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Mathematical models of cardiac electrical excitation are increasingly complex,

with multiscale models seeking to represent and bridge physiological beha-

viours across temporal and spatial scales. The increasing complexity of these

models makes it computationally expensive to both evaluate long term (more

than 60 s) behaviour and determine sensitivity of model outputs to inputs.

This is particularly relevant in models of atrial fibrillation (AF), where individ-

ual episodes last from seconds to days, and interepisode waiting times can be

minutes to months. Potential mechanisms of transition between sinus rhythm

and AF have been identified but are not well understood, and it is difficult

to simulate AF for long periods of time using state-of-the-art models. In this

study, we implemented a Moe-type cellular automaton on a novel, topologi-

cally equivalent surface geometry of the left atrium. We used the model

to simulate stochastic initiation and spontaneous termination of AF, arising

from bursts of spontaneous activation near pulmonary veins. The simplified

representation of atrial electrical activity reduced computational cost, and

so permitted us to investigate AF mechanisms in a probabilistic setting.

We computed large numbers (approx. 105) of sample paths of the model, to

infer stochastic initiation and termination rates of AF episodes using different

model parameters. By generating statistical distributions of model outputs,

we demonstrated how to propagate uncertainties of inputs within our micro-

scopic level model up to a macroscopic level. Lastly, we investigated

spontaneous termination in the model and found a complex dependence on

its past AF trajectory, the mechanism of which merits future investigation.
1. Introduction
Mathematical and computational models have become an increasingly popular

tool for investigating biological and physiological systems. The quantitative

capabilities of models can provide both unique insights into the mechanism of a

problem and predictive power beyond experimental or clinical preparations.

Once developed, a model can be used to test and generate future hypotheses in

a way that may not be possible in experimental settings. The holy grail of compu-

tational biology is to develop comprehensive models that describe both

mechanistic properties—for example, detailed molecular dynamics of biochemical

interactions in a living organism—and subsequent emergent phenomena.

Development of comprehensive models is constrained by current compu-

tational power as well as lack of data. Instead of building comprehensive

models, a more adaptable approach is to select a relevant spatial and temporal

scale of the phenomenon and devise models that suit a particular research
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question. Thus, for the same biological or physiological sys-

tems, a wide spectrum of models may coexist, which aim to

explain and predict the physiological process at different

length or time scales. By analysing these models separately,

researchers can gain a deeper understanding of the regimes

where the different quantitative models are adequate. Brid-

ging these models provides a way to propagate outputs

derived from one model into inputs for another model.

In computational cardiac electrophysiology, there exist a

range of models, which have been used to examine how subcel-

lular electrical processes influence the diffusion of activation

wavefronts across the heart [1]. Computing detailed biophysi-

cal models involves solving large systems of coupled ordinary

or partial differential equations, which is computationally

demanding. This limits both the number of simulations that

can be run as well as their duration. It is therefore difficult to

explore the sensitivities of a given model to input parameters

and initial conditions. This, in turn, means that model outputs

cannot easily be translated into inputs for models at other

scales, such as those describing progression of patients through

care pathways [2].

Atrial fibrillation (AF) is a cardiac arrhythmia that remains

poorly understood despite progress in the development of

detailed cardiac electrical models, experimental work and

clinical studies. AF presents a prevalent heart rhythm disorder

that significantly increases stroke risk in humans [3]. Improv-

ing identification, management and treatment of AF remains

an important challenge [4]. AF consists of episodes of rapid

and self-sustaining electrical excitation in the atrium of the

heart, which punctuate periods of normal sinus rhythm

when activation is driven by the heart’s natural pacemaker.

As the disease develops, episodes of AF become longer and

more frequent until AF becomes permanent. Episode duration

can vary between seconds and weeks, and constitutes the basic

clinical marker to classify AF progression in patients. The abil-

ity to model and predict episode duration for a given patient

would therefore be of significant clinical interest. In a previous

publication [5], we described a biophysically motivated agent-

based stochastic model to simulate progression of AF in a

patient from first diagnosis, based on generating a time series

of AF episodes with varying durations. The model parameters,

which predicted episode start times and durations, were

estimated from the literature where possible.

The duration of an AF episode is determined by mechan-

isms underlying its initiation and termination. AF is thought

to be driven by rapid and self-sustaining electrical activity

predominantly occurring in the left atrium [4,6]. An impor-

tant mechanism is re-entry, in which a circulating activation

wave continually propagates into recovering tissue. Several

mechanisms have been associated with re-entry initiation,

including atrial fibrosis [7], pulmonary vein triggers [6],

and action potential and conduction velocity restitution [8].

Meanwhile, mechanisms of AF termination remain a poorly

researched area, in part, owing to the computational cost of

evaluating complex cardiac electrophysiology models over

long periods. Initiating and maintaining an AF episode up

to its termination in a simulation of a biophysically detailed

model requires significant computational resources [9] if the

episode lasts for more than a few seconds and/or a detailed

atrial geometry is used.

Cellular automata (CA) models of the electrical activity on

the surface of the heart are a simplified representation of car-

diac electrophysiology, and the very first computer model of
AF was a CA model [10]. They provide an intuitive way of

describing how cardiac cells activate (depolarize) and deacti-

vate (repolarize) by using simple update rules for the state of

a single cell. These are usually based on the present states of

the cell itself, and of its nearest neighbours. Since the original

five-state Moe model [10], a series of studies have established

that CA models of electrophysiology can represent behaviours

seen with more detailed biophysical representations of excit-

able media [11–14]. CA models are simple to program and

computationally cheap to run, allowing large numbers of

simulations for little cost, and more detailed CA models have

recently been devised [15,16].

The motivation of this study was to use a CA model as a

computational platform to investigate stochastic initiation

and termination of AF episodes. Our contribution can

broadly be summarized as follows. First, in contrast to pre-

vious CA models [15,16], which used a simplified geometry

such as a two-dimensional sheet with periodic boundary con-

ditions, we generalized to a geometry representing the

anatomical topology of the left atrium. While this is still

stylized, we think this is a step towards reality. We show

that the model is capable of inducing and terminating AF

episodes stochastically. These phenomena are in line with

the predictions of current state-of-art mechanistic models,

and we are confident the CA model captures the essential

dynamics of the real physiological system. Thus, we propose

that CA models are a reasonable compromise between reality

and computational efficiency when large numbers of long

duration simulations are required. Second, we present a

framework to analyse and infer the rate of stochastic initiation

and termination of AF episodes. With the ability to run large

numbers of simulations over long durations, we were able to

accurately quantify these rates. This is necessary in order to

be able to predict—in a statistical sense—the future pro-

gression of patients at a longer time scale. For example,

these rates can be used to connect the CA model to the

model we proposed to represent AF progression over years

and decades [5]. We propose a framework of statistical analysis

of patient trajectories, and apply it to a set of patient trajec-

tories, generated from the CA model. We believe the ideas

suggested may also be applicable to data from mechanistic

models of other physiological systems, when computational

resources are available to generate sufficiently many sample

paths from such models.
2. Methods
2.1. Model geometry
Electrical activation was modelled on an idealized spherical geo-

metry, representing the left atrium of the human heart. We did

not include the right atrium, because the main drivers of AF are

believed to originate in the left atrium. In order to approximate

the dimensions of the human left atrium, the volume of the

sphere representing the left atrium was set to 40 ml [17], corre-

sponding to a radius of 21.2 mm. We rescaled this geometry to

obtain a unit sphere.

We implemented a Moe-type CA [10] in which the dynamics

take place on discrete nodes on the surface of the sphere. To place

the nodes on the spherical surface as uniformly as possible, we

used an icosahedral dissection [18] to distribute 10 242 points

evenly on the sphere, as visualized in figure 1. We also investi-

gated an alternative way to distribute nodes using an
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Figure 1. Visualization of the spherical geometry representing the left atrium, with nodes distributed regularly over the surface. Anatomical features (black) were
rendered electrically inactive. LS/LIPV, left superior/left inferior pulmonary vein. RS/RIPV, right superior/right inferior pulmonary vein. MV, mitral valve. Fibrotic cells
(red) were distributed randomly over a disc centred on the posterior atrial wall.
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Archimedian spiral [19]; this method can be generalized to non-

spherical surfaces.

Polar coordinates (u, f ) were used to specify the locations of

the nodes. We defined the anterior and posterior direction to be

(u, f ) ¼ (p/2, 0) and (p/2, p), respectively.

On the geometry, the anatomical objects—four pulmonary

veins (PVs) and the mitral valve (MV)—were set to be electrically

inactive. The MV, modelled as a circular area centred on the

south pole (u, f ) ¼ (p, 0), was estimated to have circumference

of 85 mm [20]. The four PVs were modelled as circular areas

with a base radius of 5 mm [21] corresponding to 0.236 scaled

units. The PVs were placed at (u, f ) ¼ (2p/5+p/10,+p/3).

Nodes in these areas were permanently removed, and the remain-

ing nodes comprised the substrate for the CA to take place.

2.1.1. Fibrosis
Fibrosis on the posterior atrial wall is thought to play an impor-

tant role of inducing AF re-entry [1,7,22], and was modelled by

removing nodes in the corresponding area. To model the spatial

heterogeneity of fibrosis, we removed nodes according to a

probability distribution set to be normally distributed, centred

at (u,f ) ¼ (0.65p, 0), with a standard deviation equal to 0.4

sphere radii. The number of nodes removed (denoted FC) quan-

tified the severity of fibrosis. Time-dependent fibrosis was not

investigated in this study, as structural modelling of atrial

tissue with fibrosis occurs at a time scale much slower than

that of re-entrant activity [23].

2.2. Dynamics of the cellular automaton model
A multi-state Moe-type CA was used to represent electrical exci-

tation in each node (or ‘cell’). Each node on the sphere could be

in one of a number of discrete states, labelled 0, 1, 2, . . . . In this

type of discrete-time model, an action potential is represented

by a time delay, during which an excited cell may trigger neigh-

bouring cells within an interaction radius but cannot itself be re-

excited. In our model, the cell was deemed ‘at rest’ at state 0 and

‘activated’ if its state was greater than 0. A cell at rest would

become excited if the number of ‘recently excited’ neighbours in

a local radius exceeded a threshold, upon which it changes from

state 0 to state RP, the RP or action potential duration, at the

next time step. A neighbour was considered to be ‘recently

excited’ if it had been activated in the past four time steps. This

number was chosen to achieve realistic spread of excitation (see

below). Following excitation, the activated cells reduced their

state by one each time step until the state reached 0, i.e. the

‘rest’ state. Each discrete time step in our simulation corresponds

to approximately 2.5 ms in real time. In sinus rhythm, RP took

values of about 120 time steps in the model (variations are

described below), this representing a physiological RP of 300 ms.

To avoid grid discretization effects on the simulations owing to

non-uniformities of the icosahedral mesh, the interaction radius

between cells on the sphere was set to be greater than the length

scale of the typical internode spacing (for complications, see
Ventrella [24]). The speed at which an excitation wavefront could

propagate (conduction velocity) was determined by two free par-

ameters: the search radius and the threshold of number of active

neighbours. We carefully calibrated both the active neighbour

thresholds (¼ eight nodes) and local search radius (2.544 mm), cor-

responding to a region containing�36 nodes to achieve a baseline

conduction velocity across the sphere of 0.5 m s21. Thus, the total

time taken to travel across the unit sphere (defect-free) from

north pole to south pole was �133 ms.

2.2.1. Sinus rhythm
The sinus node (SN) is located in the right atrium, so in our

model, sinus rhythm was represented by the regular activation

of a region of cells proximal to the right pulmonary veins (a cir-

cular area centred at (u, f ) ¼ (5p/12, p/2) with radius 1.696

mm), which is typically the site of earliest activation in the left

atrium following right atrial activation. The sinus period was

set at 1 Hz for all simulations, unless otherwise specified.

2.2.2. Pulmonary vein triggers
Bursts of spontaneous activation near the PVs are thought to be

triggers of re-entry [6]. To model PV bursts, a 2 mm annulus

around each of the four PVs was set to be capable of autoexcitation.

In each time step with probability p, one node in these annulus

regions and its surrounding nodes (set as those points within

2.12 mm to the selected node) spontaneously fired to its maximal

state. The location of this spontaneous firing was chosen uniformly

on the annuli. The probability, p, quantifies how often these bursts

occur; the corresponding burst rate in a continuous-time setting

can be computed using p/(time step) ¼ continuous-time bursting

rate BR, which is set as a model parameter. Note that triggers were

stochastic and occurred on average BR times per second, rather than

occur periodically every one per BRs.

2.2.3. Restitution
To model the effect of restitution where the RP (i.e. action poten-

tial duration) of a cell shows sensitivity to its previous rate of

excitation, we implemented the following (non-dimensionalized)

formula [25]

RP ¼ 121� 1� B exp �DI

K

� �� �� �
, ð2:1Þ

where DI is the diastolic interval (the quiescent interval between

the end of one activation and the following beat), and B, K are par-

ameters controlling the steepness of the curve. K had units of

discrete time (¼2.5 ms), and B was dimensionless. The floor func-

tion enforced that RP was an integer, which in combination with

scale factor 121, allows a maximal RP of 120 time steps. RP was

subject to a minimum of 64 time units, i.e. RP ¼max(equation

(2.1),64). This equates to 160 ms (considered the shortest physio-

logically relevant RP). We investigated the dependence of the

transition rate into AF episodes on parameters B and K.
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Figure 2. Snapshots of the simulation using a Mollweide projection. The
centre of the projection is at the posterior atrial wall. Fibrotic nodes (red),
which cannot be initiated, are set to a constant state. (a) In sinus rhythm,
SN breakthrough starts proximal to the right pulmonary veins (PVs), and
cells are immediately excited from 0 to (maximal refractory period, RP)
state 120, decreasing its state by 1 each time step until it reaches 0. Cells
nearby are excited to 120 if the number of neighbouring cells which are
excited exceeds 8, and this starts a wavefront of activation over the
sphere, with slower activation through fibrotic areas and around PVs.
(b) In re-entry, existing wavefronts self-perpetuate across the domain, and
SN breakthrough does not initiate wavefronts of excitation. RP restitution
has meant that cells excite to a lower state compared with sinus rhythm,
and this also leads to a shorter wavetail.
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2.3. Implementation
The model was implemented with custom code written in Cþþ,

and is publicly available on Github at https://github.com/

dblueeye/atrial-fibrillation-cellular-automata. Links to sample

movies may also be found. The simulation ran at 16� speedup,

i.e. 16 s of simulated time could be evaluated in 1 s. The

skeleton code of the simulation is detailed below to clarify

implementation steps:

(1) Initiation: set up location of the nodes on the sphere. Remove

nodes on areas of the PV and MV. For each sample run, model

fibrosis by removing a fixed number of nodes according to a

spatial probability distribution. Briefly, assign a probability

to each node, generated from a normal distribution centred

at (u, f ) ¼ (0.65p, 0) with a standard deviation 8.48. Then,

arrange the probabilities into a list and compute the cumulat-

ive probability distribution F(i) with respect to the list. The

inverse transform sampling was applied to the discrete distri-

bution to select the node to be taken out. Repeat the procedure

until FC numbers of nodes were taken out. Generate and store

the nodes representing SN breakthrough. Generate and store a

list of possible PV bursting locations and the nodes which

would burst in a group. Generate a neighbourhood map

between the nodes.

(2) SN breakthrough: check if in this time step SN breakthrough

occurs. If so, activate the nodes of SN to their maximal

state as follows: using the cycle length (CL; time bet-

ween SN pacing) and RP from the previous cycle, compute

DI ¼ CL 2 RP. Use equation (2.1) to compute and update

the RP of this node, and activate its state to RP. If in this

time step SN breakthrough does not occur, the state of SN

breakthrough nodes is reduced by 1.

(3) PV bursts: with probability p, there will be a PV burst. If this

happens, choose one of the locations where PV bursts can

take place. As described above, a group of nodes in that

region is activated to their maximal state, and the new RP

is computed and updated using equation (2.1).

(4) Rest of the nodes: for the remaining nodes, check if any neigh-

bours in the interaction range have been activated in the past

four time steps (10 ms). If so, this node is activated to its maxi-

mal state, RP is again updated according to equation (2.1).

Otherwise, the state of the node is reduced by 1.

(5) Repeat from 1 until end of simulation.

3. Results
3.1. Stochastic initiation of atrial fibrillation
Simulation results were visualized using an equal-area Moll-

weide projection [26], shown in figure 2. During sinus rhythm

without PV bursts (figure 2a), activation of the left atrium

began by SN breakthrough near the right PVs; wavefronts

passed around the larger PVs smoothly with a conduction

speed of 0.5 m s21. When wavefronts passed through areas of

fibrosis, conduction slowing and conduction block were

observed occasionally when the number of activated nearest

neighbours remained subthreshold. When PV bursts were

introduced, triggers initiated activation near single PVs at a con-

stant rate; in some simulations, this led to transient re-entrant

wavefronts forming, and in certain cases, these became perma-

nent re-entrant wavefronts (figure 2b). Movies were uploaded

to YouTube, and can be found on the Github project page, see

the supporting information.

While the complete course of the stochastic process (for each

node) could be stored, the resulting data file would be imprac-

tically large. Instead, we evolved the CA without exporting the
dynamic states at all time steps. As our aim was to investigate

statistical properties of the system initiating and terminating

AF (defined as self-sustained activity differing from sinus

rhythm), two AF classifiers were developed. We stored only

the seeds of the pseudo-random number generator of those

sample paths, which were classified as ‘in AF’ (details described

below). If needed, the collected seeds could recreate the sample

paths for subsequent analyses. This procedure permitted gener-

ation and storage of up to 104–106 simulation runs, necessary to

accurately compute the statistics of AF episodes, including the

sampling of rare events such as termination.
3.2. Probability of initiating spontaneous re-entry and
atrial fibrillation

An exploration of the model parameter space was undertaken

to determine the primary mechanisms of re-entry initia-

tion. Each simulation was started in sinus rhythm (by setting

p ¼ 0), then PV bursts of varying time durations were initiated

by setting p;BR/400, to simulate PV triggers on the domain.

Following a period of time with PV bursts, p was reset to 0,

and the simulation evolved for a further 10 s observation

https://github.com/dblueeye/atrial-fibrillation-cellular-automata
https://github.com/dblueeye/atrial-fibrillation-cellular-automata
https://github.com/dblueeye/atrial-fibrillation-cellular-automata


time (s)

observationPV burstSR

FC BR (B, K)

pr
op

or
tio

n 
of

 a
ct

iv
at

ed
 c

el
ls

(a)

(b)

(c)

1

0

1

0

0.050

0.025

100
200

300

400
500

10 Hz
20 Hz

40 Hz

60 Hz
80 Hz

(0.50, 30)
(0.75, 35)
(1.00, 40)
(1.25, 45)
(1.50, 50)

1 s
2 s
3 s
4 s
5 s

1 s
2 s
3 s
4 s
5 s

1 s
2 s
3 s
4 s
5 s

0

0.050

0.025

0
100 200 300

FC
400 500 10 20 40

BR (Hz)

restitution steepness

60 80

(0
.5

0,
30

)

(0
.7

5,
35

)

(1
.0

0,
40

)

(1
.2

5,
45

)

(1
.5

0,
50

)

0.050

0.025

0

0.050

0.025

0

0.050

0.025

0

0.050

0.025

0
1 3

PV burst duration (s)

pr
ob

ab
ili

ty
 o

f 
re

-e
nt

ry
pr

ob
ab

ili
ty

 o
f 

re
-e

nt
ry

PV burst duration (s) PV burst duration (s)
5 1 3 5 1 3 5

–2 –1 0 1 2 3 4 5 6 7

–2 –1 0 1 2 3 4 5 6 7

Figure 3. (a) Protocol for investigating AF initiation. Starting in sinus rhythm (SR), PV bursts of up to 5 s were initiated, after which a 10 s observation window with
sinus pacing was simulated to probe existence of AF. (Top/bottom sample path: with/without AF. In the top sample path, the sinus breakthrough region cannot be
excited by sinus pacing, because re-entrant waves keep re-exciting the region from state 0.) (b) Probability of re-entry (the proportion of simulations finishing in re-
entry over 105 sample paths) as a function of the PV burst duration, for the model parameters fibrosis density (FC), PV bursting rate (BR), and restitution steepness
(B,K ). The slope of the curves quantifies the continuous-time rate to induce AF re-entry. Discrete markers: simulation results; continuous lines: best linear fits. (c)
Data replotted as a function of model parameters, with each line representing PV burst duration, which highlights the non-monotonic dependence on model
parameters for BR (middle) and restitution steepness (B, K ). We have joined the scatter plots in this panel for optimal visualization of the non-monotonicity
in this panel.
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window (figure 3a, snapshots). The proportion of activated

cells (in all nodes excluding fibrotic ones) at each time point

was tracked, as a simple classifier of re-entry; simulations in

which the proportion of activated cells remained non-zero
over the entire observation window were deemed in re-entry.

An example can be found in the top panel of figure 3a; the

first time series remained in re-entry, whereas the second

time series returned to sinus rhythm. The proportion of



Table 1. Numerical results of best fits to the model results using the parameter sets (first column), for simulations up to 5 s using a two state linear transition
model (second column), and up to 300 s using a two state nonlinear model (third and fourth columns). r1 is the rate of AF initiation in both models, and r2 is
the rate at which initiation is inhibited for the nonlinear model. In specific parameter sets, r1 , r2 which suggests a very low rate of AF initiation.

parameter (FC,BR,B,K ) best fit r1 in figure 3b,c best fit r1 in figure 5a,b best fit r2 in figure 5a,b

(300, 0.05, 1, 40) 4.395 � 1023 4.095 � 1023 6.796 � 1025

(100, 0.05, 1, 40) 1.603 � 1023 1.567 � 1023 9.838 � 1025

(200, 0.05, 1, 40) 2.646 � 1023 2.569 � 1023 9.377 � 1025

(400, 0.05, 1, 40) 5.558 � 1023 5.106 � 1023 7.403 � 1024

(500, 0.05, 1, 40) 7.451 � 1023 4.553 � 1023 3.562 � 1023

(300, 0.025, 1,40) 1.395 � 1023 1.255 � 1023 2.720 � 1029

(300, 0.1, 1, 40) 4.069 � 1023 4.095 � 1023 6.796 � 1025

(300, 0.15, 1, 40) 2.403 � 1023 2.516 � 1023 1.027 � 1028

(300, 0.2, 1, 40) 1.371 � 1023 1.580 � 1023 5.350 � 1024

(300, 0.05, 0.5, 30) 2.451 � 1024 3.883 � 1026 1.908 � 1023

(300, 0.05, 0.75, 35) 1.108 � 1022 1.125 � 1022 1.123 � 1025

(300, 0.05, 1.25, 45) 9.469 � 1024 8.774 � 1024 1.463 � 1025

(300, 0.05, 1.50, 50) 4.707 � 1024 3.417 � 1024 4.371 � 1024
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sample paths leading to re-entrant wavefronts determined the

probability of a given parameter set causing re-entry.

We varied the following parameters: number of fibrotic cells

(FC), PV bursting rate (BR) and restitution steepness (B, K).

Baseline simulation parameters were: FC ¼ 300 (points), BR¼

20 Hz, B¼ 1.0 and K ¼ 40 (discrete-time unit, ¼ 100 ms), and

we point-mutated the parameters (FC,BR,B, K)—see table 1

for the full range. For each parameter set, PV burst duration

was varied from 1 to 5 s, and 105 sample paths were generated

to compute the probability of inducing re-entry. Results are

summarized in figure 3b,c.

We found the probability of AF re-entry depended line-

arly on the duration of the PV bursting when this duration

was less than or equal to 5 s. This suggests AF initiation

may be modelled by a simple coarse-grained model in con-

tinuous time, in which initiation occurs with constant rate,

written as follows:

Sinus rhythm! AF with a rate r1, ð3:1Þ

where the transition rate r1 is the slope of the linear response

shown in the left panel of figure 3b,c. We performed a linear

fit to the numerical data, and found the rate was monotoni-

cally dependent on fibrosis: r1 is larger for higher FC.

Estimated values for r1 are reported in table 1.

We found a non-monotonic relation between re-entry prob-

ability and PV burst rate BR, seen in the middle panels of

figure 3b,c. A PV burst was most likely to induce AF when

BR was between 20 and 40 Hz. This could be due to ‘crowding’

effects in the case of BR, reducing excitable regions or increas-

ing the likelihood of wavefront collision and termination of re-

entry. Similarly, the rate into re-entry had a non-monotonic

response to the restitution parameters, increasing AF initiation

rate then decreasing as the parameters were increased, steepen-

ing the restitution slope, as shown in the right panels of figure

3b,c. For increased restitution steepness (larger (B, K)), a poten-

tial mechanism could be that increased spatial heterogeneity of

RPs is mediated by shorter refractory tails. These observations
suggest that the CA model is able to capture complex interplay

between the mechanisms inducing AF.
3.3. Estimating time of atrial fibrillation initiation using
a dynamic classifier

In the previous section, we investigated the hypothetical case

where we controlled PV burst duration independently and

subsequently observed for AF. In reality, PV bursts occur at

random and cannot be simply turned off physiologically—

AF may have initiated before the end of the burst period.

Thus, the previous classifier is insufficient for estimating

the true time of AF initiation. An alternative classifier to

observe, record and track re-entry was thus proposed to

estimate AF initiation time.

To model this, we again used the proportion of activated

cells to be our ‘signal’, and defined an alternative AF classi-

fier: tracking the proportion of activated cells out of total

(non-fibrotic) cells, above a non-zero threshold for a period

of time. We considered this analogous to clinical monitoring

methods such as the electrocardiogram, which detect absence

of regular peaks (e.g. P waves) for defined periods. Similar

methods have been adopted by Manani [16]. In the following

analysis, we set the non-zero threshold to be 0.5 and the time

period to be 2 s. Using this definition, the classifier operates

without perturbing the CA, and the onset time of AF re-

entry is a random variable: in different sample paths, the

first time the classifier is triggered is random.

We refer to the first time the classifier indicates AF as t. This

differs from simulation to simulation, and is random. We simu-

lated 105 samples for selected sets of parameters to compute the

cumulative distribution function s(t) ¼ Prob[t . t], the prob-

ability that the classifier is not activated before time t. This

monotonically decreasing function quantified the statistics of

the random transitions into the first re-entrant episode: the

quicker the cumulative distribution function decays, the

faster the system transitions to AF on average. The results are
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presented in figure 4. The numerical results suggest that the

cumulative distribution function is exponential, a signature

that the waiting time distribution is also exponential, confirm-

ing the simple coarse-grained model with constant rate in

equation (3.1).

This analysis suggested a monotonic relation to all par-

ameters, which differs from the first classifier, where burst

rate BR showed non-monotonic dependence. We observed

that the increased number of PV bursts at high bursting rates

raised the proportion of activated cells, triggering the second

classifier, but without leading to AF under the definition of
the first classifier. To test this observation, we performed the

following simulation: after the second classifier identified a

re-entrant episode, we turned off the PV bursts and evolved

the system for another 10 s. We excluded the sample paths

which did not exhibit re-entry at the simulation endpoint, fol-

lowing the first classifier. For all parameter sets except the

high BR ¼ 80 Hz case, more than 94% of re-entrant episodes

identified by the second classifier led to self-perpetuating

re-entry. In the BR ¼ 80 Hz case, only 16% led to re-entry.

This observation showed the second classifier, albeit

realistic in practice, overestimated the transition rate into AF.
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3.4. Longer durations of pulmonary vein bursts suggest
existence of spontaneous atrial fibrillation
termination dynamics

Using the analysis described above, we obtained a quantitative

estimate of time scales for transition to AF. Taking the baseline

parameter set (FC, BR, B, K) ¼ (300, 20, 1, 40), both classifiers

estimated an �5 � 1023 s21 transition rate into AF; in other

words, sinus rhythm is maintained under the influence of PV

bursts for �200 s. In addition, we would expect all sample

paths to transit into AF if we waited long enough.

To test this assertion, we extended the analysis in figure 3b,c
with a longer PV burst duration. For each parameter set, we

simulated 5000 sample paths to compute the probability that

the sample had transitioned into AF. The results are shown

in figure 5. For some parameter sets, after a long period of

PV bursting, the probability did not converge to 1.0 (e.g. for

FC ¼ 500). In other words, the coarse-grained model equation

(3.1) did not sufficiently capture AF dynamics when the PV

burst duration was increased.

We thus generalized the coarse-grained model into a

two-state model with a stochastic initiation and termination

of AF under conditions of PV bursting, where SR represents

sinus rhythm:

SR! AF with rate r1 ð3:2aÞ

and

AF! SR with rate r2: ð3:2bÞ

Because we start in sinus rhythm, the initial probability of

AF at t ¼ 0 is always 0 (and 1 for sinus rhythm). The temporal
behaviour of the probability to be in AF can be calculated

using standard methods [27], and we find

Prob½in AF at time t� ¼ r1

r1 þ r2
½1� e�ðr1þr2Þt�: ð3:3Þ

A two-parameter fit was performed for each simulated parame-

ter set, and the best fit is displayed in figure 5. Corresponding

values of r1 and r2 are reported in table 1. The value r2 quantifies

the time scale at which stochastic AF initiation is inhibited by

constant PV bursts. Comparing the relative values r1 and r2,

with high FC or low BR, inhibition of AF initiation dominated

the process (r1 , r2) and the response of the termination rate to

the parameters was also non-trivial.
3.5. Estimates of spontaneous atrial fibrillation initiation
and termination times

To propagate results to our previous model of long time scale AF

progression [5], we attempted to project a two-state stochastic

model to predict progression of AF at longer time scales. Physio-

logically, PV bursts occur in acute time periods (�1 s [6]) rather

than occur chronically. To model this phenomenon, we

proposed the following two-stage and two-state model:

PV bursts OFF�k1��! PV bursts ON ð3:4aÞ

and

PV bursts ON�k2��! PV bursts OFF: ð3:4bÞ

When PV bursts are in ON state,

SR�r1��! AF with rate r1 ð3:5aÞ
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and

AF�r2��! SR with rate r2: ð3:5bÞ

Otherwise, the state of the system remains in SR/AF, respect-

ively. Here, 1/k1 and 1/k2 quantify the average duration of the

resting state (no PV bursts) and active state (with PV bursts),

respectively. Short trains of bursting mean that k2� k1. Selected

parameter regimes were tested (data not shown) and prelimi-

nary results showed the coarse-grained model equations (3.4)

and (3.5) faithfully projects the progression of the CA model

for a range of parameter regimes. However, at much longer

time scales � Oð1=k1,1=k2Þ, there were notable discrepancies.

We investigated these differences in the following section,

which suggests existence of higher-order states of AF dynamics.

3.6. Fourier analysis revealed higher order dynamics of
atrial fibrillation

Our numerical simulations yielded many (�104) sample

paths which ended in AF re-entry. Fourier analysis was

applied to sample paths from the baseline parameter set

where re-entry was initiated (corresponding to the ‘obser-

vation’ phase of the time series shown in figure 3a, top

panel). Results for 200 sample paths are shown in figure 6.

For 5 s PV burst duration (figure 6a), we visualized sample

paths along with the Fourier analysis, and observed that the

dominant mode �5 Hz corresponds to the period of a single

re-entrant wavefront. Subdominant half modes �2.5 Hz

corresponded to the period of points that experienced 2 : 1 con-

duction block, e.g. points near one of the PVs which have

previously been fast paced. There also existed higher harmonics,

to which we did not seek to fit a physiological interpretation.

There was a notable variability in the Fourier spectrum

for each sample path. This reflected the stochasticity of the

system—including the quenched heterogeneity of RP, fibrosis

and dynamical randomness from PV bursts—which propa-

gated to the dynamics of re-entry modes. As the speed of

the travelling wave is fixed at conduction speed 0.5 m s21, the

dominant frequency is inversely proportional to the path

length the wavefront travelled in one cycle. Both the duration
of the re-entry and the length of cycle path exhibited �20%

variability. We also examined the case when PV bursts lasting

150 s were applied (figure 6b), observing that the variability

of the spectrum appeared smaller compared with the 5 s

case. This suggests longer duration of PV bursts tend to

drive the system into a stable dynamical mode that is hard to

perturb. By comparing visualizations alongside the Fourier

spectrum, we also identified that multiple 2 : 1 conduction

blocks formed more frequently, and higher-order rotors were

identified. Two representative snapshots are presented in

figure 6a,b, top panel.

This analysis shows that even when the model state was

classified as ‘in AF’, there can be multiple modes. The follow

on question is whether the complexity of an AF episode affects

its stability and its likelihood to terminate, either spontaneously

or following intervention. For a single re-entrant wavefront,

a short PV burst at the right time and location terminated

AF (movie on YouTube, see the supporting information). This

led to an investigation into spontaneous termination of AF in

§3.7, comparing termination rates for different AF modes, to

infer likely mechanisms of termination.
3.7. Investigation into stochastic atrial fibrillation
termination suggests stable and unstable
re-entry modes

Observation of simulations which generated figure 5 indicated

stochastic termination of AF could be a direct result of PV

bursts. To test this hypothesis, we randomly collected 500

sample paths ending in AF in previous experiments and per-

formed 50 extended simulations on each. Recall that AF was

induced by a set of PV bursts over some duration, say T1, in pre-

vious experiments. After AF was initiated, we waited a time

window T2 without PV bursting, and applied another set of

PV bursts (1 s duration), and observed if re-entry was termi-

nated after the second set of PV bursts had been applied.

A schematic diagram of this is shown in figure 7a.

Figure 7b shows the termination probability significantly

depends on T1. For T1 ¼ 1 s, it was very likely to terminate
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AF, with probability approximately �0.3, and it was

independent of T2. For T1 ¼ 5 s, termination probability was

of order �0.1, and for T1 ¼ 150 s the probability went

down to order 1023.

This analysis suggests two modes of AF: some re-entrant

circuits can be terminated easily by PV bursts, and others

cannot. In figure 7c, we show probability to termination,

ordered by each sample path in the y-direction and each wait-

ing window duration T2 in the x-direction. A clear alignment in

the x-direction of either blue or white stripes showed that if a

sample path can be terminated, the probability of termination

does not critically depend on T2; if the sample path cannot be

terminated, most likely, it cannot be terminated for any T2.

The longer T1 (the duration of the first set of PV bursts to

induce re-entry), the smaller the proportion of unstable AF

(episodes which can be terminated). Thus, the overall prob-

ability to terminate AF is orders of magnitude smaller than

AF induced by shorter T1.

We therefore hypothesized that activation and termination

can be modelled using the multiple-state model:

SR O unstable AF ð3:6aÞ

and

SR! stable AF: ð3:6bÞ

Results suggest that the transition rates are not constant and

critically depend on the duration of PV bursts. To quantify

transition rates, a classifier identifying the signal state must

be developed; we aim to develop this in the future. Our pre-

sented framework can be applied to measure transition rates

once a reliable classifier is implemented. We remark that the
multiple-state system has a ‘memory’ for marginal observables

(in AF or not) in line with our previously proposed hidden state

binary model [5], which can be used to project the progression

of AF over long time scales.
4. Discussion
In this study, we investigated stochastic onset and termination

of AF episodes by using a CA model on a two-dimensional

sphere, with an equivalent topology of the human left atrium.

We demonstrated the capability of the model to generate

large sets of sample paths to infer the statistical properties of

initiation and termination of re-entry and AF (up to Oð106Þ
sample paths and for duration approximately Oð104Þ s). Three

potential arrhythmogenic mechanisms were investigated, fibro-

sis density (FC), pulmonary vein bursting rate (BR) and RP

restitution steepness (B,K). By probing this parameter space,

we investigated the probability of AF onset and termination

resulting from PV bursts.

We found a linear dependence between burst duration and

probability of re-entry initiation for all parameters for short PV

burst durations. Increased FC led to a linear increase in prob-

ability of initiating re-entry, but there was a non-monotonic

relationship between probability of initiating re-entry and

both BR and restitution steepness. One possible explanation

is that while increased BR and steeper restitution both act to

promote re-entry, these mechanisms may also act to promote

the termination of re-entry by wavefront collision. When PV

burst duration was increased, probability of re-entry at simu-

lation endpoint did not increase linearly, such that at high

FC and high BR, likelihood of re-entry remained constant.
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The behaviour of the model depends on parameters in a

non-trivial way, which suggests the existence of complex

mechanisms that inhibit or suppress AF initiation, and may

even terminate re-entrant circuits before they have fully

formed. By fitting a two state nonlinear model to our simu-

lation outputs, we estimated initiation and inhibition rates r1

and r2 for given parameter sets.

Finally, we analysed a subset of the sample paths in AF,

and found existence of stable and unstable AF modes. A

second set of PV bursts could spontaneously terminate a pro-

portion of induced AF episodes, with termination probability

reducing, subject to duration of the first PV bursts.

This study offers an alternative novel methodology and

framework for investigating mechanisms of spontaneous AF,

which differ from conventional modelling and experimental

studies in its capability for rapid statistical sampling of

longer duration episodes. Our findings and conclusions are

set out and discussed in the subsequent paragraphs.

4.1. Cellular automaton models of cardiac
electrophysiology

Although CA models have been superseded in popularity by

more biophysically detailed models [28], CA models show

similar tissue scale behaviours [11–14], and thus are still

valuable both in stand alone theoretical studies and combined

with clinical investigations [15,16,29,30]. Our approach

complements studies by Manani et al. [16], who used a CA for-

mulation to investigate the effect of time-dependent fibrosis on

arrhythmia susceptibility. Our model represents variability

and uncertainty through its stochastic formulation and the

large number of sample paths, and thus permits a systematic

investigation within the model framework, while accepting

model limitations. A major limitation of the CA model com-

pared with continuum models is its inability to directly

model the mechanism of conduction slowing and CV restitu-

tion, although most other potential AF mechanisms [31] may

be handled with the CA formulation.

4.2. Model parameter space
In this study, we fixed the size and shape of the left atrium, and

the size and location of anatomical objects. We did not include

the left atrial appendage, and assumed that location of SN

breakthrough into the left atrium was fixed. Heterogeneity

was investigated by randomly varying initial RPs, rather

than by region specific heterogeneity in parts of the left

atrium. We recognize that these are all parameters which

may vary between individuals, and may significantly impact

probability of AF initiation and termination. We chose to

focus on biophysical mechanisms rather than on anatomical

variability, and recognize that not only is the potential par-

ameter space vast, but also that additional investigations into

the effects of these parameters are important.

4.3. Atrial fibrillation onset
Recent studies have investigated mechanisms related to elec-

trical and structural remodelling, highlighting the importance

of inter-patient variability. McDowell et al. [22,32] found that

combinations of fibrosis subtypes were proarrhythmic and

that patient-specific distribution of fibrosis had a major

impact on AF initiation, and anchored wavefronts to specific

atrial regions, with other electrophysiological changes not
significantly altering this behaviour. Krummen et al. [33]

reported that steepening AP restitution slope in patients

initiated re-entry, with the associated computational study

identifying specific ionic pathways responsible for restitution

steepening. Regional electrical heterogeneity of the atria was

investigated by Colman et al. [34], who found region-depen-

dent action potential duration heterogeneity in the atrium

increased susceptibility to AF onset and maintenance of re-

entrant circuits.

Our study has investigated these three mechanisms plus

PV firing rate, albeit with a discrete rather than with continu-

ous model, and different assumptions and formulations (we

did not model fibrosis subtypes or include region-specific

RPs for our cells). Our study results differ from the conclusions

of these continuum studies, especially regarding the steepen-

ing of restitution slope, where we found a non-monotonic

relationship between AF onset and restitution steepness not

predicted by Krummen et al. There is no general consensus

on whether a steep restitution slope is pro- or anti-arrhythmic

[35], and our results showed there is a ‘window’ of steepness

which maximizes probability of AF onset. This was also true

for the other parameters, where excessive fibrosis and PV

burst rate inhibited increased onset of AF. We comment that

a PV burst rate up to 80 s21, while representing the number

of triggers across all four PVs rather than a single focal

source, may appear unphysiological, but it is also possible

that many focal PV bursts go undetected.

4.4. Atrial fibrillation termination
Clinical studies predominantly investigate how targeted

ablations terminate AF, and these have been explored theoreti-

cally in a number of studies [36]. However, few studies explore

spontaneous termination owing to the difficulty of capturing

such rare events. A few clinical studies have been documented:

Ndrepepa [37] referred to generators of fibrillatory activity in

the left atrium, and reported that AF termination was poly-

morphic in its mechanism. Alcaraz [38,39] analysed the atrial

activity of patients during AF and immediately prior to termin-

ation, and found the existence of more organized atrial activity

(measured by sample entropy) 1 min prior to termination, and

that the late activity had a significantly lower dominant fre-

quency mean value. Some studies of dominant frequency

and harmonics have suggested Fourier analyses as useful

predictors of termination [40].

Our study was inconclusive regarding termination. We

found that PV bursts are a potential mechanism for terminat-

ing as well as initiating AF, and also act to inhibit initiation

rate for longer durations of PV bursts. Fourier analysis of

the sample paths revealed both stable and unstable modes

of AF, but no clear trend was observed. We found, however,

that the longer the period of PV bursting, the smaller the

probability that induced AF will be terminated by future

PV bursts. This suggests dynamical memory effects exist

within the model caused by extended PV burst pacing,

which influences the stability and robustness of the induced

re-entry wavefronts. This agrees with the ‘AF begets AF con-

cept’ [41], and recent studies of Uldry et al. [42,43], who

reported an increase in AF complexity with duration, and

that spontaneous termination mechanisms differed depending

on dynamics of AF and its underlying complexity.

In other recent studies, Krogh-Madsen et al. [44] also found

that remodelling maintained AF by shortening atrial wave-

length (electrical by shortening action potential duration,
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structural by slowing conduction), which correlated with

increased AF episode duration, with dynamics of re-entry dif-

fering between types of remodelling. Liberos et al. [9] suggested

that cell–cell ionic differences as a mechanism of AF termin-

ation, by decelerating re-entrant activity and increase in rotor

tip meandering. Our model did not include electrical remodel-

ling similar to these studies, but our model is well placed to

analyse atrial wavelength and track the rotor tips in future

studies, to see if similar mechanisms exist within our formu-

lation. The general consensus is that AF complexity increases

over time together with AF episode durations, with size of

atria and atrial obstacles thought to play a critical role in ter-

mination. Petrutiu et al. [45] found that non-terminating

episodes exhibited larger dominant frequencies compared

with spontaneously terminating episodes, and more abrupt

changes in dominant frequency were observed prior to spon-

taneous termination. An open mechanistic question remains

over whether spontaneous termination is preceded by a pro-

gressive fusion of wavelets or a simultaneous block of all

wavelets in the tissue. We believe our work is well placed to

evaluate these questions through the capabilities to run

longer duration simulations.

Our study may additionally complement existing ablation-

based termination studies by identifying similar mechanisms

or proposing novel therapeutic studies. Rappel et al. [46]

demonstrated that ablation caused termination in a hetero-

geneous domain by creating an excitable gap, dislodging a

stable anchored wavefront or by closing critical isthmus chan-

nels. Uldry et al. [47] reported 10–20% success rate when using

atrial septal pacing at alternating frequencies to pass the atria.

4.5. Clinical relevance
We have presented a methodology to translate emergent

simulated behaviour in a greatly simplified computational

model of atrial electrophysiology into transition rates into

and out of AF. Determining rate transitions between sinus

rhythm and AF is an important step forward because these

rates can be used in models of AF progression [5], can be

evaluated against clinical data, and in the future could be

used to predict AF onset and progression.

4.6. Future work
Our work in this article focuses on the framework of the sto-

chastic analysis. We acknowledge that CA models are a

simplified representation of reality. However, this approach

permits large numbers of simulations to obtain probability dis-

tributions and probe particular mechanisms. We propose

several areas in which the model could be investigated further.

4.6.1. Geometry
We adopted a simplified quasi-spherical geometry to model

the left atrium. Because the dynamical rules of the CA only

involve the neighbourhood relations between nodes, it is

straightforward to construct a CA model on any two-dimen-

sional surface embedded in three-dimensional space. The

difficulty of evenly distributing the nodes may be overcome

by using the Archimedean spiral [48]. It may also be possible

to extend this to three dimensions.

4.6.2. Directional fibrosis
In this work, we modelled fibrosis by setting nodes to be elec-

trically active, whereas fibrosis may act to promote faster
propagation in certain directions within cardiac tissue [16].

This could be achieved in our CA model by assigning

weights to neighbouring nodes.

4.6.3. Representing interventions
As the computational cost of a CA model is lower than that of

biophysically detailed models, it is an ideal platform to

develop and evaluate effects of intervention strategies such

as ablation or external pacing. However, as a coarse-grained

approach, the CA model is unlikely to capture detailed bio-

chemical or biophysical effects within these, or within other

interventions such as pharmacological modification of cell

and tissue electrophysiology.

4.6.4. Restitution and remodelling
Restitution changes may not be instantaneous. One way

to model restitution with memory would be to replace

equation (2.1) by

RPiþ1 ¼ aRPi þ ð1� aÞ 121 1� B exp �DI

K

� �� �� 	
, ð4:1Þ

where a measures the strength of the ‘memory’. When a ¼ 1,

there exists no restitution, and when a ¼ 0, it converges to

our proposed model (2.1).

Only initial state structural remodelling was investigated

in this study. Additional structural and electrical remodelling

may be implemented in the CA framework, both as an initial

condition and as a transient process (e.g. with ageing). For

example, removing cells (and adding them back) from the

domain of excitable cells could model acute scar formation

or recovery from ischemia.

4.6.5. Pattern recognition of the re-entrant wavefronts
Our analysis revealed stable and unstable modes of AF. Visual-

ization of selected sample paths suggested some characteristic

differences between these modes: just prior to termination,

unstable AF terminated via conduction block through fibrosis

regions or pulmonary veins. This often included sponta-

neous PV bursts at the channel isthmus in a short excitable

window. In comparison, stable (did not spontaneously termi-

nate) wavefronts appeared to have more complex pathways

of propagation.

While the Fourier spectrum suggested potential differ-

ences, the analysis was inconclusive as there was a large

variability over sample paths in a given parameter set. As

our classifiers contain only the temporal information, we

could additionally use spatial information of the re-entrant

wave front to (e.g. rotor tip tracking, local electrogram) to

inform our analysis.
5. Supporting information
Please visit Github project /dblueeye/atrial-fibrillation-

cellular-automata for a working implementation and for

movie URLs on YouTube.
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