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Abstract: The emergence of novel viral infections of zoonotic origin and mutations of existing human
pathogenic viruses represent a serious concern for public health. It warrants the establishment of
better interventions and protective therapies to combat the virus and prevent its spread. Surface
glycoproteins catalyzing the fusion of viral particles and host cells have proven to be an excellent
target for antivirals as well as vaccines. This review focuses on recent advances for computational
structure-based design of antivirals and vaccines targeting viral fusion machinery to control seasonal
and emerging respiratory viruses.

Keywords: vaccine; glycoproteins; structural vaccinology; rational design; computational protein
design; respiratory viruses

1. Introduction

Various spontaneous host adaptations of zoonotic viruses have led to highly infectious
diseases in humans [1–9]. As a serious concern for public health, there is a demand for
better monitoring and the need to develop therapeutic interventions and preventive care
in form of vaccines. Respiratory viruses such as influenza and the recent coronaviruses
have caused devastating pandemics with millions of fatalities globally [10,11]. While
new influenza strains may derive from poultry or swine, such as the 2009 H1N1 pan-
demic [3,4], the most common source of human-transmissible and highly pathogenic beta
coronaviruses is bats [12,13], often evolving first in disputed intermediate hosts, such as
civets for severe acute respiratory syndrome coronavirus (SARS-CoV) [14], possibly pan-
golin for SARS-CoV-2 [15,16], and dromedary camels for Middle East respiratory syndrome
(MERS) [17–19]). Studies on host adaptation in the context of positive selection have been
controversial [20,21]. However, with the advent of next-generation sequencing, monitoring
is advancing as more strain variations are collected [22], and detailed mutational maps are
examined [23–25].

The most cost-effective and potentially long-term solution to fighting a viral disease
is the development of vaccines. However, other means to tackle these infections include
the use of small molecule antivirals and protein-based inhibitors, such as antibodies. With
the emergence of the coronavirus disease of 2019 (COVID-19), it became apparent that
adaptable platform technologies are needed for the rapid development and large-scale
production of vaccines. The first two COVID-19 vaccines approved on an emergency basis
by the FDA were based on an mRNA platform that had never before made it past clinical tri-
als [26,27]. The efficacy of these mRNA-based vaccines was proven to be above 94% [28–32],
and their manufacturing more efficient than, for example, recombinant proteins [33]. Given
this development, we will likely see shifts in the vaccine development landscape. It is
noteworthy that the SARS-CoV-2 mRNA-based vaccines encode a stabilized version of
the fusion protein or spike protein (S protein) of the virus [34,35]. Owing to extensive
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structural studies of SARS-CoV [34] and MERS fusion proteins [36], two mutations, which
were crucial to solving these proteins’ structure, also made possible the development of
effective vaccines against SARS-CoV-2 [34,35]. As fusion proteins have been a major target
to fight respiratory diseases, we will review the use of these proteins to develop antivirals
and vaccines while focusing on structure-based design approaches.

2. Viral Fusion Proteins

Fusion glycoproteins decorate the surface of enveloped viruses and are essential for
their cell entry. As critical players in the infection process and primary proteins on the viral
surface, fusion proteins are excellent targets for developing antivirals, and they constitute
the primary immunogens of different vaccine modalities [37–43]. To induce the fusion of
viral and cellular membranes, fusion proteins refold from a highly strained and unstable
prefusion conformation to a highly stable postfusion conformation that provides the free
energy proposed to catalyze the fusion between host and viral membranes [44]. There are
three different classes of fusion proteins—classes I, II, and III [44–48]. Despite sharing a
general fusion mechanism, these proteins are structurally diverse and require different
triggers to be activated. Class I fusion proteins are trimers characterized by a high content
of α-helices, with a postfusion conformation displaying an α-helical coiled coil surrounded
by three C-terminal helices (six-helix bundles) [45,49]. In contrast, class II fusion proteins
are homo- or heterodimers in their prefusion state, and trimers in their postfusion state
with a structural signature of β-sheets in both conformations [50]. Finally, class III fusion
proteins are trimers in the prefusion and postfusion states and present a combination of α-
helical and β-sheet structures [51]. In regard to activation mechanisms, class I and II fusion
proteins require proteolytic processing either on themselves or on companion protein,
whereas class III fusion proteins might not need processing to promote cell entry [52]. Class
I fusion proteins are triggered by diverse factors that we will discuss in more in detail
below [52]. Class II fusion proteins, once they are fusion competent, are mainly triggered
by low pH, and class III fusion proteins are activated by low pH or interactions of a partner
protein with a host cell receptor. Remarkably, while most viral fusion proteins undergo
irreversible conformational changes upon activation, class III fusion proteins can achieve a
thermodynamic equilibrium between the prefusion and postfusion states that allows the
transition to be reversible [53,54].

In this review, we will focus on class I fusion proteins as they comprise the fusion
machinery of numerous viral families such as the Orthomyxoviridae (e.g., influenza),
Paramyxoviridae (e.g., respiratory syncytial virus-RSV), Coronaviridae (e.g., SARS-CoV-2),
Retroviridae (e.g., HIV), and Filoviridae (e.g., Ebola) [44,45,48]. Class I fusion proteins, by
far, are the most studied and are observed in numerous viral families of interest, including
SARS-CoV-2. In the wake of the current pandemic, it is important to discuss class I fusion
proteins as targets of clinical significance. As a generalized model, class I fusion proteins
are initially synthesized as single chains precursors that become fusion competent by
proteolytic maturation [52,55–57]. This state, known as the prefusion state, is characterized
by a metastable structure that can easily be triggered to transition into a large, irreversible
conformational change to the postfusion state while undergoing several intermediate states
(Figure 1) [58–61]. Triggering factors include the switch to a low pH environment (e.g.,
influenza hemagglutinin (HA) protein) [44,48], interactions with coreceptors on the cell
surface (e.g., the human immunodeficiency virus (HIV) Env protein interacting with the
C–C chemokine receptor type 5 (CCR5)) [44], or interactions with cell surface receptors
paired with localized protease cleavage (e.g., the SARS-CoV-2 S protein binding to the
angiotensin-converting enzyme 2 (ACE2) receptor and is subsequentially cleaved by the
transmembrane serine protease 2) [62–64].



Viruses 2021, 13, 1320 3 of 18

1 

 

 
Figure 1. Model for membrane fusion; viral surface proteins undergo drastic conformational changes
in order to bring the viral and host cell membrane close to each other. Upon its activation through
proteolysis, the metastable prefusion state undergoes conformational changes in the fusion subunit
that result in an intermediate state termed the “prehairpin” state [65–68]. At this point, the prehairpin
structure can revert to its prior state in the absence of any membrane or irreversible transition to
the postfusion state [48,69,70]. Finally, to prompt the fusion process, a short hydrophobic peptide
or fusion peptide is released to connect with the target membrane. This interaction induces the
formation of the six-helical postfusion state that brings the virus and host cell membranes in proximity
and drives the membrane fusion.

The fusion process can be halted by stabilizing any of the conformations before the
postfusion state is achieved. Alternatively, receptor binding can be inhibited to prevent
attachment in the first place; both strategies are utilized by neutralizing antibodies. For HA,
for instance, the receptor-binding site pocket is a conserved area in an otherwise variable
region that is targeted by broadly neutralizing antibodies (bnAbs) [71–73], although their
breadth of neutralization is limited due to high variability around this site. On the other
hand, the HA stalk is rather conserved, which tends to confer anti-stem antibodies targeting
a specific epitope close to the fusion loop—a very broad neutralizing potential.

The antivirals oseltamivir, zanamivir, and peramivir exhibit another inhibition mecha-
nism targeting the neuraminidase protein and block the viral progeny release from infected
cells. Though they do not directly involve the fusion proteins, they target a surface gly-
coprotein and interfere with the molecular mechanism. However, they are only effective
shortly after infection [74].

3. Antivirals Targeting Viral Surface Proteins

Many small-molecule antiviral drugs reduce the viral load, disease symptoms, or
mortality of a viral infection by directly targeting the replication of the virus in the host cells.
This is exemplified by the current antiviral drugs against HIV (abacavir; Ziagen), herpes
simplex virus (famciclovir; Famivir) [75], and hepatitis viruses (lamivudine; Epivir) [76].
However, only a few options are available for respiratory viruses, such as RSV, influenza,
or coronaviruses.

RSV infections are treated often by supportive care (e.g., acetaminophen for fever and
intravenous fluids for dehydration) or neutralizing antibodies, such as palivizumab [77].
However, antibody-based treatments can quickly become very expensive. There are
four FDA-approved small molecule antivirals targeting influenza viruses. Among these,
drugs such as oseltamivir phosphate (oral, Tamiflu®), zanamivir (inhaled, Relenza®), and
peramivir (intravenous, Rapivab®) target the influenza neuraminidase protein and are ac-
tive against influenza A and B viruses. However, these drugs are often only effective when
given early after infection. Although small-molecule antivirals and their combinations
have proven to be valuable, research and development of new small molecules against
an emerging pandemic such as COVID-19 have been challenging [78–80]. In addition
to a long development timeline (about a decade from bench to market), hurdles include
potential off-site effects due to their limited specificity and often weak affinities (given
the small surface area of small molecules) that result in adverse side effects or the need
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for frequent doses to achieve beneficial therapeutic endpoints. In contrast to developing
new small molecules, drug repurposing is a promising alternative to treat viral diseases
as already approved drugs can target other pathogenic viruses [80]. This was the case
for remdesivir (Veklury®, Gilead Sciences, Foster City, CA, USA), which was originally
developed for Ebolavirus yet currently holds an emergency FDA approval for cases of
COVID-19 [81,82]. Likewise, the antiviral T-705 (favipiravir), which was initially approved
for use against influenza in Japan [83], is now being assessed for protection against SARS-
CoV-2 infections [84]. Both molecules are prodrugs that are phosphorylated in vivo to their
triphosphate forms, which target the viral RNA-dependent RNA polymerase (RdRp). The
bioactive triphosphates compete with purine nucleosides to incorporate into viral RNA
and interfere in its elongation and viral proliferation.

Protein-based therapeutics represent another option for treating viral infections. The
large protein–protein or protein–glycan interfaces enable higher affinity and specificity than
small-molecule drugs. Despite their high manufacturing cost and possible low stability,
monoclonal antibodies constitute the largest set of protein-based therapeutics against a
wide variety of diseases (bacterial and viral infections, cancer, arthritis, etc.). Antibody-
based therapeutics has also been a life-saving approach during the current COVID-19
pandemic. Particularly, the Regeneron cocktail (REGN-COVTM, Regeneron Pharmaceu-
ticals, New York, NY, USA) (casirivimab with imdevimab) [85], and Eli Lilly’s treatment
option (bamlanivimab with etesevimab) [86,87], which target different sites of the receptor-
binding domain of the S protein, have achieved FDA emergency use approval to protect
against SARS-CoV-2. These antibodies were developed at remarkable speed, given the
onset of the pandemic in February 2020, their discovery in May 2020, and the clinical trials
and FDA approval in November 2020 and February 2021, respectively [88].

An alternative route to large antibody molecules is the use of small protein-based
inhibitors. As seen in naturally occurring inhibitors where small proteins bind to larger
proteins to occlude their activity (e.g., cystatin in trypsin [89]), it is possible to develop
small, highly stable, and simple-to-produce proteins that can block functional sites in a
target biomolecule. Recent advances have demonstrated that computational design can
generate protein–protein inhibitors with extraordinary potency. As an example, inhibitors
designed de novo against different regions of the influenza HA protein have successfully
hindered the protein’s ability to mediate the fusion process [90–92] or bind to human
cell receptors [93]. Both types of inhibitors have neutralized the influenza virus and
protected mice prophylactically and therapeutically (Figure 2). Most recently, small protein
inhibitors were developed to block the receptor-binding site of the SARS-CoV-2 S protein,
resulting in highly stable picomolar inhibitors (Figure 2) [94]. These optimized molecules
neutralized the virus in Golden Syrian hamsters and had 3 days prophylactic and 21 days
therapeutic effects [95]. Given its small molecular weight of less than 5 kDa, compared to
the average 150 kDa of a monoclonal antibody, much less material needs to be produced in
order to have the same efficacy and thereby presents an excellent opportunity to provide
for a larger number of people. The strong binding of these designed small proteins is
one of the main advantages of using computational design over traditional methods. In
contrast to monoclonal antibodies, which are usually identified out of a pool, computational
protein design confers total control over the regions to be targeted by the inhibitor and
allows the optimization of desired interactions. Lastly, small protein inhibitors are a
promising approach to fight viral infections as their high stability could eliminate storage
and transportation barriers that usually frustrate the delivery of treatments to remote areas.
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Figure 2. Designed small protein inhibitors targeting fusion proteins. All proteins have been depicted
as transparent surfaces with monomeric units highlighted in forest green. Protein inhibitors are
colored orange (A) HSB1.6928.2.3 targeting the stem region of H1 HA (PDB 5VLI); (B) TriHSB.2A
targeting the receptor-binding site on the head region of H3 HA 1968 strain (PDB 5KUY and model);
(C) LCB1 bound to the open conformation of the receptor-binding domain of prefusion stabilized
ectodomain trimer of SARS-CoV-2 spike protein (PDB 7JZL).

4. Rational Structure-Based Vaccine Design and Development

While both the prefusion and postfusion states of the fusion proteins have been
studied as vaccine candidates, the prefusion conformation has been shown to elicit more
potent antibodies [96–100]. Notably, stabilized prefusion proteins have been demonstrated
to improve the immunogenicity of diverse vaccine formulations such as protein-based
vaccines [36,39,41,101], virus-like particles [102], gene-based vectors [42], and nucleic
acid-based vaccines [29,30]. Stable prefusion proteins have also been essential in the
identification of potent neutralizing antibodies that can serve as prophylactic and/or
therapeutic agents [97,103,104].

The successful application of structure-based design approaches to stabilize the pre-
fusion conformation of the RSV fusion protein (F protein), has provided the basis for
generalized strategies to stabilize class I fusion proteins [41]. This pioneering work, which
led to the clinical candidate DS-Cav1, was aimed to design prefusion RSV F variants with a
stabilized antigenic site Ø. The strategy involved designing a disulfide bond that prevents
the postfusion state, introducing two cavity-filling substitutions that increase favorable
interactions and the structural order of the protein, and appending a C-terminal T4-phage
fibritin trimerization domain (“foldon”) that preserves the protein’s trimeric structure
(Figure 3) [41]. The effectiveness of this approach was later supported by the massive
stabilization of the prefusion F protein of the four different types of human parainfluenza
viruses [43].

A closer analysis of the refolding mechanism of RSV F further identified that proline
substitutions at hinge loops can halt the transition from the prefusion to the postfusion
conformation (Figure 3). By disrupting the extension of the central helices that form the
postfusion helical bundle, proline mutations have had a remarkable impact on the prefusion
stabilization of fusion proteins of RSV [105], human metapneumovirus (hMPV) [106],
MERS, SARS-CoV, and SARS-CoV-2 [35,36,107,108]. As mentioned above, the rapid study
of the S-protein of the novel SARS-CoV-2 was the result of increased stability of the
protein’s prefusion state by introducing two proline mutations [34]. The expression levels
and stability of this prefusion SARS-CoV-2 S protein were additionally improved by four
more proline substitutions that rigidified flexible loops or stabilized the N termini of helices
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in the fusion peptide and regions around it [108]. Notably, although the SARS-CoV-2
S protein was also stabilized by cavity filling substitutions and the introduction of salt
bridges and disulfide bonds, the most substantial increase in expression and stability has
been observed in proline-containing variants [107,108].
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Figure 3. Strategies to stabilize the prefusion conformation of class I fusion proteins. The protein
shown corresponds to the trimeric RSV F protein (PDB 4MMV and 5C6B) with two protomers as
grey molecular surfaces and one protomer as a blue ribbon. Stabilizing substitutions (S215P, S190F,
S155C, S290C, Q487, and a foldon domain) are presented in red, and hydrogen bonds are depicted
as black dotted lines. Each panel contains an example of the main stabilization strategies of the
prefusion conformation.

The neutralization of charge imbalances, particularly at the interface between pro-
tomers, as well as the replacement of the peptide between maturation cleavage sites by a
short linker, represent additional strategies that have highly contributed to increasing the
expression levels of different fusion proteins (Figure 3) [105,109–111]. Finally, a strategy
to promote the trimerization of the soluble protein without appending a foldon domain
has been successfully designed by introducing a “cysteine zipper” at the C terminus of the
RSV F protein (Figure 3). The removal of nonpathogenic motifs such as the foldon is of
critical importance in vaccine development to reduce potential off-target reactivity [112].

5. Epitope-Focusing through De Novo Scaffolding

Epitope-focused vaccine design is a promising approach for developing immunogens
that direct the immune response toward specific structural epitopes [113]. Driven by
the need to develop vaccines against highly antigenically variable viruses, such as HIV,
this strategy has been actively used to present specific conserved epitopes out of context.
The initial epitope-focused method involved transplanting single epitopes that bind to
broadly neutralizing antibodies onto new, small, and optimized scaffolding proteins. This
approach, which originally used only side-chain grafting and later grafting of entire regions
(continuous and discontinuous) of the viral surface proteins of HIV and RSV [114–118],
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promoted structure-specific but not necessarily neutralizing antibodies. Owing to the
recent progress in de novo protein design, the method was extended to build new proteins
“around” the epitopes [113]. With this variation, the design of scaffold proteins containing
the helix–turn–helix epitope of the RSV F protein (PDB 3IXT), which is recognized by
the neutralizing antibody motavizumab (mota) [119,120], produced immunogens with
better thermal stability and biophysical characteristics and also protected rhesus macaques
against RSV [113]. Further improvement comprised the design of template-free scaffolds
for structurally complex and discontinuous neutralizing epitopes, using the computational
protocol named Topobuilder [121]. As a proof of concept, the prefusion conformation
of the RSV F protein (PDB 4JHW) [103] was used to design immunomimetics for the
asymmetric and intermittent neutralizing epitopes sites 0 [103] and IV [122], as well as
for the continuous mota epitope (site II) (Figure 4). Remarkably, when boosting with
the epitope scaffolds after priming with the RSV F protein, the designed immunogens
elicited higher antibody titers against sites 0, II, and IV than boosting with the wild-
type F protein. Furthermore, nonhuman primates vaccinated with Trivax1 (an equimolar
combination of all 3 epitope presenting proteins) produced robust levels of cross-reactive
serum titers against RSV F, with the three sites being targeted equally [121]. These findings
are evidence that Topobuilder provides a promising epitope-focused vaccine approach,
with an exceptional degree of control over antibody specificities across naïve and primed
antibody expression profiles.
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Figure 4. Strategy for de novo design of a trivalent epitope-focused vaccine. The neutralizing
sites 0, II, and IV of RSV F were stabilized by de novo designed scaffolds using Topobuilder [121].
Topobuilder aided the construction of specific topologies that stabilize the antigenic motifs of the
RSV F protein. Subsequent design and folding simulations yield stable immunogens that were used
to generate a tri-scaffold vaccine. The combination of three scaffolds induced specific neutralizing
antibodies against RSV F in nonhuman primates.

6. Self-Assembling, Designed Nanoparticles for Geometric-Defined Oligomeric
Display of Antigens

Surface glycoproteins can be found at different densities on the viral envelope de-
pending on the virus. While HIV has a sparse decoration of the envelope protein on its
surface [123], influenza displays a tight network of HA and neuraminidase molecules [124].
Since the immune system is constantly exposed to this diverse array of multimeric gly-
coproteins, strategies including the oligomeric display of surface antigens are valuable
for vaccine development. As a pioneering work, Kanekiyo et al. demonstrated that ro-
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bust immune responses could be elicited when displaying HA proteins as a fusion to the
self-assembling, protein-based ferritin nanoparticle [125].

Using the Rosetta software suite, King et al. also developed an innovative approach for
designing cage-like nanomaterials by applying a combination of symmetric docking and
optimization of protein–protein interfaces [126,127]. This process was first illustrated for a
dual tetrahedron (T33) in which four copies, each with two distinct trimeric building blocks
were placed at opposite ends of the threefold symmetric tetrahedral axes. Subsequentially,
different assemblies, including two-component viral capsid-like shapes, have been gener-
ated and tested for the display of viral proteins as oligomeric immunogens [128]. In this
regard, Ueda et al. designed protein-based nanoparticles that enabled the multivalent pre-
sentation of homo-oligomeric class I fusion proteins such as HIV-I Env, influenza HA, and
the RSV F protein in their prefusion conformations [129]. The design of these multivalent
de novo designed protein nanoparticles showed that proximal geometrical placement of
termini of the antigens and the nanoparticle subunits would enable multivalent presenta-
tion, better stability, and unprecedented control over the antigen presentation [129]. Indeed,
increased antibody titers were observed for the self-assembling de novo designed nanopar-
ticle DS-Cav1-I53-50 displaying multivalent (20) copies of DS-Cav1 [39]: DS-Cav1-I53-50
induced threefold higher antigen-specific and ninefold higher neutralizing antibody titer in
mice when compared to the recombinant DS-Cav1, with similar profiles in nonhuman pri-
mates. Furthermore, it was demonstrated that a two-component, icosahedral nanoparticle
(I53-50) displaying the receptor-binding domain (RBD) of the SARS-CoV-2 S glycoprotein
also increased the neutralizing antibody response in mice and nonhuman primates [130].
Most recently, the quadrivalent display of different HA variants of four influenza vac-
cine strains (of years 2017, 2018, and 2019) on the same nanoparticle (qsMosaic-I53_dn5)
presented the first hetero-oligomeric particle (Figure 5) that results in broader protection
against multiple flu strains than the currently administered vaccines, in mice, ferrets, and
nonhuman primates [131]. The assumption is that the robust antibody response for each of
the protein nanoparticles stems is partially due to a dense array of displayed antigens that
lead to efficient B-cell receptor crosslinking [39] though precise display geometry plays a
central role as well.
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7. Targeting Sequence Shape Shifters: Influenza

As influenza viruses use antigenic variability to escape from the immune response,
one of the major challenges in developing influenza vaccines is in conferring effective
protection against the diverse antigenic forms of the virus [132]. Since current influenza
vaccines are only effective when the circulating strain is antigenically similar to the vaccine
strains, the design of broadly reactive or universal influenza vaccines is still an unmet
need [133].

During naturally occurring infections or after the influenza vaccination, neutralizing
antibodies are mostly produced against the viral HA protein [134,135]. This HA protein is
structurally composed of two domains known as the head domain, which mediates the
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attachment of the virus to the host cell receptor, and the stem domain, which promotes the
fusion between the viral and the cell membranes [136]. While the head domain denotes the
immunodominant region of HA proteins and comprises most of their antigenic variability,
the stem subunit is a more conserved subdominant domain [137]. Antigen design strategies
focusing on HA proteins have shown promising progress toward the development of
broadly reactive influenza vaccines. These design advances are divided into two main
avenues: head-based and stem-based approaches.

7.1. Head-Based Vaccine Design

As the head domain contains the receptor-binding site, most neutralizing antibodies
target this region to block the virus from binding to the host cell receptors [138]. Given
this immunologic pressure, epitopes at the globular head are continuously mutating to
avoid antibody recognition. Although targeting the head represents a great challenge
due to its antigenic variability, one protein design approach known as “computationally
optimized broadly reactive antigens (COBRA)” has been demonstrated to overcome the
head’s variability and produce immunogens eliciting broad immune responses [139–141].
COBRA technology consists of a multilayer consensus design of HA sequences. The HA
sequences are initially grouped by antigenic eras or phylogenetic subclades, followed
by different rounds of consensus sequence calculations (Figure 6). The final consensus
sequences designed with this method have successfully shown broad reactivity in H5N1,
H1N1, and H3N2 isolates [139–141].
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Figure 6. Strategies to design broadly reactive HA-based influenza vaccines. The top panel depicts
the COBRA design technology. The COBRA strategy uses diverse HA sequences and multiple rounds
of consensus sequence calculations to generate a unique immunogen that can elicit head-targeting
antibodies. The bottom panel shows the main protein-design approaches to redirect the immune
response towards the conserved HA stem domain. These strategies include (1) chimeric HA con-
structs consisting of a conserved HA stem domain (gray) and distinct HA heads from viruses absent
in humans (blue and orange regions); (2) headless HA proteins designed by removing the HA head
domain and introducing stabilizing substitutions at the stem; (3) modifications of HA glycosylation
sites to hide immunodominant epitopes at the HA head domain (e.g., hyperglycosylation of the head
domain). In this panel, the HA protein is shown in gray, while glycans are shown in light blue. The
glycans displayed are an artificial representation of this strategy and were drawn using GlyProt [142].
All figures were produced using PyMol [143] and the PDB 4m4y [144].
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7.2. Stem-Based Vaccine Design

A strategy to overcome antigenic variability is to direct the immune response towards
the conserved regions of the target immunogen. In HA proteins, the stem is highly
conserved across different influenza subtypes, and antibodies targeting this region have
proven to be broadly reactive [145–149]. However, due to the immunodominance of the HA
globular head, stem-directed immunity is minimally induced by vaccination or exposure
to influenza [150]. Different studies have revealed that stem-reactive antibodies can be
boosted when the dominant epitopes are inaccessible, or when there is continuous exposure
to antigenically divergent HA heads [150–154]. Based on these observations, three main
strategies have been successfully developed to elicit stem antibodies (Figure 6).

7.2.1. Immunization with Antigenically Variable Globular Heads

Sequential immunizations with synthetic chimeric HAs (cHAs) containing a conserved
stem domain but holding divergent globular heads have been demonstrated to boost stem-
specific antibodies [155–158]. These chimeric proteins are engineered by combining the
stem subunit from one influenza subtype with an irrelevant head from viruses absent in
humans. In this approach, B cells recognizing both head and stem epitopes are generated
during the primary immunization. However, upon subsequent immunizations, the preex-
isting memory B cells are recalled for conserved antigens. Since the immunodominant head
epitopes are antigenically distinct in each immunization, only stem-specific antibodies are
boosted [135]. This chimeric-HA immunization strategy is currently undergoing clinical
trials [159]. One variation of this approach has also shown promising results in the devel-
opment of universal influenza vaccines. In this modification, only the major antigenic sites
are replaced by diverse HA sequences rather than the entire globular head. The resulting
mosaic proteins are intended to boost the antibody response for stem antigens and for
conserved epitopes at the head [160–162].

7.2.2. Removal of the Globular Head

Analogous to the previous strategy, HA variants lacking the globular head or “head-
less” proteins have been shown to efficiently elicit anti-stem antibodies [146,163–172]. As
the removal of the head destabilizes the stem subunit, the incorporation of a trimerization
domain or the fusion of the stem antigen to a self-assembling ferritin nanoparticle has been
necessary to ensure the structural integrity of these immunogens. Both stabilized stem
immunogens have been proven to elicit broad immunity and are promising candidates as
broadly protective vaccines. The ferritin nanoparticles are currently being evaluated in
clinical trials [173].

7.2.3. Glycan-Masking of Immunodominant Epitopes

The third approach to redirect the immune response to the HA stem consists of conceal-
ing immunodominant epitopes at the globular head by introducing new N-glycosylation
sites. The glycosylation of these additional spots obstructs the access of antibodies to
the main head epitopes and facilitates the recognition of other immune, subdominant
regions [174–177]. The capacity to drive the immune response toward specific regions of
the HA protein has made this approach an attractive method of identifying novel antigenic
epitopes at both the head and the stem domains [176]. In addition to masking immun-
odominant regions, modifications in the HA glycosylation pattern have also been used to
increase the immunogenicity of conserved epitopes. In this regard, the removal of certain
glycans around stem epitopes has been found to induce a more potent immune response
against homologous, heterologous, and heterosubtypic influenza viruses [178].

8. Conclusions

The past decade has witnessed rapid strides in the development of methods for the
computer-aided design of immunogens and protein-based inhibitors that mainly target
viral fusion proteins. These successful approaches imply remarkable preclinical and recent
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clinical progress toward potent vaccine candidates broadly effective against respiratory
viruses. We believe they are promising solutions for the development of preventative and
therapeutic measures to tackle current and future infectious diseases.
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