as reported in [2] the soils near Asenovgard have high
baseline geogenic concentration of Pb and are more polluted with Zn, Cd, and Pb than that in Kuklen.
Our chemometric analysis supports the above statements—the positive deviation for soil pollution
correlates with the highest variation in soil structural parameters.

It should be noted that Asenovgrad is located in the River Chaia valley originating from the
Rhodopa Mountain. The river catchment is fed by the underground waters from a metal-rich region
(with massive Pb-Zn ore deposits and Ag, Au, Cu mineralization). Highest averages for zinc and
lead for the period studied are registered for location AS. So, the soils nearby the river, as well as the
agricultural lands that are irrigated by the river by local wells are expected to be enriched with
heavy metals.

The chemometric approach reveals clearly that the accumulation of the heavy metals in
the cabbage leaves is related not so directly to the soil pollution but the dominating mode of
uptake—through the roots or the aerial part of the plant. The deviation of Zn and Cd “leaves”
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variables is highest for most polluted with these metals’ locations KAGRI and AS (C2 and C4) and is
lowest for “non polluted” by these metals location K, KRM, PB and PBUR (C1 and C3). The highest
positive deviation for Pb and Hg “leaves” is observed for locations KRM and PB (C1), proving the
role of the relief, wind direction and roadside pollution/traffic/for contamination of the cabbage with
these metals. The role of the P and K nutrients for accumulations of the heavy metals commented on
above can also be observed in Figure 4.

Particular attention ought to be paid to the deviations concerning the average value of the variable
Cu_soil. For all location clusters, they are opposed to that of other heavy metals “soil” variables,
indicating that the copper source in soil is different. Moreover, a particular pattern of similarity could
be observed between the organic factor and Cu_soil for all of the above mentioned clusters. The
highest positive deviation in the organic factor is connected with the highest positive deviation for
the Cu_soil (cluster 3), while the lowest deviations for the organic factor (clusters 1 and 2) correlate
to the lowest values for Cu_soil. This confirms the fact that Cu bonds strongly to the organic matter
(OM) [22]. Besides, the deviations in the variable Cu_leaves are changed in the same trend, except for
locations in cluster 4 (AS), where the level is higher than cluster 3 (K and PBUR). As discussed in [10]
the organic matter content (more correct the “active OM”) may enhance heavy metal availability to
the plants by increasing CEC in the soils, providing metal chelates. As we see, the highest level for all
soil structural characteristics (CEC, TEB, Hh) is observed for cluster 4, so it could be assumed that the
active OM for locations in this cluster is higher than passive OM (humus).

3.2. Principal Components Analysis

To identify the latent factors responsible for the data structure and the appropriate interpretation
of the pollution sources in the region of interest, principal components analysis (Varimax rotation
mode, normalized input data) was carried out. Since the primary goal is to interpret soil pollution
impacts, the variables chosen for the chemometric analysis, in this case, were 13 for all sampling
locations in consideration. Among the soil properties controlling the speciation and mobility of the
heavy metals, the pH and organic matter content are considered very important [9,10]. Based on
the results from clustering analysis (Figure 2) that suggest accumulation in the leaves is connected
with the nutritional components, the latter were also included in the PCA. For convenience, soil
structural parameters (Hh, CEC, and TEB) were omitted since they are not subjects strongly affected by
anthropogenic impacts. Metal concentrations in cabbage leaves were also eliminated as it was shown
that they strongly correlate to the pollution in soil.

In Table 2 the factor loadings for five principal components are presented. They explain nearly
90% of the total variance of the system. Factor loadings biplots are additionally presented as Figure S1
in the Supplementary part.

PC1 indicates statistically significant factor loadings for N, C_org and TOC (variance explanation
23.7%) and could be conditionally named the “organic” factor. It reflects the impact of the organic soil
content on the pollution events and transfer processes.

PC2 shows the significant positive correlation between Zn, Cd, Hg, and to a lesser extent Pb.
This is a convincing indication for the role of these elements in soil pollution by smelter operating
(explained variance 20.2%). Obviously, the non-ferrous metal smelter is the source for this type of
pollution in the region and, therefore, this latent factor could be conditionally named the “non-ferrous
smelter” factor.

PC3 relates the pH condition of the soil both in water and KCl extracts. Non-significant correlation
with Mg is observed. It explains 17.9% of the total variance and could be conditionally named the
“acidic” factor. The soil acidity is almost constant and therefore no specific correlation with the metal
pollution is found.

PC4 is of a more complex structure since it shows significant correlation between the soil nutrients
P and Mg and to lesser extent with Pb and Hg (explained variance 15.5%). A simple conditional name
could be “secondary anthropogenic contribution” factor, keeping in mind the role of fertilizers and
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pesticides, municipal wastes, local traffic pollution, distance aerosols and of course, sources related to
ore transport. The coal combustion used for power plants and residential heating are main sources of
anthropogenic Hg emissions in Bulgaria [23].

The last PC5 explains the other 12.1% of the total variance revealing a not very specific and
straight forward relation between copper soil content and potassium. It could be assumed that this
latent factor is responsible for the geogenic conditions (the Rhodope Mountain is a metal-rich ore of
various combination of Mo, W, Fe, Pb, Zn, Ag, Au, Cu mineralization with the industrial importance
of Pb-Zn ores) and burning processes (wood, forest fires, plant oils) in the region of interest. The
conditional name suggested for this factor is “natural” factor.

Table 2. Factor loadings for 13 variables.

Factor Loadings (Varimax normalized) (Marked loadings are >statistically significant)

Variable PC1 PC2 PC3 PC4 PC5

pH_KCl 0.217 0.009 0.919 0.182 0.169
pH_w 0.171 0.118 0.915 0.122 0.257
C_org 0.974 0.016 0.119 −0.036 0.020
TOC 0.974 0.016 0.119 −0.036 0.020

N 0.943 −0.106 0.159 0.069 −0.065
P_bio −0.055 0.275 0.107 0.852 0.036
K_bio −0.308 −0.046 0.274 −0.081 0.610

Mg_bio 0.078 −0.291 0.480 0.807 −0.005
Zn_soil −0.030 0.876 −0.040 0.118 0.357
Cd_soil −0.190 0.903 0.043 −0.150 −0.282
Pb_soil −0.069 0.442 −0.496 0.593 0.258
Cu_soil 0.173 −0.022 0.128 0.127 0.893
Hg_soil 0.202 0.812 0.085 0.416 −0.177

Expl. Var % 23.7 20.2 17.9 15.5 12.1

3.3. Source Apportionment

In the next step of the chemometric expertise a source apportioning procedure (Thurson and
Spengler APCS method [24]) was performed in order to assess the contribution of each identified
source to the total concentration of each parameter. The results are presented in Table 3.

Table 3. Source apportionment models.

Variable
Unidentified

Sources
(Intercept)

Organic
Source

Non-Ferrous
Smelter
Source

Acidic
Source

Second
Anthropogenic
Contribution

Source

Natural
Source R2

pH_KCl 4.7 8.6 - 78.6 4.3 3.8 0.84
pH_w 3.2 9.1 - 80.2 4.1 3.4 0.84
C_org 3.4 96.6 - - - - 0.87
TOC 3.2 96.8 - - - - 0.88

N 11.4 88.6 - - - - 0.92
P_bio 8.6 - 15.9 - 75.5 - 0.82
K_bio 10.4 12.8 - 9.1 - 67.7 0.81

Mg_bio 7.3 - - 10.6 82.1 - 0.82
Zn_soil 0.9 - 91.6 - - 7.5 0.92
Cd_soil 5.4 - 82.9 - 5.6 6.1 0.88
Pb_soil 3.8 - 21.1 3.2 61.7 10.2 0.89
Cu_soil 9.3 - - 3.3 3.1 84.3 0.93
Hg_soil 5.0 - 90.6 - 4.4 - 0.84
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Each row of the table indicates the regression model obtained for each parameter involved. The
model is of the type:

Y = a0 + ΣaiPCi

where Y is the total concentration of a certain chemical parameter; a0 is the intercept; ai is the regression
coefficient showing the contribution of each identified source to the total concentration Y; PCi is each
identified source (as absolute principal components score).

The contributions of each source are given in % for easier interpretation. In the last column of
the table the value of the multiple correlation coefficient R2 is given, which shows the percentage
of explanation of the total concentration by the model (model validity). The intercept is a measure
for the non-explained concentration of the identified sources (there are other sources in the region
contributing to the total concentration or pollution impact).

The results from the APCS model suggested that the airborne metal-containing dust from the
non-ferrous metal smelter operating leads to heavy pollution of Zn, Cd, and Hg in soils in the area
studied. The cinnabar (HgS) deposits are concentrated in two regional stripes in the Rhodopa Mountain,
one of which is the region where the ore source for the smelter is found [25].

As we see, however, the main source of Cu in the soils is natural, and this fact explains the
observed strange deviation in the Cu_soil variable in respect to the other heavy metals, commented on
in Figure 3. This is proved from the experimental data, showing the highest average Cu content in the
soils from the village of Kuklen and the lowest average value for the location of KAGRI-smelter area.
The natural source of Cu in the lead-zinc smelting areas in China is assessed in [6]. The natural source
contributes to the other heavy metals except Hg concentration. A logical reason is that the Rhodopa
Mountain is a metal ores-rich region with a highly developed mining industry. It is an area of the
most considerable deposition of non-ferrous metal ores on the Balkans and represents one of the most
significant manifestations of vein type Pb-Zn mineralization in the world. The underground waters,
the springs, and the Chaia River (flowing through the town of Assenovgrad) are directed downhill, so,
the soils as well as the agricultural lands that are irrigated from the river and wells are expected to be
enriched with heavy metals.

The agriculture activity, industrialization, and urbanization are main sources not only for P and
Mg but as the results show, for Pb pollution in the area studied. In the previous research on the
contamination near the smelters, based on the Pb isotopic analysis, the authors [2] concluded that
the primary source of atmospheric lead deposition in the grass in Kuklen and manure in Boyantsi
(near Asenovgrad) is the ore used in the smelter-(up to 88%). The rest, approximately 12%, could
originate from other sources such as petrol lead. Applying the APCS model for quantifying the impact
of the smelter on the lead pollution of soils, we can distinguish the sources affecting it: 21.1% from the
smelter, 61.7% from other sources (including industrial, traffic pollution, and ore transport, as well as
long distance aerosols), 10.2% from natural origin, and 3.2% related to acidity.

The contribution of the acidic source to the soil pollution of Pb and Cu could be explained by the
fact that soil leaching is dependent on soil pH, whereas the leaching of Cd and Zn in a greater extent is
irrespective of soil acidity [12]. The lowest Cu content is registered for AS_11, when soil pH is acidic
(4.25) while in all other years it is 6.35, and the Cu content is 45–47 times lower as compared to the
different sampling years.

3.4. Comparison of the Metal Levels of Pollution in the Soil in the Vicinity of the Nonferrous Smelter for the
Period 2000–2012

The soil pollution by toxic metals data from the beginning of the millennium [2] is compared in
Table 4 with the average values of metal concentrations in the soils, collected in the period 2010–2012.
Even though the smelter continues to be the primary source of Zn, Cd, Hg and to a lesser extent the Pb
pollution, a comparison to previous data shows a significant decrease of the emissions of Zn, Cd, and
Pb. Although our results do not relate the smelter production to copper pollution, it is readily seen
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that the copper content in the soil is significantly reduced. One of the possible reasons is the closure of
the mine in the village of Zvezdel and the exchange of the ore source with another one.

Table 4. Comparison of toxic metal pollution in the vicinity of the non-ferrous smelter for different
time periods.

Locations
Metal Concentrations in the Topsoils (0–20)

[mg kg−1] Ref.

Zn Cd Pb Cu Hg

K * 103.74 0.17 17.66 33.55 0.033 present
Kuklen 158 3 97 49 - [2]
KRM * 66.33 0.38 14.33 12.07 0.036 present

KAGRI * 384.60 2.22 19.69 8.00 0.106 present
Kuklen around smelter 5917 138 4892 666 - [2]

AS * 409.70 0.97 31.68 25.22 0.072 present
Boyntsi (14 km SE of Kuklen) 340 5 225 71 - [2]

PB * 330.40 0.81 14.73 30.76 0.043 present

* Average values of heavy metals concentrations in soils, collected for the period of three consecutive years for
sampling locations of the present study are given.

4. Materials and Methods

4.1. Sample Collection, Preparation and Chemical Analysis

Topsoil (0–20 cm) samples (each sampling location indicated in Part 2.1. Objects) together with the
samples of cabbage leaves (Brassica oleracea) growing on these soils were collected during the period
September of 2010–September 2012. The 12 soil parameters, as well as the content of six heavy metals
in the soil and cabbage leaves are monitored (see Table 1).

The soil pH was measured in a 1:5 suspension of soil in pure water and KCl suspensions
(ISO 10390:2005) [26]. Equivalent calcium carbonate (%) and total organic matter content (TOM %)
were determined according to ISO 10693:1995 and ISO 10694:1995, respectively [27,28].

The digestion of soil samples was performed by the adopted method of ISO 11466:1995 [29].
Three portions were weighed for each sample, and procedural blank was run during the procedure.
The aqua regia soluble content of all the analytes was measured by Inductively Coupled Plasma
Optical Emission Spectrometry (ICP-OES) (Perkin Elmer ICP-OES 6000, Waltham, MA, United States).
For accuracy checking, two certified reference material Stream Sediments, STSD-1 and STSD-3, were
digested in parallel. The obtained values for analytical recovery varied between 95% and 112%, which
was considered as satisfactory.

The aerial part of the cabbage leaves was gently washed with Milli-Q water for approximately
3 min to remove soil and dust particles adhered to the plants. After washing, cabbage samples
were air-dried at room temperature for 15 days and then thoroughly ground, milled, mixed, and
uninformed to obtain representative samples. Plant samples were digested with 65% HNO3 and 30%
H2O2 (USGS Test Method B-9001-95 [30]). The content of the elements was determined by ICP-OES
and by Electrothermal Atomic Absorption Spectroscopy (ETAAS, Perkin Elmer, Waltham, MA, United
States). The standard reference material ERM-CD 281 RYE GRASS was used to check the reliability
of the results. The measured concentrations were in excellent agreement with the certified values
(recoveries between 93% and 105%).

All reagents used were of analytical-reagent grade (p.a. Merck, Darmstadt, Germany). Milli-Q
water (Millipore, Bedford, MA, USA) was used throughout.
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4.2. Chemometric Methods

4.2.1. Cluster Analysis

Cluster analysis (CA) is a well documented chemometric approach (both as hierarchical and
non-hierarchical clustering) that reveals groups of similarity between a set of objects (samples)
described by a certain number of variables (parameters, indicators) [31]. The hierarchical cluster
analysis is a typical non-supervised pattern recognition technique that leads to spontaneous formation
of clusters based on several preliminary steps such as standardization of the raw input data by
a z-transform method (aiming elimination of the variable dimension on the process of grouping);
determination of the similarity (distances) between the objects, e.g., by squared Euclidean distance;
linkage of the objects into clusters, e.g., by Ward’s method of linkage; graphical output of the
clustering as a plot known as the hierarchical dendrogram and, finally, the determination of the
cluster significance, e.g., by the index of Sneath (1/3 or 2/3 Dlink/Dmax, where Dlink is a given
distance of similarity and Dmax is the maximal distance in the set analyzed). In this way both objects
or variables could be clustered and interpreted.

The non-hierarchical cluster analysis (very often a K-means approach is applied) is a supervised
pattern recognition method whose aim is to collect the objects into a preliminarily determined number
of clusters. The choice is usually the result of a specific hypothesis or expert opinion. According to the
classical definition, a K-means cluster analysis has the goal to divide the set of n objects into predefined
k number of clusters so that each object belongs to a group (cluster) with the nearest mean being
the prototype of a cluster. After several iterations, each member of the set could be attributed to the
preliminarily defined clusters. Again, Euclidean distance is used as a metric. There are some limitations
to the application of K-means cluster analysis, especially when the preliminarily determined number
of clusters is not well defined (by other methods or by scientific assumptions).

4.2.2. Principal Components Analysis

Principal components analysis (PCA) is a typical projection method. It enables the reduction of the
dimensionality of the space of the variables in the direction of the highest variance of the system, new
variables being linear combinations of the previous variables, replacing the old coordinates of the factor
space. The new coordinates are called latent factors or principal components. The interpretation of the
new factors is the primary goal since they deliver useful information about hidden relationships within
the data set. The results are indicated by two outputs, factor scores giving the new coordinates of the
factor space with the location of the objects and factor loadings informing on the relationship between
the variables. Only statistically significant loadings (>0.70) are essential for the modeling procedure.

The new principal components (latent factors) explain a substantial part of the total variance of
the system for an adequate statistical model. Usually, the first principal component (PC1) explains
the maximal part of the system variation and each additional PC has a respective contribution to the
variance explanation but with less significance.

A reliable model usually requires many such PCs, so that over 75% of the total variation can be
explained. In case of presented modeling, the Varimax rotated PCA solution was interpreted, which
allowed a better explanation of the system since it considered the role of the latent factors with higher
impact on the variation explanation and diminished the role of PCs with lower incidence.

All statistical analyses were carried out using STATISTICA 7.0 statistical software (StatSoft, Dell,
Round Rock, TX, USA).

4.2.3. Source Apportionment

The contribution of each, identified by principal components analysis factor, towards the general
value of a certain parameter (variable, e.g., sum of total concentration) is an extremely important
chemometric task. Usually, in pollution studies the identified factors (principal components) represent
conditionally a possible pollution source. A well-defined factor structure makes it possible to
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create a specific receptor model for the assessment of the contribution of each factor to the total
concentration, e.g., APCS (absolute principal components scores) model of Thurston and Spengler for
airborne particulate matter [24]. First, a transformation of the factor scores towards zero is performed
(target transformation). The absolute factor scores obtained are used as independent regressors in
the regression models relating the total concentration with the contribution (usually in %) of each
identified factor registered by PCA. This mode of receptor modeling (without knowing the preliminary
composition of each source of pollution) ensures the determination of the element profile of a certain
factor. The approach is also known as principal components regression (PCR).

5. Conclusions

The present study revealed some important relationships between the parameters used for the
assessment of the soil quality around the biggest non-ferrous lead-zinc smelter in Bulgaria as well as
between the sampling locations that represented the regions impacted by the smelter activity. A specific
contribution of the study is the pollution source apportionment performed, which made it possible to
gain specific information about the contribution of each identified source to the total concentration of a
given pollutant.

Some significant results could be summarized as follows:

• By means of the source apportionment model and the average of the concentrations measured
we have proven another source of copper impact different from the smelter itself; the copper
concentration at the smelter sampling point is the lowest;

• Despite the fact that the smelter continues to be the major source of Zn, Cd, Hg and to lesser
extent Pb pollution, comparison to previous data with these ones shows a significant decrease of
the emissions of Zn, Cd and Pb;

• Though our results, do not relate the smelter production to copper pollution, it is readily seen that
the copper content in the soil is drastically reduced. One of the reasons is the closure of the mine
in the village of Zvezdel and the exchange of the ore source with another one. Another possible
reason is that the copper source treated by us as geogenic and is related to the ore production and
flotation around the mines near the settlements of Luki, Madan and Madjarovo;

• The higher levels of pollution at location AS (town of Assenovgrad) are due to the natural
contribution of the underground waters and the Chaia River carrying waste from the lead-zink rich
ores of Rhodopa Mountain where the mines and flotation facilities are located. The multivariate
statistical expertise indicates this specificity by the contribution of the “natural source” in the
apportionment models.

The chemometric expertise of the data set makes it possible to better interpret the specific
relationships in a complex environmental system. Thus, it helps in solving problems and decision
making for serious pollution problems.
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Figure S1a–e Factor loadings plots.
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