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We utilized fluorescence in situ hybridization (FISH) to screen for subtelomeric rearrangements in 82 Thai patients with
unexplained intellectual disability (ID) and detected subtelomeric rearrangements in 5 patients. Here, we reported on a patient
with der(20)t(X;20)(p22.3;q13.3) and a patient with der(3)t(X;3)(p22.3;p26.3). These rearrangements have never been described
elsewhere. We also reported on a patient with der(10)t(7;10)(p22.3;q26.3), of which the same rearrangement had been reported
in one literature. Well-recognized syndromes were detected in two separated patients, including 4p deletion syndrome and 1p36
deletion syndrome. All patients with subtelomeric rearrangements had both ID and multiple congenital anomalies (MCA) and/or
dysmorphic features (DF), except the one with der(20)t(X;20), who had ID alone. By using FISH, the detection rate of subtelomeric
rearrangements in patients with both ID and MCA/DF was 8.5%, compared to 2.9% of patients with only ID. Literature review
found 28 studies on the detection of subtelomeric rearrangements by FISH in patients with ID. Combining data from these studies
and our study, 15,591 patients were examined and 473 patients with subtelomeric rearrangements were determined. The frequency
of subtelomeric rearrangements detected by FISH in patients with ID was 3%. Terminal deletions were found in 47.7%, while
unbalanced derivative chromosomes were found in 47.9% of the rearrangements.

1. Introduction

An intellectual disability (ID) is a condition wherein the
development of the mentality is arrested or incomplete,
which contributes to the impairment of the overall level of
intelligence, including cognitive, language, motor, and social
abilities [1]. ID affects 1% to 3% of the global population.
Besides environmental factors, genetic factors are a signifi-
cant cause of ID. More than half of all patients with ID are
categorized as having an unexplained ID, with subtelomeric
rearrangements having been observed in a number of these
patients, ranging between 0 and 29.4% [2].

The subtelomere is a region between chromosome-
specific sequences and telomeric caps of each chromosome.
This region is located in close proximity to a gene-rich area.
Due to sequence homology between subtelomeres of differ-
ent chromosomes, it can facilitate recombination and may
subsequently result in detrimental effects, that is, promoting
disease-causing chromosomal rearrangements [3].

Subtelomeric rearrangements can be detected by vari-
ous methods. In this study, we utilized fluorescent in situ
hybridization (FISH) method with probes specific to the
subtelomere region of all chromosome ends to screen for
subtelomeric rearrangements in patients with unexplained
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ID. We identified new rearrangements and described clinical
entities of patients with the rearrangements.

2. Subjects and Methods

Inclusion criteria for subject recruitment were patients with
ID of unknown causes, with or without multiple congenital
anomalies (MCA) and/or dysmorphic features (DF) and with
normal G-banding chromosome analysis result at the 450-
550 bands’ levels. All patients who met these inclusion criteria
were referred from clinicians at Rajanukul Institute. The
institute is the governmental agency under the Department
of Mental Health, Ministry of Public Health, providing
medical care primarily for individuals with intellectual and
developmental disabilities. Clinical features of some patients
may be limited as we collected data from the laboratory order
form. A total of 82 Thai patients with ID were recruited to
the study. These patients included 50 males and 32 females
aged between 1 year and 39 years (mean age being 4 years).
ID without MCA/DF was present in 35 cases (22 males and 13
females), and ID with MCA/DF was present in 47 cases (28
males and 19 females). This study was a one-year prospective
study that was conducted between the years of 2005 and 2006.

We performed subtelomeric FISH analysis on metaphase
spreads obtained from lymphocyte cultures, which were
initiated and harvested following a standard protocol. The
FISH probes used in this study were constructed using
bacterial artificial chromosome (BAC) as well as Pl-derived
artificial chromosome (PAC) clones. These clones contained
41 different subtelomeric-specific sequences for all human
chromosome ends, located within 2Mb distance from the
telomere. For the FISH analysis of each patient, the p-arm
and g-arm probes of each chromosome were denatured and
hybridized onto the denatured metaphase spreads. FISH was
performed following a standard protocol. We examined at
least 10 informative metaphase spreads for each chromosome.
For patients with detected subtelomeric rearrangements,
G-banding karyotype and FISH analyses using the same
probes were carried out in parental blood when available. In
addition, because the subtelomeric probe for the short arms
of both X and Y chromosomes is specific to the pseudoauto-
somal region, the other X- and Y-specific probes were used
to distinguish the chromosomes. This study was approved by
the ethical committee of the Ministry of Public Health.

3. Results

We detected 5 subtelomeric rearrangements in 5 patients.
The frequency of subtelomeric rearrangements in our
study was 6.1%. Two patients had deletions, including one
with del(4)(p16.3) (Patient 1, Figure 1(a)) and one with
del(1)(p36.3)dn (Patient 2, Figure 1(b)). The other three
patients had derivative chromosomes, including one with
der(10)t(7;10)(p22.3;q26.3) (Patient 3, Figure 1(c)), one with
der(20)t(X;20)(p22.3;q13.3) (Patient 4, Figure 1(d)), and one
with der(3)t(X;3)(p22.3;p26.3)dn (Patient 5, Figure 1(e)). Two
patients had moderate degrees of ID, and 3 patients had
severe degrees of ID, and those 3 patients included 2 patients
with deletions. MCA/DF were observed in almost all of the
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patients with subtelomeric rearrangements, except a patient
with der(20)t(X;20), who had only minor DF (Table 1). The
frequency of subtelomeric rearrangements in patients with
ID and MCA/DF was 8.5%, while in patients with only ID
it was 2.9%.

4. Discussion

4.1. Detection of Subtelomeric Rearrangements. Subtelomeric
rearrangements can be detected using various methods, such
as FISH [4, 26], multiplex ligation-dependent probe ampli-
fication (MLPA) [32-34], and a microarray-based method
[35, 36]. The latter method allows the whole human genome
to be scanned at high resolution in a single experiment.
As a result, not only cryptic subtelomeric rearrangements
but also other unbalanced chromosomal abnormalities can
be detected, such as interstitial deletions, duplications, and
unbalanced translocations. However, FISH has the advantage
of providing an instant location of certain rearrangements,
such as insertions, inversions, and balanced translocations,
which cannot be achieved by the microarray-based method.

We reviewed literature on subtelomeric rearrangements
in individuals with ID, which were detected by subtelomeric
FISH (Table 2). We search for articles in PubMed using
the following keywords: subtelomeric FISH, intellectual dis-
ability, developmental delay, and mental retardation. We
excluded studies from authors that did not provide details
regarding number of the patients with ID, studies when FISH
was performed to confirm findings of other molecular meth-
ods, studies where a selected panel of subtelomeric probes
was used in each case, and extended studies with additional
cases from the previous populations. We found 28 publica-
tions on the detection of subtelomeric rearrangements by
FISH in patients with ID. Combining data from these studies
(15,509 patients) and our study (82 patients), 15,591 patients
with ID were examined by FISH and 474 subtelomeric
rearrangements were identified in 473 patients. There was one
patient with 2 rearrangements. Frequencies of subtelomeric
rearrangements ranged from 0 to 20%, with an average of 3%
(473/15,591) (Table 2). Familial variants and possible variants
were found in approximately 1.0% (149/15,591) (Table 3). One
of the most common variants is the del(2)(gter), in which the
detection of a deletion depends on the subtelomeric probe
used. In this literature review, we found that frequency of the
del(2)(qgter) was 42% of all variants (63/149). It is important
to do parental analysis with the same subtelomeric probe
when an abnormality is detected in a patient to determine the
clinical significance of the finding.

We divided subtelomeric rearrangements into 3 cat-
egories: (1) deletion, (2) derivative, and (3) others. The
latter category included duplications, insertions, inversions,
isochromosome, and balanced translocations. Deletions were
found in approximately 47.7% (226/474), while derivative
chromosomes were found in approximately 47.9% (227/474)
(Figure 2). The most frequent deletions (>5% of all deletions)
involved chromosomes 1p, 22q, 9q, and 4p (Figure 3(a)).
The derivative category was composed of an unbalanced
translocation with both deletion and duplication of subtelom-
ere regions, an unbalanced translocation with duplication of
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FIGURE 1: FISH results of 5 patients with subtelomeric rearrangements.
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FIGURE 2: Frequency (%) of each category of subtelomeric rear-
rangements.

a subtelomere region onto the short arm of acrocentric chro-
mosome, and an unbalanced translocation with only dupli-
cation or deletion of a subtelomere region detected. Mono-
somies associated with unbalanced derivative chromosomes
frequently involved chromosomes 4p, 10q, 2q, 5p, 13q, 18q,
and 7q (frequency >5% of all the monosomies) (Figure 3(b)).
In this study, we detected subtelomeric rearrangements in
6.1% of the patients. Deletions of chromosomes 1p and 4p,
which were among the most frequently detected deletions,
were also detected in our study.

Attempts have been made to increase the diagnostic
yield of the subtelomeric FISH method. A clinical check-
list was developed to preselect patients for investigation.
The selection criteria included prenatal/postnatal growth
retardation, the presence of dysmorphism and/or congenital
anomalies, and a family history of ID [37]. We found that
frequency of subtelomeric rearrangements in patients with
ID and MCA/DF was higher than that of those patients
with ID alone (8.5% versus 2.9%). Our finding supported
the suggestion that preselection of patients using the above-
mentioned checklist, or a similar one, for subtelomeric FISH
may increase the positive findings in patients with ID.

4.2. Clinical Features of Patients with Subtelomeric Rearrange-
ments. In this study, we detected two well-recognized syn-
dromes, namely, 4p deletion syndrome or Wolf-Hirschhorn
syndrome and 1p36 deletion syndrome, in Patient 1 and
Patient 2, respectively. Both syndromes have overlapping clin-
ical features, including growth retardation, variable degree
of ID/developmental delay, structural brain abnormalities,
hypotonia, seizures, skeletal abnormalities, congenital heart
defects, and hearing loss [38-40]. However, they are clinically
recognized by distinct facial features, such as a Greek warrior
helmet appearance of the nose, along with prominent glabella
in the 4p deletion syndrome, and straight eyebrows, deeply
set eyes, and midface retrusion in the 1p36 deletion syn-
drome. Clinical features of these syndromes may be variable
depending on the extent of the deletions, in addition to the
number and significance of the deleted genes. The deletions
can be detected by using standard karyotype analysis in
50-60% of patients with 4p deletion syndrome and 25%
of patients with 1p36 deletion syndrome, while FISH and
chromosomal microarray (CMA) can detect chromosomal

Genetics Research International

rearrangements in over 95% of the patients [38, 39]. In
this study, our patients with 4p deletion and 1p36 deletion
syndromes had subtle facial features, most likely because they
had cryptic subtelomeric deletions.

Approximately half of the subtelomeric rearrangements
detected in patients with ID were unbalanced derivative chro-
mosomes. The presence of derivative chromosome results
in deletion (i.e., partial monosomy) along with duplication
(i.e., partial trisomy) of distinct subtelomere regions. Clin-
ical features that presented in our patients with derivative
chromosomes were influenced by the coexistence of two
genomic imbalances, from which phenotypic consequence
resulting from one type of genomic imbalance confounds the
phenotypic consequence resulting from the other genomic
imbalance. In addition, variable expressivity, incomplete
penetrance, and the degree of skewed X-inactivation when X
chromosome involved in the derivative chromosomes could
have an influence on the phenotypes of the patients.

Patient 3 possessed der(10)t(7;10)(p22.3;q26.3), repre-
senting three 7p subtelomeres and only one 10q subtelom-
ere. We found only one previous report of a patient with
der(10)t(7;10)(p22.3;q26.3). She was a 17-year-old woman
with short stature and moderate ID. Unlike our patient,
she showed no dysmorphic facies and microcephaly [22].
Difference in clinical features may be due to the extent of the
deletion and duplication. Duplication of 7p22.3 was reported
on a patient with Asperger syndrome [41] and a patient
with DF and skeletal abnormalities, including abnormal distal
humeri [42]. A deformity of the elbow was present in our
patient. In addition, developmental delay and minor DF were
reported in the other patient with interstitial deletion of
10q26.3 [43].

Duplication of Xp22.3 that was detected in Patient 4 and
Patient 5 was also detected in 2 out of 129 Thai patients
with unexplained ID from a different cohort, who had
subtelomeric rearrangements detected by MLPA technique
[44]. Frequency of Xp22.3 duplication in Thai patients with
unexplained ID was 1.9% (4/211). The duplication of Xp22.3
was observed in individuals with neurocognitive and behav-
ioral abnormalities [45]. Moreover, deletion of Xp22.3 was
associated with X-linked mental retardation and attention
deficit hyperactivity disorder [45]. Patient 4 with deletion of
20q13.3 had only moderate ID with minor DE Deletion of
20q13.33 was previously reported on patients with epileptic
seizures. For Patient 5, significance of 3p26.3 deletion was
unclear. Deletion of this region was previously described in
patients with ID and atypical autism [46]; however, it was also
reported in four generations of a family that were apparently
healthy [47].

5. Conclusions

We detected subtelomeric rearrangements in 6.1% of the pa-
tients with ID. The sensitivity of subtelomeric FISH increases
when preselection criteria were applied. We reported clinical
entities observed in a patient with der(20)t(X;20)(p22.3;q13.3),
a patient with der(3)t(X;3)(p22.3;p26.3), and a patient with
der(10)t(7;10)(p22.3;q26.3). These rearrangements have never
been or had rarely been reported in literature. Even though
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subtelomeric FISH is a very robust technique, as it can detect
and locate rearrangements that involve small and specific
regions of the chromosomes, uncover low level mosaicism,
and identify balanced chromosomal rearrangements, CMA
is currently recommended as a first-tier test and replaces
the standard karyotype and subtelomeric FISH analyses
for patients with ID of unknown causes [48]. However, in
countries where CMA is unavailable or unaffordable, FISH is
auseful technique to screen for subtelomeric rearrangements.
In this study, we added information regarding clinical entities
of our patients with subtelomeric rearrangements. This infor-
mation requires accumulation from case reports and is useful
for genetic counselling.
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