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Abstract

Background: Gene duplication followed by divergence is one of the main sources of metabolic
versatility. The patchwork and stepwise models of metabolic evolution help us to understand these
processes, but their assumptions are relatively simplistic. We used a network-based approach to
determine the influence of metabolic constraints on the retention of duplicated genes.

Results: We detected duplicated genes by looking for enzymes sharing homologous domains and
uncovered an increased retention of duplicates for enzymes catalyzing consecutive reactions, as
illustrated by the ligases acting in the biosynthesis of peptidoglycan. As a consequence, metabolic
networks show a high retention of duplicates within functional modules, and we found a
preferential biochemical coupling of reactions that partially explains this bias. A similar situation was
found in enzyme-enzyme interaction networks, but not in interaction networks of non-enzymatic
proteins or gene transcriptional regulatory networks, suggesting that the retention of duplicates
results from the biochemical rules governing substrate-enzyme-product relationships. We
confirmed a high retention of duplicates between chemically similar reactions, as illustrated by fatty-
acid metabolism. The retention of duplicates between chemically dissimilar reactions is, however,
also greater than expected by chance. Finally, we detected a significant retention of duplicates as
groups, instead of single pairs.
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Conclusion: Our results indicate that in silico modeling of the origin and evolution of metabolism
is improved by the inclusion of specific functional constraints, such as the preferential biochemical
coupling of reactions. We suggest that the stepwise and patchwork models are not independent of
each other: in fact, the network perspective enables us to reconcile and combine these models.

Background of a single network. Defining metabolism as pathways is not
The classical view of metabolism is that relatively isolated sets ~ always straightforward because some functional properties,
of reactions or pathways allow the synthesis and degradation ~ such as the smaller distances between reactions from differ-
of compounds. The new perspective views metabolic compo- ent pathways are visible only when metabolism is analyzed
nents (substrates, products, cofactors, and enzymes) as parts from a network perspective [1]. A way to do this is to
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represent metabolism with a compound-centric network,
wherein nodes (substrates and products) participating in the
same reaction are connected. Alternatively, in an enzyme-
centric network, nodes (enzymes) producing a compound are
connected with nodes consuming the same compound. These
tools have shown that metabolism has a scale-free topology
[2,3], meaning that the majority of nodes show a low degree
of connectivity and the topology of the network is dominated
by a small fraction of highly connected nodes. Another prop-
erty of metabolic networks is their hierarchical modularity
[4,5], showing groups of highly clustered, functionally related
nodes.

Recent models have successfully simulated the origin of scale-
free networks by gene duplication [6], while their modular
organization has been explained by the preferential attach-
ment of new nodes to the most highly connected preexisting
ones [5]. These models do not, however, take into account the
functional constraints of metabolism [6]. For instance, car-
bon-nitrogen ligases (EC:6.3) tend to act consecutively,
reducing their chance of associating with enzymes catalyzing
other reaction types (Figure 1). We call this property "prefer-
ential biochemical coupling of reactions', and suggest that it
reflects a biochemical necessity - in the synthesis of the pepti-
doglycan of bacterial cell walls, for example. Our results show
the importance of including functional constraints to improve
models of the origin and evolution of metabolic networks.
Indeed, a recent model simulating the origin of highly con-
nected compounds in metabolic networks [7] is significantly
improved when reactions are considered as coupled pairs
instead of single entities.

The first hypotheses on the origin and evolution of enzyme-
driven metabolism were based on the idea that gene duplica-
tion, followed by divergence, can lead to the origin of new
metabolic reactions. The two pioneering models - 'stepwise’
[8] (or retrograde) and 'patchwork' [3] evolution - have two
main differences. The stepwise model posits that, in the case
where a substrate tends to be depleted, gene duplication can
provide an enzyme capable of supplying the exhausted sub-
strate, giving rise to homologous enzymes catalyzing consec-
utive reactions. The patchwork model, on the other hand,
postulates that duplication of genes encoding promiscuous
enzymes (capable of catalyzing various reactions) allows each
descendant enzyme to specialize in one of the ancestral reac-
tions. In this regard, enzymes generated by patchwork evolu-
tion can catalyze reactions a greater distance apart in the
pathway than those originated by stepwise evolution. The sec-
ond difference is that the stepwise model invokes consecutive
reactions and so can originate enzymes catalyzing chemically
dissimilar reactions (CDRs) but preserving specificity for the
type of substrate [9,10]. In contrast, the patchwork model
considers that promiscuous enzymes tend to catalyze chemi-
cally similar reactions (CSRs) even while acting on different
types of substrates [9,10]. A simple way to find whether
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enzymes catalyze similar reactions is to compare the first two
digits of their EC numbers (EC:a.b) [10-12].

Some authors have used the differences between the stepwise
and patchwork models in an attempt to clarify their contribu-
tions to specific instances of evolution of metabolism. Collec-
tively, these analyses suggest the patchwork model as the
most common mechanism generating metabolic versatility
[9-12]. A major difficulty with these analyses is the significant
fraction of consecutive and chemically similar reactions that
are catalyzed by homologous enzymes [10,11]. Because they
are consecutive, the stepwise model could explain the origin
of such reactions, but the patchwork model can also explain
them because they are chemically similar. For example, ami-
dophosphoribosyl transferase and xanthine phosphoribosyl-
transferase are homologous enzymes catalyzing consecutive
reactions and so their origin could be attributed to the step-
wise model. They catalyze CSRs, however, and so their origin
could also be explained by the patchwork model (Figure 1a).
Similarly, the origin of four homologous carbon-nitrogen
ligases catalyzing consecutive reactions in peptidoglycan bio-
synthesis is consistent with both the stepwise and patchwork
models [10] (Figure 1b). In the work reported here we have
determined that the fraction of consecutive CSRs in metabo-
lism is significantly greater than expected by chance, imply-
ing that the origin of such reactions can be explained by the
complementary actions of stepwise and patchwork evolution.
We suggest that a network-based approach can reconcile
these two models.

In this article we reconstruct the enzyme-centric metabolic
networks of Escherichia coli K12 and a number of other
organisms using information from the BioCyc [13,14] and
KEGG [15] databases. The protein sequences of the enzymes
were compared to detect duplicated genes, which we shall call
'duplicates'. We evaluated the influence of both chemical sim-
ilarity and the distance between reactions (for example, the
number of reactions that separate them) on the rate of reten-
tion of duplicates. We also estimated whether the preferential
biochemical coupling of reactions and the modularity of net-
works affect this rate. Finally, we detected cases in which
duplicates have been retained as groups and determined how
general this is.

Results and discussion

The preferential biochemical coupling of reactions in
metabolic networks reflects a functional constraint
Metabolism follows logical rules that imply that specific reac-
tions and fluxes are temporally and spatially compartmental-
ized [16]. We searched for some of these rules in our data,
determining whether the combination of reaction types (each
designated as EC:a.b) is constrained by biochemical necessity
or is simply the result of random processes. To do this, we
determined the frequency of paired reaction types for a large
set of different metabolic networks and compared it against
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Figure |

Preferential biochemical coupling of reactions in metabolic networks. (a) Homologous transferases PurF and Gpt from E. coli catalyze consecutive
chemically similar reactions. Their origin can be explained by both the stepwise and the patchwork models. (b) Homologous ligases involved in
peptidoglycan biosynthesis whose origin can be explained by both the stepwise and the patchwork models. A distant homolog (FolC) acts in folate
metabolism. (c) Frequencies of reaction types (EC:a.b) in the E. coli KI2 metabolic network, according to KEGG (hereafter called EcoKegg). (d)
Frequencies of consecutive reaction types (EC:a.b - EC:w.x) in EcoKegg were compared against the expected values using a set of null Maslov-Sneppen
models (see Materials and methods). The Z-score (color-scale bar at top) indicates the number of standard deviations between the real and the average
expected frequencies. Consecutive reaction types overrepresented in real networks are shown in green-to-yellow, underrepresented ones are shown in
red. The diagonal (pink box) highlights consecutive chemically similar reactions, including the ligases synthesizing peptidoglycan (pink arrow). Reaction
types were sorted vertically using a hierarchical clustering to detect highly related reaction types, such as EC:1.5, EC:1.7 and EC:2.1. (center of plot).

the value expected by chance. To calculate these expected val- ~ Materials and methods). The results show that certain reac-
ues a set of null Maslov-Sneppen models [17] was generated.  tion types tend to occur consecutively (Figure 1d). As an illus-
The models are randomly rewired versions of the original net-  tration of the biological relevance of this finding, consider the

work, preserving the degree of connectivity for each node (see case of carbon-nitrogen ligases (EC:6.3), which tend to be fol-
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lowed by other EC:6.3 enzymes, for example in the synthesis
of peptidoglycan (Figure 1b). In fact, a recent study uncovers
that metabolites also show a preferential coupling [18]. We
consider that these biases reflect underlying biochemical
mechanisms and the need for particular substrate stoichi-
ometries. In the following sections we discuss the relevance of
this finding to the retention of duplicates.

Influence of chemical similarity on the retention of
duplicates

We computed the frequency of retention of duplicates for
both CSRs and CDRs. The frequencies were then compared
against the values expected by chance, using Maslov-Sneppen
models, to determine whether they can be attributed to bio-
logical pressure. Figure 2a shows that retention of duplicates
between CSRs is sixfold greater than between CDRs. This
agrees with previous reports [10-12]. Note, however, that for
both CSRs and CDRs, duplicates separated by less than three
nodes in a network are more frequent than expected by
chance (Z-score > 3, P < 0.001). The main implication of this
finding is that for both CSRs and CDRs the retention of dupli-
cates is not random, but reflects underlying biological phe-
nomena. Thus, gene duplication is an important source of
metabolic variability and also of biochemical innovations.

Influence of distance between reactions on the
retention of duplicates

In addition to the retention of duplicates generating CSRs and
CDRs, Figure 2a shows an increased retention of duplicates
between reactions at smaller distances apart. The explanation
of this phenomenon is non-trivial because there is no biolog-
ical trait clearly associable to a shorter distance between reac-
tions. We therefore compared the results from metabolic
networks with those from other biological networks to deter-
mine whether our observation is general. We identified dupli-
cates within a gene regulatory network [19] and within a
validated protein-protein interaction network [20], both
from E. coli. The regulatory network did not show a signifi-
cant influence of the distance between transcription factors
and target genes on the retention of duplicates (Figure 2c). In
contrast, the protein-protein interaction network (Figure 2d)
shows an increased retention of duplicates between proteins
at smaller distances from each other in the network. A more
detailed analysis shows that this increase is mainly due to
enzyme-enzyme interactions. In fact, the fraction of non-
enzymatic duplicates, mainly comprising protein complexes
involved in DNA replication, transcription, translation, and
protein folding, is not significantly different from random (Z-
score < 3, P > 0.001). Thus, it seems that the increased reten-
tion of duplicates between proteins at smaller distances apart
in the network is characteristic of metabolic networks and
enzyme-enzyme complexes. From this observation, we pro-
pose that laws governing substrate-enzyme-product relation-
ships in metabolic networks are different from those acting
on protein-DNA and non-enzymatic protein-protein interac-
tions. A possible reason for this is that in metabolic interac-
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tions proteins interact with small molecules as substrates and
products, whereas non-enzymatic protein-protein and pro-
tein-DNA interactions require larger interacting protein sur-
faces, and their retention could be more difficult. In fact,
some authors have shown that regulatory protein-DNA inter-
actions are quickly lost [21]. In contrast, protein-protein
interactions are preserved in a higher degree, in particular
those involved in metabolic processes [22].

What are the factors distinguishing metabolic networks from
other types of biological networks that could increase the
retention of duplicates between nodes at smaller distances
apart to each other? We found that the preferential biochem-
ical coupling of reactions is an important constraint charac-
teristic of metabolic networks and so we simulated the
retention of duplicates in a set of 'functionally' similar null
models including this constraint. These models are rewired
versions of the original network, preserving both the degree
of connectivity and the preferential biochemical coupling of
reactions, as described in Materials and methods. The reten-
tion of duplicates simulated using Maslov-Sneppen models
(red circles in Figure 2a) shows a behavior independent of the
distance between proteins. In contrast, using the functionally
similar models (red circles in Figure 2b) an increased reten-
tion of duplicates between nodes at smaller distances apart
was detected, better approximating what happens in real
metabolic networks. This implies that the preferential bio-
chemical coupling of reactions partially explains the
increased retention of duplicates between reactions at
smaller distances apart to each other. Because this coupling of
reactions is exclusive to metabolism, this finding also helps us
to understand why this behavior was not detected in tran-
scriptional regulatory and non-enzymatic protein-protein
interaction networks.

Finally, we controlled for various network and enzyme prop-
erties on the retention of duplicates. First, we considered
whether the increased retention of duplicates is restricted to
a region of the network. To evaluate this we randomly sam-
pled the network and computed the retention of duplicates
within samples. The main finding (blue bars in Figure 1a,b) is
that the increased retention of duplicates between reactions
at smaller distances apart to each other remains statistically
significant (Z-score > 3, P < 0.001), and is not restricted to a
region of the network. Second, we evaluated the influence of
highly promiscuous compounds (hubs) on the retention of
duplicates, gradually excluding hubs from network recon-
structions and computing the retention of duplicates each
time. The increased retention of duplicates between enzymes
at smaller distances apart in the network remains statistically
significant (Z-score > 3, P < 0.001) (see Additional data file
4). Similar results were found on analyzing different meta-
bolic networks (see Additional data file 4). Third, because a
significant number of enzymes consist of two or more
domains, having only one EC number assigned, and vice
versa [23], their direct comparison can cause false positives.

Genome Biology 2007, 8:R26
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Figure 2

Influence of chemical similarity and distance on the retention of duplicates. (a) Frequencies of retained duplicates (histogram bars) in EcoKegg are shown
for the whole reaction set (ALL), and the subsets of chemically similar reactions (CSRs) and chemically different reactions (CDRs) at different distances
(metabolic steps). Blue bars indicate three standard deviations (c) from these frequencies. Deviations were obtained by random sampling. Red dots
represent the average expected frequencies * 3¢ obtained using Maslov-Sneppen models. The rewiring to construct the null model is shown below the
graph. (b) A similar procedure to (a) was carried out, using null functionally similar models to control the influence of the preferential biochemical coupling
of reactions. Symbols as in (a). Compared with Maslov-Sneppen models, in which all nodes are equally eligible for change, in functionally similar models the
preferential biochemical coupling of reactions restricts the choices. (c) Retention of duplicates in the gene regulatory network of E. coli as a function of the
distance (number of regulatory interactions) between transcription factors and target genes. (d) Retention of duplicates in a protein-protein interaction
network of E. coli. The full set of interactions (ALL), and the subsets of enzyme-enzyme (EC-EC) and non-enzymatic protein-protein (P-P) interactions are
shown. In (c) and (d) red dots represent averages obtained using Maslov-Sneppen models.

To avoid this, we manually split enzyme sequences by func-
tional domains. In addition, in one control (see Additional
data file 5), we extracted the subset of single-domain enzymes
and repeated the analyses of retention of duplicates. In a sec-
ond control (see Additional data file 5), we required that all
domains between duplicates are homologous. The results
from these two controls support the ones discussed above.

Fourth, we redefined our criterion of chemical similarity,
using both the first digit of EC numbers (EC:a) and the first
three digits (EC:a.b.c). As expected, these new criteria modify
the relative rates of retained duplicates in CSRs and CDRs
(see Additional data file 5), but the increased retention of
duplicates at smaller distances apart to each other remains
significant, supporting our previous conclusions. Finally,
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because we used a method to detect remote homology (based
on hidden Markov models), we controlled for this method
conducting a search for homologs using BLAST (which
detects more closely related homologs) and PSI-BLAST
(remotely related homologs) (Additional data file 5). As
expected, the rate of retained duplicates changes when con-
sidering only closely related homologous, but the increased
retention of duplicates between reactions at smaller distances
apart remains statistically significant (Z-score > 3, P < 0.001).
Collectively, these controls indicate that the increased reten-
tion of duplicates at smaller distances apart is independent of
the way in which metabolic databases are constructed, their
size, and the hub prevalence. The manual validation of
enzyme domains and network databases could give our find-
ings more precision, but the main conclusions are robust.

Influence of network modularity on retention of
duplicates

Metabolic networks have been reported to possess modular
architecture [4,5]. Enzymes constituting a module are highly
clustered neighbors, and consequently one could expect a
higher retention of duplicates within modules than between
them. To test this hypothesis we used a hierarchical clustering
algorithm to detect modules in metabolic networks (Figure
3a, and see Materials and methods). Then we calculated a
paired measure of evolutionary distance (ED) for all-against-
all metabolic pathways. This measure reflects the retention of
duplicates between pathways within and between modules.
Our definition of (ED) is similar to the one used to determine
the relatedness between genomes based on protein-domain
content [24] (see Materials and methods). Note that (ED) is
not the distance referred to in previous sections, which was
the distance between nodes in the network. The results show
that metabolic pathways of the same module tend to have a
lower (ED) (Figure 3b). This implies a greater retention of
duplicates within modules than between them. For instance,
considering the E. coli metabolic network as a whole, the total
retention of duplicates among CSRs is around 15%. In con-
trast, if one module is extracted, such as amino-acid metabo-
lism (colored blue in Figure 3a,b), and the retention of
duplicates within it is calculated, the resulting fraction is
around 50%. To assess the significance of (ED) values we
compared them against those expected by chance. To do this,
we simulated a null scenario preserving both the connectivity
and interaction partners of the original network, but the
domain content across proteins was randomly shuffled (see
Materials and methods). This analysis shows that the reten-
tion of duplicates within modules is significantly greater than
between them (Z-score > 3, P < 0.001) (Figure 3c). Thus, we
propose that the capability of metabolic networks to grow
modularly by gene duplication is highly related to two factors:
the closeness together of reactions; and the kind of sub-
strate(s) participating within each module. Further studies
evaluating the influence of metabolite similarity on the reten-
tion of duplicates could help to understand this phenomenon.

http://genomebiology.com/2007/8/2/R26

Retention of duplicates as groups and single entities
Finally, we determined the frequency of duplicates retained
as groups (pairs of consecutive reactions), instead of single
entities. To illustrate this idea, consider fatty-acid degrada-
tion (B-oxidation) and biosynthesis (Figure 4a). These path-
ways are chemically similar, but act in opposite directions and
differ in their acyl-carrier groups. We determined that
enzymes catalyzing CSRs in these pathways originated by
gene duplication. Thus, we suggest that an ancestral pathway
catalyzed both fatty-acid degradation and biosynthesis. The
direction of this ancestral pathway would be dependent on
the acyl carriers and fatty acids available. To get a first
approximation of the generality of this observation, we car-
ried out an all-against-all comparison of the enzymes catalyz-
ing consecutive CSRs (EC:a.b — EC:w.x). Our results indicate
that about 15% of enzymes have at least one homolog in a
metabolic pathway. Of these, two thirds are retained as iso-
lated duplicates (scenario III in Figure 4b) and a third are
retained as groups (scenario II in Figure 4b). Interestingly,
the retention of both groups and isolated duplicates is greater
than expected by chance (Z-scores > 50). In contrast, non-
retention of duplicates is lower than expected (Z-score < -20).
We therefore suggest that models trying to explain the
increase in the complexity of metabolism by gene duplication
should include the retention of both groups and isolated
duplicates.

Conclusion

We used an enzyme-centric network approach to estimate the
retention of duplicates in metabolism using information from
various sources (multiple species and various databases). The
observed frequencies were compared against null models to
determine their significance. Collectively, our results high-
light the influence of both distance apart in the network and
chemical similarity of reactions on the retention of duplicates.
Specifically, we found an increased retention of duplicates
between consecutive reactions (Figure 2a,b), and show that
this bias can be partially attributed to the preferential bio-
chemical coupling of reactions (Figure 2b). A similar analysis
using gene regulatory and protein-protein interaction net-
works shows that this behavior is characteristic of enzymatic
relationships. Thus, we propose that the laws governing sub-
strate-enzyme-product interactions are different from those
acting on protein-DNA and non-enzymatic protein-protein
interactions (Figure 2c,d). This is reflected as a higher reten-
tion of duplicates within a network module than between
modules (Figure 3). In addition, our results show a significant
retention of duplicates acting on both CSRs and CDRs (Figure
2), supporting the idea that gene duplication is important in
generating innovations as well as metabolic variants [9-12]. A
synergy between closeness in the network and chemical sim-
ilarity between reactions explains the high retention of dupli-
cates between consecutive CSRs (Figure 2a). Our hypothesis
that duplicates are significantly retained as groups can be
extended to several series of reactions (Figure 4).

Genome Biology 2007, 8:R26
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Figure 3

Influence of network modularity on the retention of duplicates. (a) A hierarchical clustering was carried out to delimit modules in metabolic networks.
Colors denote different modules in EcoKegg. (b) Metabolic pathways (branches in the trees) within and across modules were compared using a measure
of evolutionary distance (ED). Modules comprising related branches are indicated by color as in (a). A value of (ED) closer to zero (the darker squares)
implies a greater retention of duplicates between the two given pathways. (c) Observed (ED) values were compared against those expected by chance -
after random shuffling of protein-domains. A Z-score < -3 (green) refers to significant (ED) values (P < 0.001).

We therefore consider that gene duplication should be stud-
ied as a single process, instead of distinguishing separate
stepwise and patchwork models. The difficulties that arise
from traditional conceptions of these models are avoided with
the network-based approach used here, which reconciles the
two.

Biological networks share general topological properties,
such as their scale-free behavior and hierarchical modularity.
In fact, some of these properties have been found in social and
technological networks [2,5,19,25,26]. Our findings agree

with previous studies suggesting that the next step in mode-
ling the origin and evolution of networks must consider not
only the properties they share but also those that differentiate
them [7,25,27]. In particular, we have improved the modeling
of metabolic networks by including the preferential biochem-
ical coupling of reactions. A more detailed analysis looking at
other functional constraints, such as metabolite similarity
and binding versus catalytic enzyme properties, as well as
massive gene duplications and horizontal gene transfer, could
enhance our understanding of the influence of metabolic ver-
satility in the evolution of species.
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Figure 4
Retention of duplicates as groups and single entities. (a) The fatty-acid degradative and biosynthetic routes illustrate the retention of duplicates as groups.

The same colors in EC number boxes denote duplicates. (b) Retention of duplicates acting consecutively. Five hypothetical scenarios were analyzed (left
panel). Boxes of the same color denote duplicates. The number and letter (for example, E2 and E2') indicate the place of the reaction in the series.
Scenarios (I) and (V) have a common reaction followed or preceded by two possible reactions. In (I) gene duplication was detected, in (V) it was not.
Scenarios (Il), (1) and (IV) involve pairs of consecutive reactions in two branches of the network. In (ll) both pairs are duplicates, in (lll) only one pair is
duplicated, and in (IV) none of the pairs are duplicates. From this diagram one can see that one pair can participate in more than one scenario, looking
upstream or downstream in the network flux. The histogram on the right shows the frequency for each scenario. We present the results for the four
databases analyzed herein. The networks were reconstructed eliminating the top 20 hubs. These results are the comparison of all-against-all pairs (EC:a.b
— EC:w.x), including CSRs as well as CDRs. Red dots represent the expected average frequencies + 3 obtained using Maslov-Sneppen models.
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Materials and methods

Network reconstruction

Enzyme-centric metabolic networks were reconstructed
according to two databases BioCyc v8.0 (EcoCyc and Meta-
Cyc) and KEGG vo0.4 (EcoKegg and the full KEGG, refered
RefKegg) as follow. If reaction R1 produces the compound A,
and A is the substrate of R2, a directed link between the EC
numbers of R1 and R2 was established. In reversible reac-
tions, a second link, from the EC number of R2 to the EC
number of R1, was added. To obtain information about reac-
tions from BioCyc the following files were used: reactions.dat
(substrate/product), enzrxns.dat (reversibility) and reaction-
links.dat (EC numbers). The xml files from KEGG provide
similar information in their sections reaction (substrate/
product and reversibility) and entries id (EC numbers). Hubs
were detected for each network, and the links established
solely by hubs were gradually eliminated. The reconstructed
networks, eliminating the top 20 hubs, possess the following
number of nodes and edges: EcoCyc (976/4,473), EcoKegg
(804/2,410), MetaCyc (964/4,230), RefKegg (2575/11,499).

Detection of retained duplicates

Enzyme sequences were retrieved, according to the desired
EC number, from the following databases: EcoCyc, UNIPROT
[28], BRENDA [29], and KEGG. A manual split of sequences
by functional domains, according to UNIPROT, was carried
out to avoid false positives caused by multifunctional enzyme
comparisons. The final set has 4,534 domain sequences, rep-
resenting 1,527 EC numbers completely annotated and 348
partial annotations. To detect duplicates, sequences were
compared against the hidden Markov models of homolog
domains of SUPERFAMILY v1.65 [30] and PFAM v16 [31]
databases. The HMMER v2.3.1 suite of programs [32] was
used for this comparison, with an E-value = 0.001 as thresh-
old. We assumed as chemically similar those reactions cata-
lyzed by enzymes whose EC numbers share the first two digits
(EC:a.b). A network adjacency matrix containing every pair of
nodes (i,j) was subjected to the Floyd-Warshall algorithm
[33] to determine the distance (minimal path length) between
each pair (i,j). The adjacency matrix contained all reactions
with known substrate/products, including those without an
assigned enzyme (gene). This strategy permits us to deter-
mine the retention of duplicates as a function of both the dis-
tance apart in the network and the chemical similarity
between reactions. The function (1/distanceij2) was used to
construct a matrix of normalized associations for all pairs
(i). This matrix was used to perform a hierarchical clustering
to detect network modules. To do this, we used the Kendall's
t algorithm implemented in the program CLUSTER 3.0 [34].
Similar results were obtained using the Spearman rank corre-
lation. To determine the retention of duplicates within and
between modules we calculated the evolutionary distance
(ED) for each pair of pathways as follows:

(ED) = A'/(A' + AB)

Genome Biology 2007,  Volume 8, Issue 2, Article R26

where A' is the number of enzymes of the smaller pathway
(pA) without homologs in the second pathway (pB). AB is the
number of enzymes of pA with homologs in pB. At one
extreme, when all the enzymes of pA have homologs in pB, the
evolutionary distance converges on 0. In contrast, when the
two pathways share no homologs the value of evolutionary
distance converges on 1.

Significance tests

To determine whether the higher retention of duplicates
between reactions at smaller distances apart could be
restricted to a portion of the network we conducted 10,000
half-random samplings of the real network and calculated the
frequency of retained duplicates within each sample. In addi-
tion, we determined the significance of these frequencies,
comparing them against the values expected by chance using
two sets of null models. The first, comprising 10,000 Maslov-
Sneppen models, preserve the degree of connectivity for each
node of the original network, but edges were randomly
rewired. To construct these models, two edges of the original
network were randomly chosen and their inputs were
switched. This was repeated until the original network was
completely rewired (see lower panel of Figure 2a). The second
set, comprising 10,000 'functionally’ similar models, pre-
serves both the degree of connectivity and the preferential
biochemical coupling of reactions of the original network. To
construct these models, two edges of the original network
were randomly chosen, but their inputs were switched only if
both the inputting and outputting nodes represent chemically
similar reactions (see lower panel of Figure 2b). Otherwise,
another two edges were chosen, and the former ones were
returned for further choices. This was repeated until the net-
work was completely rewired. Some edges, from chemically
similar groups with an even number of pairs, remain
unpaired after rewiring their group. They were added to mod-
els in their original form. These pairs represent less than 5%
of the models.

We used the Z-score (Z;) to determine the significance of real
frequencies as follows:

Z;= (Nreal; - <Nrand;>)/std(Nrand;)

where Nreal, is the frequency of an attribute (i) in the real net-
work. For example, the frequency for each reaction-type pair,
the number of retained duplicates at a given distance, and so
on. <Nrand;> and std(Nrand;) are the average frequency and
standard deviation of (i) in null models. A Z-score > 3 implies
that the frequency of (i) in the real network is significantly
greater than expected by chance (P < 0.001). In contrast a Z-
score < -3 indicates that (i) is significantly underrepresented
in the real network.

To determine the significance of evolutionary distances
within and between modules, we compared the actual values
against the ones expected using 1,000 null models. These
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models preserve the networks intact (connectivity and wir-
ing), but the domain content was shuffled across proteins. A
Z-score < -3 implies that retention of duplicates between two
pathways is greater than expected by chance (P < 0.001).

Additional data files

The following additional data are available online with this
paper. Additional data file 1 shows the reconstructed meta-
bolic networks from various databases (EcoKegg, EcoCyc,
RefKegg and MetaCyc), eliminating hubs gradually in each
database. Additional data file 2 shows the amino-acid
sequences of the enzymes analyzed in this work. Additional
data file 3 shows the domains detected in such sequences,
grouped by EC numbers. Additional data file 4 shows the
results of retention of duplicates in various databases, gradu-
ally removing hubs. Additional data file 5 shows the controls
for the multidomain enzymes, the criteria of chemical simi-
larity, and the method used to detect duplicates.
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