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As a class of cis-regulatory elements, enhancers were first identified as the genomic
regions that are able to markedly increase the transcription of genes nearly 30 years ago. Enhancers
can regulate gene expression in a cell-type specific and developmental stage specific manner.
Although experimental technologies have been developed to identify enhancers genome-wide, the
design principle of the regulatory elements and the way they rewire the transcriptional regulatory

network tempo-spatially are far from clear. At present, developing predictive methods for enhanc-
ers, particularly for the cell-type specific activity of enhancers, is central to computational biology.
In this review, we survey the current computational approaches for active enhancer prediction and

discuss future directions.

Introduction

Gene transcription is regulated by a series of accurately orches-
trated interactions between transcription factors (TFs) and cis-
regulatory DNA elements, e.g., promoters and enhancers [1].
Enhancers are often found in non-coding regions of a genome
and generally distal to their target promoters. The first charac-
terized enhancer was a DNA segment that markedly increased
the transcription of the f-globin gene in a transgenic assay in
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the SV40 tumor virus genome about 30 years ago [2]. Nonethe-
less, global identification of enhancers and their activities re-
mains challenging, since enhancers can activate transcription
regardless of their location or orientation [3]. The development
of computational enhancer recognition approaches has been
greatly facilitated by the massive amount of genomic data
available owing to the rapid advances in sequencing technolo-
gies in recent years. Early algorithms were developed largely
based on evolutionary constraints with the assumption that
highly conserved non-coding regions should have functional
potential [4]. However, conservation by itself is not sufficient
to confer cell-type specific enhancer activities, suggesting that
additional (e.g., epigenetic) information is required for
accurate prediction. Genome-wide maps of chromatin marks
have been used to show that active enhancers are likely to be
associated with certain characteristic chromatin signatures,
e.g., monomethylation of histone H3 at lysine residue 4
(H3K4mel) [5]. But, Bonn et al. reported that H3K4mel is
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distributed similarly between mesodermally active and inactive
enhancers, indicating that the placement of H3K4mel is not
cell type specific during embryonic development [6]. Hitherto,
to the best of our knowledge, there is no evidence that active
enhancers should necessarily exhibit the same single or a com-
bination of epigenetic marks across all the cell types [7]. There-
fore, it is necessary to select optimal combinations of
epigenetic marks to predict when and where an enhancer is ac-
tive [8—11]. In this review, we first survey the most commonly
adopted strategies in enhancer recognition and then discuss
potential future directions.

The principle of enhancer recognition

Enhancers may be characterized by quantitative measures,
termed features, associated with the underlying DNA se-
quences. In principle, an enhancer recognition algorithm uti-
lizes informative and discriminative features as input to
discriminate enhancers from non-enhancers, ideally from other
non-enhancer cis-regulatory elements. Algorithms and features
are both important. We therefore will discuss them separately.

Features can be briefly classified into three categories,
namely comparative genomic features, TF binding related ge-
netic features and epigenetic features (Figure 1). Comparative
genomic features mainly refer to the conservation scores calcu-
lated by comparing the genome sequences of different species.
The predictive power of comparative genomic features stems
from the fact that functional genome regions (e.g., enhancers)
are subjected to negative selection [12,13]. TF binding related
genetic features use quantitative scores presumably represent-
ing the TF binding affinity at the DNA sequence of interest.

The DNA binding sites of a given TF are usually determined
by the DNA nucleotide sequence and the binding affinity be-
tween the TF and the DNA sequence [14-16]. It is believed
that TFs are the actual operators for enhancer regulatory
activities [17], which may explain why TF binding related ge-
netic features are predictive. Direct measurement of the bind-
ing affinity between a TF and DNA sequence is not easy.
However, the binding affinity can be inferred indirectly, either
by experimentally measuring frequency of TF binding events,
such as chromatin immunoprecipitation (ChIP) [18], or by cal-
culating the similarity of the DNA sequences with a known TF
binding motif [19,20]. The epigenetic feature mainly includes
the level of histone modifications and of DNA methylation.
Recent experimental evidence supports the association of sev-
eral histone modifications with enhancer activity. The histone
modification levels thus have served as features to predict ac-
tive enhancers in humans [21,22]. Researchers also attempt
to seek optimum combinations of these features for whole-gen-
ome prediction of active enhancers [5,9-11] (Table 1). Obvi-
ously, not all the aforementioned features are equally
important for active enhancer prediction. The level of some
dominant features showed strong correlation with enhancer
activity [5,23], although the nature of the relationship between
the features and enhancer states is poorly understood. Further
development of superior predictive methods can not only help
us to reveal such structure, but also help to improve sensitivity
and specificity of the predictions.

Algorithms for enhancer recognition can be roughly di-
vided into two groups. One group comprises probabilistic
graphical models which describe the generative process of spe-
cific signals, such as Bayesian networks (BNs) [24] and hidden
Markov models (HMMs) [25]. The other group employs
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The comparative genomic features are usually generated from comparison between DNA sequences in closely-related species. TF binding
features result from two sources, one from known TF binding motifs and the other from ChIP experiments. Epigenetic features can be
measured by various technologies. See the main text for more details.
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Table 1 Features of computational methods for enhancer
prediction
Feature Method Ref
Comparative genomic features Aparicio’s method 4]
Visel’s method (2008) [30]
Chen’s method [8]
Yip’s method [50]
Sequence-based TF Narlikar’s method [65]
binding related features Chen’s method [8]
Lee’s method [44]
Yip’s method [50]
Experiment-based TF Visel’s method (2009) [46]
binding related features Zinzen’s method [67]
May’s method [48]
Chen’s method [8]
Epigenetic features Heintzman’s method [5]
Won’s method [11]
Firpi’s method [10]
SEGWAY [69]
Kharchenko’s method [60]
He’s method 23]
Ernst’s method [61]
ChromaGenSVM 9]
Yip’s method [50]
Chen’s method [8]
Bonn’s method [6]

Note: More than one type of features were employed to build enhancer
recognition model in some studies. For example, Chen et al. used all
four types of features to develop active enhancer recognition model [8].

discriminative filters and includes thresholds or classification
boundaries in the features. This group mainly includes support
vector machines (SVMs) [26] and artificial neutral networks
(ANNS) [27].

The features used in enhancer recognition

Comparative genomic features

Comparative genomic features comprise conservation scores
calculated from multi-species genome sequence alignment.
With the completion of more vertebrate genome sequencing
projects, many methods have been developed to discern slowly
evolving genome regions. For example, by comparing point
substitutions, insertions and deletions between humans, mice
and rats, Cooper et al. comprehensively annotated slowly
evolving regions in the human genome [28]. Phastcon score,
another example representing the evolutionary conservation
of genomic regions [29], has been employed to predict putative
enhancer location [8]. In early systematic recognition of poten-
tial enhancers in fugu [4], a pair-wise identity score of Hoxb-4
between mouse and fugu was used to detect conserved
sequence blocks, followed by transgenic mouse assays to
measure their enhancer activities. Likewise, ultraconserved
non-coding elements between humans, mice and rats were also
found to be highly enriched in enhancer regions [30]. However,
conservation per se is not sufficient to deduce enhancer activity
in any given cell type. Moreover, several enhancers with little
conservation were found carrying identical regulatory patterns

in different species [31-33]. Therefore, additional information
is required to predict enhancer activity in a given cell type.

Transcriptional factor binding related genetic features

Transcriptional factor binding related genetic features can be
roughly classified into two groups. One group includes quanti-
tative scores of similarity to a known TF binding motif, repre-
senting the TF binding affinity to the DNA segments
(sequence-based TF binding related genetic features). The
other group includes experimental measurements of TF bind-
ing frequency, which also presumably represents TF binding
affinity (experiment-based TF binding related genetic
features).

The sequence-based TF binding related genetic features
comprise individual TF binding and the enrichment of modu-
lar combinations of TF binding. Measuring TF binding affin-
ities is not an easy task experimentally; however, it can be
approached from the nucleotide preferences at each sequence
position [20], e.g., position weight matrix (PWM). PWM de-
scribes the probability of observing the respective nucleotides
A, C, G, and T in each position of a sequence motif. It has
been found that there is a strong correlation between PWM
scores and the TF binding affinity [15,16,20]. PWMs for
known TFs have been cataloged in databases [34,35]. These
matrices enable people to assign a quantitative score to any se-
quence to evaluate the binding affinity of the specific TF at
that sequence (Figure 1). In vertebrates, functional TF binding
sites are usually clustered into a modular structure, which
motivates researchers to seek cis-regulatory modules (CRMs)
as the advanced predictive features for cis-regulatory element
recognition [36,37]. The CRM features are often calculated
as the likelihood of the CRM in a given genome context
[38]. For example, MSCAN value measures the statistical sig-
nificance of the appearance of potential combinatorial TF
binding sites [39]. All the TF binding sites are represented by
PWM scores and MSCAN returns the significance of the
CRM. A similar strategy is adopted in MCAST [40].

To further improve the performance, additional phyloge-
netic footprinting is employed to align interested orthologous
DNA sequences to define a conserved region and then the signif-
icance of the CRM is calculated in the regions. For example,
EEL approach was used to scan a given pair of orthologous se-
quences to identify conserved TF binding sites, and, then EEL
scores were calculated by considering both distances and differ-
ences in the angles between adjacent binding sites [41]. Another
example, MorphMS, implemented a pair-HMM statistical
alignment between two species [42]. A first order Markov net-
work with three states (match, deletion and insertion) was imple-
mented and emits two strings, one for each species. The string
emitted in the match state was chosen by another probabilistic
process, which models the arrangement of binding sites and
non-binding (“‘background”) sites by PWM. Then, two log like-
lihood ratio (LLR) scores were reported. The two scores (LLR1
and LLR2) compare the likelihood of a sequence under the
MORPH model to the likelihood of the sequences under null
models. The null model used in LLR1 only considers back-
ground PWM, while the null model for LLR2 assumes that
the two orthologous sequences were generated independently.

Besides the similar strategy used in MorphMS, another
algorithm EMMA incorporates gains and losses at binding
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site, a process that is believed to be an important part of CRM
evolution [43]. However, the computational cost increases
exponentially with the number of TFs considered. One alter-
nate choice for this type of sequence features is k-mer profile,
which is the frequency of all possible k-mer (putative motifs
with length of k) in a given sequence region [44]. The profile
measures how likely the k-mers in one enhancer would be
found in another independently-generated sequence. Using
such k-mer features, Leung and Eisen developed a profile
similarity between pairs of sequences to detect novel enhancers
[45]. However, the search space is growing exponentially
with k.

The sequence-based TF binding related genetic features
alone are not sufficient for active enhancer recognition. First,
most of the features are conserved TF binding sites, while
many enhancer elements are not conserved. For example, in
Drosophila, the cone-specific Pax2 enhancer carries barely-
conserved TF binding sites, which have been shown to possess
similar enhancer functions in transgenic assays [31]. Similarly,
a large proportion of a 40 kb region in the Phox2b locus
showed regulatory activity by transgenic assay in zebrafish,
while only 29-61% identified regulatory sequences were con-
served [32]. Second, in any given tissue, only a subset of
enhancers is active. This tissue-specific activity may result from
a tissue-specific combination of binding TFs or from regula-
tion at the epigenetic level.

TF binding in given tissues or cell types can be experimen-
tally measured, which gives experiment-based TF binding re-
lated genetic features. For example, data from chromatin
immunoprecipitation followed by massively parallel DNA
sequencing (ChIP-seq) technology precisely provide binding
loci for the TFs under the given conditions [18]. Visel et al.
mapped the genome-wide occupancy of p300 in three cell lines
by ChIP-seq. Using transgenic mouse assay, they show that
p300 binding sites are predictive for enhancer activity in the
cell types examined [46]. Similarly, CREBBP-bound enhancers
also show environment-dependent activity in neurons [47], or
in transgenic mouse enhancer assays [48]. Recently, ENCODE
project has generated high-throughput sequencing (ChIP-seq
or ChIP-chip) data sets for 119 distinct transcription factors
over five main cell lines [49]. These experimental results have
been used for enhancer recognition [50].

Epigenetic features

Epigenetic features consist of chromatin structure, histone
modifications, DNA-methylation levels and non-coding
RNAs. In this review, we mainly focus on the first two types
of epigenetic features, since other features have been reviewed
elsewhere (such as [51]). Chromatin structure controls DNA
accessibility of TFs to enhancer or other regulatory elements.
DNA accessibility can be inferred as DNase I hypersensitivity
[52,53] or by Formaldehyde-Assisted Isolation of Regulatory
Elements (FAIRE) technology [54]. The regions detected by
DNase I or FAIRE are associated with all known classes of ac-
tive DNA regulatory elements, including enhancers [55]. For
example, Wiench et al. found that CpG methylation at gluco-
corticoid receptor (GR) -associated DNase 1 hypersensitive
sites was a cell type-specific event and suggested that these sites
could be a unique class of active enhancers [56]. Comparing
DNase I-seq and FAIRE-seq data in seven human cell types

indicated that data from these two assays were not fully over-
lapping [57]. DNase I tended to find the regions around tran-
scriptional start sites, while FAIRE was more sensitive in
detecting distal regulatory elements. Notably, neither DNase
I nor FAIRE hypersensitive sites detected in one cell type
are sufficient to demonstrate their enhancer state, as many
other regulatory element sites, such as repressors or insulators,
are also DNase I or FAIRE hypersensitive [57]. Therefore,
DNase I or FAIRE hypersensitivity data should be regarded
as a necessary but not sufficient input for active enhancer
prediction.

In addition to DNA accessibility, the presence of
characteristic histone modifications is another sign for the
activity of enhancers, e.g., eclevated H3K4 monome-
thylation (H3K4mel) levels and depleted H3K4 trimethylation
(H3K4me3) levels have been correlated with enhancer activity
[5]. Further experiments showed that active enhancers marked
by H3K4mel in ES cells are also flanked by H3K27 acetyla-
tion (H3K27ac), while regions marked by H3K27 trimethyla-
tion (H3K27me3) are associated with early developmental
genes which are poised in ES cells [58,59]. In another study,
however, Bonn et al. found that H3K4mel was distributed
similarly between mesodermally active and inactive enhancers,
indicating that the placement of H3K4mel is not completely
cell type specific during embryonic development [6]. Instead,
they found a conditional link between the presence of
H3K79me3, H3K27ac marks and enhancer activity.

Although the histone modification patterns mentioned
above showed promising potential for enhancer activity pre-
diction in certain cell types, the general pattern of histone mod-
ifications for prediction still remains elusive. In human CD4 "
T cells, 39 histone modification types have been mapped and
several histone mark combinations showed correlation with
enhancers, yet no single mark is associated with more than
40% of enhancers [7]. Integrating more epigenetic marks
may render a more reliable, robust and precise model to cap-
ture active enhancers. Several attempts have been made [5,9—
11]. One such attempt employed 10-fold cross-validation for
all possible combinations of six histone modification marks
to predict p300 binding sites, and found that enrichment of
H3K4mel and depletion of H3K4me3 is the most predictive
combination for p300 binding [5]. Many more sophisticated
computational technologies have also been applied to search
for optimal combinations for active enhancers. For example,
Won et al. coupled HMM with simulated annealing to search
for the most informative combination of histone modification
marks [11]. In Drosophila, Kharchenko and coworkers found
that active enhancers lack H3K4me3 and are enriched for
H3K4mel, H3K27ac and H3K18ac [60]. Similarly, Chrom-
HMM labeled active enhancers with the H3K4mel,
H3K4me2 and H3K27ac signature [61]. In a vast collection
of epigenetic marks (20 histone methylations and 18 histone
acetylations), genetic algorithms indicated that the most pre-
dictive histone modification signals within enhancers are
H3K4mel and H3K4me3 [9]. A similar pattern was also ex-
tracted from nearly 40 ENCODE histone modifications by
using fisher discriminate analysis [10].

The features we discussed above can also be roughly classi-
fied into two classes, based on the prediction power for enhan-
cer activity. One class of features represents the potential of a
locus to be an enhancer, e.g., comparative genomic features or
sequence-based TF binding related genetic features, because
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the features describe the static DNA sequence characteristics
which are shared by almost all cells in an organism. The other
class of features, e.g., experiment-based TF binding related ge-
netic features or epigenetic features, further indicates enhancer
activity of the loci in a given tissue or cell type. These features
are the actual measurement of cellular or molecular activities
that had already been associated with enhancer activity in liv-
ing cells. For example, when Visel and colleagues compared
the evolutionary conservation score and p300 binding sites,
they found that only 47% (246 out of 528) of conserved enhan-
cer candidates were active in a transgenic mouse assay,
whereas 87.7% of p300 binding sites were reproducibly active
in the same transgenic assay [46]. Another study employed
chromatin signatures of H3K4mel, H3K4me3 and H3K27ac
to recognize active enhancers in 19 mouse cell lines. By com-
paring predicted enhancers with 726 experimentally validated
enhancers, they found that 82% of predicted enhancers were
correctly identified [62]. Androgen receptor binds primarily
to active enhancers in human prostate cancer cells [63]. Inter-
estingly, He et al. found that the H3K4me? signal was detected in
the known androgen receptor binding sites [23]. At present,
although some features showed strong preference in the putative
enhancer regions, and some other features showed association with
enhancer activity, the relationship between features and enhancer
activity is complicated, and sophistic models are still essential to
achieve sensitive and specific active enhancer prediction.

Model building

The general process of enhancer prediction is summarized in
Figure 2, and the commonly used methods are listed in Table 2.
The simplest method to differentiate active enhancers from
background is to look for the presence of characteristic fea-
tures. For example, p300 ChIP-seq data were used to deter-
mine p300-enriched regions, which were considered as
putative active enhancers. Of the 122 tested p300 binding ele-
ments in mouse, 107 (87.7%) showed reproducible enhancer
activity [46]. Heintzman et al. exhaustively searched all combi-
nations of six different histone modification marks, and iden-
tified the optimal combinations of H3K4mel and H3K4me3
[5]. Despite the fine performance of this simple model, the best
predictive power in one dataset does not guarantee its perfor-
mance in another. Moreover, an ever increasing number of fea-
tures would challenge these simple methods. This is not only
because of the inter-correlations between the features, but also
because of the difficulties in interpreting the relative impor-
tance of each feature. A class of computational technology,
named feature selection, has been applied to solve such prob-
lems [64]. For example, Narlikar et al. built a linear regression
model to identify active enhancers in heart based on 727 se-
quence features including 721 TF binding related genetic fea-
tures [65]. The LASSO linear regression method was then
applied to find features relevant to enhancer activity and 45



Table 2 Model building strategies and performance of enhancer prediction methods

Category Method Operational model Positive predictive Note Ref
value (%)
Discriminative model Heintzman’s method Thresholds of histone modification profiles 39.5 Mapped to distal p300 binding sites in HeLa cells [5]
Visel’s method (2009) Thresholds of p300 binding profiles 87.7 With reproducible enhancer activity in transgenic [46]
mouse
Narlikar’s method Linear regression 62 With reproducible enhancer activity in vivo in [65]
mouse and zebrafish
Zinzen’s method Support vector machine 71.4 With reproducible enhancer activity in transgenic [67]
Drosophila
Firpi’s method Time-delay neural network 66.3 Overlapped with p300 binding sites, Dnase I [10]
hypersensitivity sites or TRAP220 binding sites in
HeLa cells
Lee’s method Support vector machine 74.5 Overlapped with Dnase I hypersensitive enhancers [44]
in embryonic mouse whole brain cells
ChromaGenSVM Support vector machine 57 Overlapped with p300 binding sites, Dnase I [9]
hypersensitivity sites or TRAP220 binding sites in
HelLa cells
Probabilistic graphical model Won’s method Hidden Markov model 54.8 Overlapped with p300 binding sites, Dnase I [11]
hypersensitivity sites or TRAP220 binding sites in
HelLa cells
Bonn’s method Bayesian network 78 Overlapped with previously identified TF binding [6]
sites in Drosophila
Other Chen’s method Multinomial logistic 83 Overlapped with at least one TF peak from 7 [8]
mouse embryonic stem cell ChIP-seq datasets
Yip’s method Random forest 67 With enhancer activity in vivo in mouse and [50]

medaka fish (28/42)

Note: The performance shown here is the reported performance compared to experimental results. The positive predictive value (percentage) was calculated as follows: positive predictive value = true
positive/(true positive + false positive).

U0NIIPaLg 42ouDyUsy 10 spoyiapy puonvinduio)) | v 12 O 3uv

Lyl



148 Genomics Proteomics Bioinformatics 11 (2013) 142-150

features were assigned nonzero weights. The accuracy of 92%
was achieved in distinguishing heart enhancers from a large
pool of random noncoding sequences.

Recently, more sophisticated methods have been imple-
mented to find the optimal classification border in the feature
space. Typical methods include ANNs and SVMs. A neural
network is a parallel system, capable of resolving paradigms
that linear computing cannot [27]. A case concerning enhancer
recognition is a time-delay neural network (TDNN) which
combines 39 histone modifications [10]. In an independent test,
66.3% of the putative regions identified by this model over-
lapped with experimentally supported enhancers [10]. A
SVM performs classification by seeking a hyperplane in high
dimensional labeled feature space that optimally separates
the data into two categories regarding the classification labels
[66]. A SVM model has been applied to ChIP-seq data of five
different TFs and 77% of all known muscle-specific enhancers
in Drosophila have been correctly predicted [67]. In addition,
using ChromaGenSVM, which was based on five histone mod-
ification marks, 57.0% of identified potential enhancers over-
lapped with experimentally supported enhancers in the pilot
ENCODE region in HeLa cells [9]. In fact, SVM models are
closely related to ANNs. SVMs are alternative training meth-
ods for multi-layer perception classifiers, in which the weight
of the network is found by solving a quadratic programming
problem with linear constrains, rather than by solving an
unconstrained minimization problem in ANNs [26]. A com-
parison in HeLa cells between ChromaGenSVM and TDNN
showed that ChromaGenSVM recovered 70.2% of the p300-
bound putative active enhancers, while TDNN achieved a pre-
cision of 84.0% [9]. However, due to different feature sets used
by these two models, these data do not necessarily indicate that
SVM is more effective than ANN for active enhancer
recognition.

Another type of approaches try to model the joint distribu-
tion of states and associated features with graph, generally
termed as probabilistic graphical models. The naive Bayes clas-
sifier (NBc) is the simplest one of this type [68]. For enhancer
recognition, NBc learns the conditional probability of each
feature related to enhancer activity from a training data. For
example, a NBc on 6-mer features has been trained to detect
active enhancers in the mouse genome [44]. However, com-
pared with a SVM model with the same feature set [area under
receiver operating characteristic curve (AUC) > 0.9], the NBc
preformed significantly less accurately in discriminating active
enhancers from random sequences (AUC < 0.79). HMM is
another example in probabilistic graphical models. The current
model of the genome is a linear combination of stated DNA
sequences, e.g., ‘promoter’, ‘enhancer’ or ‘coding region’. By
assuming that the state of any locus is only dependent on its
nearest neighbor, HMM provides a natural solution for the
task of segmenting the stated DNA sequences [25]. For exam-
ple, Kharchenko and coworkers used a HMM to identify the
prevalent combinatorial pattern of 18 histone modifications
and captured the overall complexity of chromatin profiles ob-
served in Drosophila S2 and BG3 cells with 9 states [60]. They
found that enhancer regions are always enriched with
H3K4mel, H3K27ac and H3K18ac. A similar strategy was
implemented in ChromHMM, which mapped 15 chromatin
states in nine human cell lines [61]. BN represents another
probabilistic graphical model that allows effective representa-
tion of the joint probability distribution over feature set [24].

BN provides a powerful framework for modeling the compli-
cated hidden relationships that explain the observed chromatin
patterns in a genome. For instance, SEGWAY used BN tech-
niques to simultaneously segment and cluster 1% of the hu-
man genome with 31 ENCODE signal tracks including
histone modifications, TF binding and open chromatin, and
revealed active enhancer associated patterns at nucleosomal
resolution [69]. BN has also been applied to predict active
enhancers in Drosophila [6], and the trained BN identified a
conditional link between the H3K79me3 and H3K27ac marks
and enhancer activity. This BN model achieved better perfor-
mance (AUC = 0.82), compared to the aforementioned NBc
model.

Conclusion and outlook

Enhancers are regulatory DNA elements that can activate
transcription largely independent of their location or orienta-
tion. Often, enhancers regulate gene expression in a tissue-spe-
cific manner and play important roles in cell differentiation
[17]. In this review, we have described the general computa-
tional strategies for enhancer prediction. It has been suggested
that H3K4mel and p300 binding signatures are the most pre-
dictive features for active enhancer recognition [5,46], how-
ever, this notion may be disputed by new data. For example,
a recent study found that H3K79me3 and H3K27ac, instead
of H3K4mel, are predictive for cell type specific enhancer
activity during embryonic development [6]. Recently, a more
complicated picture, which involves nuclear organization,
chromatin structure and non-coding RNAs, is emerging for
enhancer activation. Accumulating data suggested that the
insulators are critical in the regulation of enhancer—promoter
interaction which is believed to be accomplished by long-range
inter- or intra-chromosomal chromatin interactions [70].

From the perspective of computational biology, the field of
enhancer research is now moving toward the modeling of 3D
chromatin structure in nuclei, to reveal the principle of enhan-
cer-promoter interactions. Polymer models are valuable tools
in 3D chromatin structure study, e.g., the dynamic random
loop model [71] and the fractal globular model [72]. To under-
stand enhancers in the context of gene regulatory networks, it
is necessary to integrate data from ultra- heterogeneous data
sources in this “‘big data” era. For example, enhancer tran-
scribed RNAs (eRNAs) were recently found prevalent at en-
hancer loci [47]. Some of such non-coding RNAs even act
like enhancers [73]. Therefore, the integration of RNA-seq
data is essential for a model which aims to understand eRNA
associated enhancer activity.
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