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Abstract
Actin polymerization is essential for cells to migrate, as well as for various
cell biological processes such as cytokinesis and vesicle traffic. This brief
review describes the mechanisms underlying its different roles and recent
advances in our understanding. Actin usually requires “nuclei”—preformed
actin filaments—to start polymerizing, but, once initiated, polymerization
continues constitutively. The field therefore has a strong focus on
nucleators, in particular the Arp2/3 complex and formins. These have
different functions, are controlled by contrasting mechanisms, and generate
alternate geometries of actin networks. The Arp2/3 complex functions only
when activated by nucleation-promoting factors such as WASP,
Scar/WAVE, WASH, and WHAMM and when binding to a pre-existing
filament. Formins can be individually active but are usually autoinhibited.
Each is controlled by different mechanisms and is involved in different
biological roles. We also describe the processes leading to actin
disassembly and their regulation and conclude with four questions whose
answers are important for understanding actin dynamics but are currently
unanswered.
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Introduction
Actin, one of the two core components of the eukaryotic  
cytoskeleton, together with tubulin, is a small globular protein 
that is one of the most abundant proteins in many cells. Both  
polymerize into filaments that are absolutely required for several 
aspects of normal cell physiology.

Actin is best known in two structures that are connected with 
movement. Muscle is a stable, almost crystalline array of parallel  
α-actin and myosin filaments. Upon activation, the myosin  
molecules pull on the actin filaments, converting energy in the  
form of ATP to contraction. The actin of non-muscle cells, made 
of two slightly different isoforms (β- and γ-) is much more  
dynamic and complex, comprising both the fairly stable cortex 
and a range of highly dynamic protrusions at the edges of cells,  
in which actin filaments have lifetimes of tens of seconds. It  
remains unclear why nature uses near-identical molecules for 
structures with such contrasting lifetimes. A more recently  
appreciated feature of non-muscle actin is its role in vesicle  
dynamics. Vesicles of multiple classes require actin to bud and 
sort correctly. This review describes past and recent progress 
in the physiological roles of actin polymerization and how it is  
controlled.

Control of actin nucleation
The generation of new actin filaments requires the assembly of two 
or three monomers that act as templates for polymerization and  

filament growth. This process, known as “nucleation”, is kinetically 
unfavorable: actin dimers are unstable, and most actin monomers 
are sequestered by actin monomer-binding proteins such as pro-
filin and thymosin β4, which prevent spontaneous nucleation of 
new filaments. Thus, nucleation is a rate-limiting step in the assem-
bly of new actin filaments1. Cells overcome this kinetic barrier by  
employing “actin nucleation factors” that catalyze the de novo 
formation of actin filaments. Of the several actin nucleation  
factors that have been described so far, the actin-related protein  
2/3 (Arp2/3) complex and formins (Figure 1) are the best studied 
and appear the most physiologically important2.

Arp2/3 complex
The Arp2/3 complex was the first major actin nucleator to be  
identified3. This complex is a large (~220 kDa) stable assembly of 
seven subunits all highly conserved in eukaryotes: Arp2, Arp3, and 
five other supporting subunits named ArpC1 (p40), ArpC2 (p34), 
ArpC3 (p21), ArpC4 (p20), and ArpC5 (p16). In vitro studies  
demonstrated that, rather than nucleating de novo actin  
filaments, the Arp2/3 complex promotes the assembly of a new 
filament from the side of a pre-existing one at a 70° Y-branched  
angle4. Both Arp2 and Arp3 structures resemble the actin fold, 
and the two subunits together mimic an actin dimer from which  
nucleation can take place. The nascent filament is capped at its 
slow-growing pointed end by the complex, linking it firmly to 
the older filament, but is free to elongate in the fast-growing  
barbed direction5.

Figure 1. Schematic diagram showing key pathways controlling actin assembly. Aip1, actin-interacting protein 1; Arp2/3, actin-related 
protein 2/3; NPF, nucleation-promoting factor.
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The Arp2/3 complex alone is an inefficient nucleator: its Arp2  
and Arp3 subunits are too far apart to nucleate a new filament, 
and its binding to the side of an actin filament is kinetically unfa-
vorable. However, its ability to promote actin polymerization is  
strongly increased by the engagement of nucleation-promoting 
factors (NPFs). The main NPFs of the Arp2/3 complex are  
members of the Wiskott-Aldrich syndrome protein (WASP) 
family, which includes WASP and N-WASP, Scar/WAVE,  
WASH, WHAMM, and JMY (the acronyms Scar, WAVE, 
WASH, WHAMM, and JMY derive from “suppressor of cAMP  
receptor mutants”, “WASP family Verprolin-homologous pro-
tein”, “WASP & Scar homologue”, “WASP homolog associated 
with actin, membranes, and microtubules”, and “junction- 
mediating regulatory protein”, respectively). These NPFs con-
tain a conserved C-terminal VCA domain, which consists of one  
or more verprolin homology domains (V) that bind actin  
monomers, and a central amphipathic linker (C) and an acidic 
region (A) that together bind the Arp2/3 complex6; it is believed 
that WASP proteins recruit actin monomers through their V region 
and bind Arp2/3 complex through the C and A portions7.

It is traditional to consider actin and the Arp2/3 complex as 
primarily motility proteins, but it is striking how vesicle- 
centered the NPF family as a whole is: Scar/WAVE is the key  
activator of pseudopods and lamellipods, but WASH, WHAMM, 
and JMY are purely vesicular, and WASP/N-WASP are now thought 
to have mainly endocytic roles.

Recent work has progressed our understanding of the role of  
NPFs in the activation of the Arp2/3 complex. Chemical cross-
linking of cysteines engineered in Arp2 and Arp3 has been used 
to hold yeast Arp2/3 complex in a short-pitch conformation8.  
When cross-linked in this conformation, the complex is hyper-
active and bypasses the need for WASP in activation. Moreover,  
its activity is even higher than WASP-activated Arp2/3  
complex, indicating that the cross-link stabilizes an activated 
state of the complex. This confirms that WASP’s main activating  
function consists in its ability to move Arp2 and Arp3 closer in 
a short-pitch active conformation. More recently, these results 
have been extended using fluorescence spectroscopy and EM to  
determine the conformational changes induced by NPF binding 
to the Arp2/3 complex9. As earlier suspected, VCA binding  
causes a large conformational change that moves Arp2 closer to 
Arp3. Moreover, it also favors the complex binding to the side 
of an actin filament, leading to further rearrangements that are  
required for nucleation of a new actin filament.

WASP-activated Arp2/3 complex can nucleate new actin only 
when templated by an existing filament. Thus, the generation of  
branched actin networks has been thought to require priming 
by nucleators other than the Arp2/3 complex. However, a newly 
identified class of NPFs, named WISH/DIP/SPIN90 (WDS)  
proteins, may activate the Arp2/3 complex without the presence 
of a preformed filament and form linear filaments10. Recently, 
these linear actin filaments generated by WDS-bound Arp2/3  
complex have been found to act as initial seed filaments, upon 
which WASP-activated Arp2/3 complex can bind and catalyze the 
formation of branched actin11.

The Arp2/3 complex is unique among nucleators because it  
catalyzes the formation of branched filaments, instead of separate  
linear ones. The resulting “dendritic” network is responsi-
ble for the formation of several actin structures, including  
lamellipodia12 and the actin patches at the sites of clathrin- 
mediated endocytosis13. Actin dynamics driven by WASH have not  
often been consistently visualized, but, in mutants that cause 
excess activity, lamellipod-like actin may be seen streaming off 
post-lysosomes14. In addition to these well-known functions, 
a link between Arp2/3 complex-mediated actin assembly and 
mammalian autophagy has been suggested. An actin branched  
network generated by the Arp2/3 complex is essential for 
autophagosomal membrane shaping15, and two NPFs, WHAMM16 
and JMY17, colocalize with autophagosome markers and play 
a role in autophagosome biogenesis. In particular, LC3 and  
stress-responsive activator of p300 (STRAP) were recently 
identified as regulators of JMY activity during autophagosome  
formation: LC3 recruits JMY to the membrane and stimulates 
its actin nucleation activity, while STRAP inhibits JMY and  
antagonizes its activation mediated by LC318,19.

Thus, Arp2/3 complex-dependent actin nucleation is involved 
in the organization of several organelles, including endosomes, 
lysosomes, and autophagosomes. This list has been recently  
extended to include mitochondria: a crosstalk between 
branched actin and microtubules has been proposed to control  
mitochondria distribution20. This regulation appears to be particu-
larly important, as mitochondrial dynamics affect most cellular 
processes, including cell migration21 and invasion22.

The Arp2/3 complex activity has also been recently shown to 
be involved in the generation of a dynamic perinuclear actin  
network that allows cells to deform their nucleus and go through 
narrow pores. This mechanism is used by dendritic cells to move 
from peripheral tissues to lymph nodes for antigen presentation23, 
but it could also be used by metastatic cells to migrate through 
dense tissues.

One key question in recent years surrounds the essential nature—
or otherwise—of Arp2/3 complex in migration. Two near- 
simultaneous papers, using similar cells, came to opposite 
conclusions. The first found that the Arp2/3 complex was  
absolutely essential for directed motion24; the second found it  
to be dispensable25. We consider real biology to be more  
nuanced. The paper by Wu et al. clearly shows that directed  
motion is possible under specific circumstances. Similar results—
from dendritic cells lacking Scar/WAVE and therefore unable 
to assemble Arp2/3 complex at the leading edge26—show that  
directed migration is possible but hugely different from normal 
Arp2/3 complex-driven migration. We conclude that actin-driven 
migration can be driven by multiple parallel mechanisms. The 
Arp2/3 complex dominates the process in normal cells, but 
in its absence migration is possible, if too inefficient for most  
physiology. Curiously, in Dictyostelium cells, loss of Scar/ 
WAVE is less damaging because WASP can be repurposed and 
take over27. The implications for upstream signaling are complex  
and not understood, but this work does show that Arp2/3 complex 
assembly is fundamentally similar between different nucleators.
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Formins
Another key player, with a contrasting role in the control of actin 
assembly, is the formin family of proteins (more thoroughly  
reviewed in 28). Formins were first described in 1990, following 
a screen to identify genes involved in mouse limb deformities29. 
Subsequent structural studies of these proteins identified  
homology domains and the link to the actin cytoskeleton was  
established30. Initial studies in yeast showed that formin  
proteins were essential for the formation of actin bundles that 
conferred polarity upon the cells and that this was regulated  
by the Rho GTPase network via the formin homology domains31. 
Formins were then shown to nucleate actin filaments by  
in vitro experiments with purified proteins, with the FH2 (formin  
homology 2) domain playing an essential role via its ability to 
bind the barbed end of actin filaments32. However, unlike other  
proteins which bind the barbed end and halt elongation, formins 
have been described as “leaky cappers”, referring to their ability 
to cap the filament while still allowing actin monomers to join 
and elongation to continue33. After nucleation, the formin FH2  
domain encircles the tip of the barbed end and allows filament 
elongation. All formins slow elongation owing to an equilibrium 
between conformations that block or allow subunit addition34,35. 
This inhibition varies from about 5 to 95% depending on the  
formin. Delivery of actin-profilin from binding sites on FH1  
domains to the barbed end can increase the rate of elonga-
tion beyond the rate of a bare filament end depending on the 
formin in question, its conformations, and the concentrations of  
profilin and other proteins35. These differences in elongation 
rates suggest a “gating model” in which a more open conforma-
tion of the FH2 domain favors monomer addition and therefore  
elongation, and a closed conformation inhibits the process35.  
Differing models have proposed how this inhibition and the 
open and closed conformations occur. Recently, simulation data  
focused on analysis of the gating model have suggested that 
the FH2 domain of formins can cause this effect by both steric 
blocking of actin subunits at the barbed end of the filament and  
changing the helical twist of the filament which interferes with 
availability of the binding site36.

After nucleation, the FH2 domains of the formins remain attached 
to the barbed end, encircling the growing filament, unlike 
the Arp2/3 complex, which is drawn backwards into the cell  
with bulk actin. The key to understanding formins is that their 
roles tend to be narrow: individual formins are used for specific 
processes, unlike the broad roles of Arp2/3 complex (though the  
effects of deleting them may be additive37). Formins play a  
critical role in filopodia formation. This result is reinforced by  
studies of the homologous dDia2 in Dictyostelium, which not only 
localizes to the tips of filopodia and regulates their formation but 
also contributes to polymerization by competing with capping  
proteins at the barbed end of the filaments38. dDia2 mutants  
have a much-reduced rate of filopod production. A recent 
study has shown that formins and capping proteins can bind the  
barbed end of actin filaments simultaneously, leading to a  
weakened state of binding of both39. This adds complexity to their 
interaction and subsequent effect on elongation, with the possibility 

that capping proteins can also compete with formins for binding 
and thereby inhibit elongation.

Force can influence the rate of actin elongation by formins. 
After speculation that a pulling force applied to FH2 rings at the  
barbed end of actin filaments might increase the rate of  
elongation40, studies using buffer flow to exert force on actin  
filaments showed formins respond differently. Force increases 
the rate of elongation by mDia141 but decreases the rate of  
elongation by yeast Bni1 in the absence of profilin and increases 
elongation in the presence of profilin42. Force exerted by  
magnetic tweezers also increases the rate of elongation by mDia2, 
especially if the FH2 ring is allowed to rotate around the bound 
filament43.

Formins can collaborate with the Arp2/3 complex. As well as 
their role in linear filament and filopodia formation, they are also  
important in the branched actin of lamellipodia. mDia2 depletion 
in the cell inhibits lamellipodia formation, and it was speculated  
that this was due to the formins protecting the growing filaments 
from capping proteins that would halt their protrusion44. More 
recently, this idea has been explored further in another subfamily, 
the FMNL formins. In B16F1 melanoma cells, FMNL2 localizes 
at the lamellipodia edge as well as at filopodial tips. Biochemical  
experiments revealed that FMNL2 more efficiently participated 
in the elongation of filaments rather than the nucleation and 
that in fact it could elongate filaments nucleated by the Arp2/3  
complex, explaining its localization. The disruption of FMNL2 
and FMNL3 in cells led to an overall reduction in lamellipodial 
migration efficiency45. Another study using B16F1 cells even 
more recently showed that when FMNL2 (along with FMNL3)  
activity is abolished, lamellipodial dynamics and appearance 
are quite different. Lamellipodia become narrower, with less 
intense actin filament networks at the leading edge. This disrup-
tion of FMNL2 also decreases the force generated by B16F1 
cells and impacts their ability to push whilst migrating46. Taken  
together, these studies clearly demonstrate that the reality of 
actin filament assembly is not as simple as “formins nucleate  
filopodial actin filaments and the Arp2/3 complex nucleates  
lamellipodial filaments” and that they can cooperate. It is also 
important to remember that the Arp2/3 complex is an amplifier 
of existing actin, rather than a creator ab initio. Arp2/3 complex 
requires pre-existing (and preferably new) actin filaments to grow; 
formins probably provide the template.

Interestingly, it appears that formins’ role in filopodia is not 
only to nucleate/elongate filaments but also to play a part in  
adhesions. A recent study sought to investigate the mechanisms 
by which filopodia respond to force and how this affects their  
adhesion to the extracellular matrix47. The authors examined 
the growth of filopodia that were attached to fibronectin-coated  
beads which were under a constant pulling force and found that 
the adhesion to these beads and the growth caused by the force 
was dependent on myosin IIA and formin mDia2. When these  
proteins were inhibited, both the growth and the force exerted 
by the filopodia were significantly diminished47. This study  
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provides a crucial insight into a new role for formin in actin  
dynamics in vivo, where cells are constantly responding to  
forces from both within the cell and their environment.

Spatial and temporal coordination of the actin 
machinery
As discussed in previous sections, cells simultaneously assem-
ble, maintain, and disassemble actin filaments to generate a wide 
array of actin architectures. This complexity requires precise spa-
tial and temporal coordination at different levels and the ability to  
rapidly and efficiently answer to intracellular and extracellular 
signals. Despite continuing progress in understanding how actin  
structures are assembled, less is known about how the actin  
nucleating systems are integrated. However, several papers in  
recent years have addressed this question.

Arp2/3 complex and formins nucleate different actin fila-
ments from a common limited pool of actin monomers. High  
concentrations of G-actin are maintained in the cell by the  
cooperation of actin monomer-binding proteins such as profi-
lin and capping proteins1. In addition, profilin distributes actin  
monomers between filaments nucleated by Arp2/3 complex and 
formins in both fission yeast48,49 and animal fibroblasts48,49. When 
the Arp2/3 complex is present in excess, profilin can inhibit 
its nucleating activity by disrupting the association between  
WASP proteins and actin. By doing so, it favors formin-mediated 
actin nucleation and maintains the homeostasis between the 
two main actin assembly machineries48,49. More generally,  
competition for resources is clearly fundamental to actin function: 
WASP, Scar/WAVE, and formins all compete for a limited pool 
of actin monomers, and imbalances caused by the loss of one can 
deregulate the others50,51.

Spatial differentiation of the many actin-binding proteins is  
crucial for subcellular compartmentalization. Inositol lipids are  
essential, though their roles are complex and subject to mis-
interpretation. Several studies of actin waves—structures that 
may represent frustrated phagosomes or may be fundamental  
mechanisms underpinning normal protrusion dynamics—
address the interplay between lipid composition of the plasma  
membrane and actin dynamics52–56. During frustrated phago-
cytosis in mammalian macrophages, the plasma membrane  
enclosed by F-actin waves shows polarized distribution of both 
actin and lipids. In this region of plasma membrane, cortical 
actin is absent and the lipid composition is altered, with deple-
tion of phosphatidylinositol 4,5-bisphosphate (PI[4,5]P

2
) and  

enrichment of PI(3,4)P
2
57. However, altering actin polymerization 

by the use of an N-WASP inhibitor causes a rapid loss of the lipid 
polarized distribution. This implies a positive feedback from the 
actin network to lipid-modifying enzymes. At the same time, the 
lipid composition of the plasma membrane can control and modify 
actin assembly.

The interplay between the plasma membrane and actin network 
is dependent not only on its phosphoinositide composition but  
also on its curvature. Indeed, high membrane curvature has been 
shown to increase PI(3,4)P

2
 dephosphorylation, starting a cascade 

of reactions that alter the lipid composition of the membrane and 
activate the actin machinery at specific cellular locations58.

The upstream control of the NPFs has also been a mystery. 
The small GTPase Rac is clearly essential for the activation of 
the Scar/WAVE59. However, its mechanism of action has been  
opaque. One important reason for this is the large five-subunit  
complex in which it is found; the intact complex seems exces-
sively large (around 500 kDa, depending on the source) and  
complicated. Rac binds to one subunit (confusingly, the same 
subunit is named Sra1, CYFIP, or PIR121 by different authors).  
Initially this interaction was described as a simple interac-
tion with an N-terminal domain60, but this is complicated by the  
discovery of a possible second binding site61. Genetic analy-
sis in melanoma cells and Dictyostelium show the N-terminal 
site is essential for Scar/WAVE to function, while the second is  
important for its efficiency62. A second protein, CYRI, shares 
a similar N-terminal domain but appears to act as a competitive  
inhibitor that limits actin polymerization63. WASH regulation is 
similarly complex and similarly poorly understood. Like Scar/
WAVE, WASH is found in a large five-membered complex,  
which, very unusually, is assembled using a dedicated  
chaperone64. Reports that WASH is directly regulated by small 
GTPases are at best controversial, but it is clearly regulated by  
covalent modifications like ubiquitination65.

Actin disassembly
Whilst the assembly of actin filaments is vigorously studied 
to explain how cells achieve motility, it is also necessary to  
understand how the filaments disassemble. However, much less 
is known about this. The pool of actin monomers must be main-
tained to allow rapid polymerization of new or existing filaments66. 
After nucleation of an actin filament by the Arp2/3 complex or  
formins, actin filaments can naturally assemble new monomers 
at the barbed end and disassemble monomers from the pointed 
end. This is a process known as actin treadmilling67, which 
depends on the hydrolysis of ATP bound by the assembled actin 
monomers and dissociation of the γ-phosphate from the terminal  
subunits68.

Although actin treadmilling explains the natural turnover of 
filaments in vitro, it cannot account for the rapid and varied  
extents of actin disassembly in the cell. ADF/cofilin partici-
pates in active severing of actin filaments69. The mechanism by 
which cofilin regulates actin turnover has been studied in detail,  
and it is known that the binding of cofilin to the filament induces 
a helical twist70. This causes an increase in flexibility of the 
areas of the filament bound by cofilin, leaving the unbound areas  
stiff71. Severing can then occur between these areas, as the  
difference between the bound and unbound areas puts stress 
on the filament72. Although cofilin has a higher affinity for ADP 
actin monomers than for ADP-Pi actin monomers or ATP actin 
monomers in the filament73, cofilin can bind the ADP-Pi actin  
monomers and promote the release of the γ-phosphate74.

Subsequent work showed that cofilin works in combination with 
actin-interacting protein 1 (Aip1), which drives disassembly  
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through a different mechanism75. The mechanism by which 
this occurs has been explored in different ways. One approach  
investigated how these proteins work together by examining 
the effect they have on different actin filament architectures76.  
Using protein micropatterning of an NPF in combination with 
Arp2/3 complex and actin, the authors were able to recon-
struct three different kinds of actin networks: Arp2/3 complex 
branched networks, polarized actin cables, and non-polarized actin  
filaments. ADF/cofilin and Aip1 acted differently on these  
structures76. While ADF/cofilin alone was sufficient to disas-
semble the Arp2/3 complex branched networks, the addition of  
Aip1 was needed to act on the others. Another interesting  
observation was that the timing of the addition of these pro-
teins also changed the outcome. When ADF/cofilin was added  
before the Aip1, the disassembly when the Aip1 was eventu-
ally added was much greater than if both proteins were added  
simultaneously. The authors propose that ADF/cofilin actin  
binding limits the rate at which Aip1 can act and that the 
shape change of a filament when ADF/cofilin binds acts as a  
scaffold for Aip1 activity. An interesting remaining study is to 
explore further the action of the Aip1 on disassembly after it is 
recruited to ADF/cofilin-bound actin76.

An alternative line of research involved manipulating the  
concentration of cofilin. The ratio of cofilin to actin drastically 
changes the effect on the filament, with lower cofilin densities 
favoring severing and higher densities favoring stabilization77.  
However, recent work found actin filaments in thymus extract 
can disassemble quickly in spite of high cofilin concentra-
tions. The authors used imaging of single actin filaments and  
determined that Aip1 was responsible for this, allowing 
the filaments to quickly switch from a stable state to rapid  
disassembly78. This highlights an important mechanism by which 
cells can switch their actin networks from stable to unstable to 
allow dynamic changes in architecture. It is also now known 
that Aip1 binds to the side of actin filaments, possibly compet-
ing with cofilin for binding to create unbound areas that promote  
severing79. Further work using advanced single molecule imag-
ing has highlighted the importance of coronin1B for this process, 
as it binds to actin filaments leading to the recruitment of cofi-
lin and saturation of the filament before Aip1 promotes severing  
amongst the high concentration of cofilin80. The authors have 
since further explored this process and determined that different  
isoforms of tropomyosin which bind actin protect and stabilize 
the filaments from this process to different extents, identifying  
another layer of complexity to the control of disassembly81.

Unanswered questions
Despite the large volume of work briefly summarized in this  
review, we still lack a coherent picture; many individual factors  

that control actin are known, but it is still not possible to describe 
the global mechanisms that make actin appear in some places and 
not others. Obvious unanswered questions include:

(1) Why are large complexes needed? There seems to be no 
logic for the Arp2/3 complex to have seven members, given 
our current understanding of its function. Arp2 and Arp3 have  
obvious roles, but it seems hugely complex to use five other 
subunits to connect them to an established filament. One answer 
may come from different subunits that modulate the complex’s  
behavior82. However, simpler organisms like yeast and  
Dictyostelium have single forms of each subunit, so this seems 
a refinement for multicellular organisms rather than a funda-
mental feature. The Scar/WAVE and WASH complexes have 
only five members each but are huge (around 450 kDa) despite  
described functions that are achieved efficiently with single, 
smaller proteins. Is the large size of these complexes somehow  
physically important to their function? Or do they have large  
numbers of interactions that remain unknown?

(2) How do the multiple small GTPases of the Rho, Rac, and 
Cdc42 families collectively regulate actin? Actin’s polymerization  
occurs in an extremely complex and localized architecture, but 
most experiments suggest that activated GTPases are rather 
diffusely localized. How can diffuse signals specify finely  
regulated structures? One possible answer is positive feedback, 
in which actin polymerization is the proximal stimulus for more 
actin polymerization. This has been generally accepted to be  
important since the seminal work of Vicker (for example83);  
positive feedback loops can produce unpredictable and complex 
patterns from simple inputs.

(3) However, if positive feedback is the key, how does it work? 
Most authors have looked at feedback at the level of signals  
such as small GTPases, but that cannot answer the previous 
question. There is presumably a mechanism by which new actin  
causes the initiation of yet more actin filaments, for example 
by the Arp2/3 complex showing a preference for free barbed  
ends84. Full understanding of this process is fundamentally  
important for the field.

(4) Finally, what are the roles for IQGAP85, VASP86, and 
CAP87? A range of data show each protein is fundamentally  
important, but each paper shows glimpses of their roles without 
offering a compelling mechanism. Our ultimate goal should be a 
complete, informative mathematical model showing how actin 
works during migration, as we can achieve for signaling during 
chemotaxis88. To construct such a model, we need a more complete 
understanding of all of the key components of actin signaling and 
their interactions.
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