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Hemodynamic responses, in general, and the blood oxygenation level-dependent

(BOLD) fMRI signal, in particular, provide an indirect measure of neuronal activity. There

is strong evidence that the BOLD response correlates well with post-synaptic changes,

induced by changes in the excitatory and inhibitory (E-I) balance between active neuronal

populations. Typical BOLD responses exhibit transients, such as the early-overshoot

and post-stimulus undershoot, that can be linked to transients in neuronal activity,

but they can also result from vascular uncoupling between cerebral blood flow (CBF)

and venous cerebral blood volume (venous CBV). Recently, we have proposed a

novel generative hemodynamic model of the BOLD signal within the dynamic causal

modeling framework, inspired by physiological observations, called P-DCM (Havlicek

et al., 2015). We demonstrated the generative model’s ability to more accurately model

commonly observed neuronal and vascular transients in single regions but also effective

connectivity between multiple brain areas (Havlicek et al., 2017b). In this paper, we

additionally demonstrate the versatility of the generative model to jointly explain dynamic

relationships between neuronal and hemodynamic physiological variables underlying the

BOLD signal using multi-modal data. For this purpose, we utilized three distinct data-sets

of experimentally induced responses in the primary visual areas measured in human, cat,

and monkey brain, respectively: (1) CBF and BOLD responses; (2) CBF, total CBV, and

BOLD responses (Jin and Kim, 2008); and (3) positive and negative neuronal and BOLD

responses (Shmuel et al., 2006). By fitting the generative model to the three multi-modal

experimental data-sets, we showed that the presence or absence of dynamic features

in the BOLD signal is not an unambiguous indication of presence or absence of those

features on the neuronal level. Nevertheless, the generative model that takes into account

the dynamics of the physiological mechanisms underlying the BOLD response allowed

dissociating neuronal from vascular transients and deducing excitatory and inhibitory

neuronal activity time-courses from BOLD data alone and from multi-modal data.

Keywords: excitatory-inhibitory, multi-modal data, fMRI signal modeling, response transients, neuronal

adaptation, post-stimulus BOLD undershoot, hemodynamic uncoupling, DCM
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INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a widely
used non-invasive technique to assess brain function. The
fMRI signal reflects neuronal activity only indirectly through
the measurements of accompanying hemodynamic processes at
temporal resolution typically on the order of seconds and spatial
resolution typically on the order of tens of cubic millimeters.
In general, neuronal activation causes a series of physiological
events, including localized changes in cerebral blood flow
(CBF), cerebral metabolic rate of oxygen (CMRO2), cerebral
blood volume (CBV), and deoxyhemoglobin content. These
physiological variables form the basis of the blood oxygenation
level-dependent (BOLD) signal (Ogawa et al., 1990), the most
commonly used fMRI approach. However, CBF and CBV can
also be directly measured with various fMRI techniques (e.g., see
Wong et al., 1997; Lu et al., 2003; Liu and Brown, 2007; Huber
et al., 2014b).

In many studies, it has been found that there is high
correspondence between response properties measured in fMRI
and other hemodynamic techniques and those measured from
invasive electrical recordings, mostly acquired in non-human
primates, cats and rodents (Logothetis et al., 2001, 2010;
Kim et al., 2004; Niessing et al., 2005; Devor et al., 2007,
2013; Logothetis, 2008; Muckli, 2010; Boynton, 2011; Hillman,
2014). In particular, CBF and BOLD responses show better
correlation with post-synaptic local field potentials (LFPs) than
with spiking activity (multi-unit activity, MUA), suggesting that
the hemodynamic response reflects stronger the input to a
neuronal population in a brain area and intrinsic processing
(Lauritzen, 2005) rather than the output of that area (Goense
and Logothetis, 2008; Logothetis et al., 2010; Magri et al.,
2012). Positive CBF and BOLD responses during stimulation are
associated with an increase in neuronal activity and decrease
in deoxyhemoglobin content, whereas negative CBF and BOLD
responses are associated with a decrease in neuronal activity
below baseline and increase in deoxyhemoglobin content (e.g.,
Shmuel et al., 2006 and references therein).

Typical positive BOLD responses to sustained stimulation
display transients, such as response adaptation (also referred to
as early-overshoot) and post-stimulus undershoot (Frahm et al.,
1996; Krüger et al., 1996; Hoge et al., 1999). Similarly, neuronal
responses to stimulation exhibit rapid rise followed by a decay
(or adaptation) to a steady-state level and are often followed
by a brief decrease below baseline after stimulus cessation (e.g.,
Logothetis et al., 2001). These neuronal transients (Boynton et al.,
1996; Hoge et al., 1999; Bandettini and Ungerleider, 2001; Birn
et al., 2001) are the result of changes in excitatory and inhibitory
(E-I) balance between active neuronal populations, controlled by
local micro-circuitry but also by long-range connections with
other brain areas (Logothetis, 2002; Logothetis and Wandell,
2004; Shmuel et al., 2006; Hyder et al., 2010; Havlicek et al.,
2017b). CBF reflects these neuronal transients in a temporally
smoothed fashion (Hoge et al., 1999; Attwell and Iadecola, 2002;
Uludağ et al., 2004; Sadaghiani et al., 2009; Attwell et al., 2010;
Cauli and Hamel, 2010; Mayhew et al., 2014). Because of the
complex underlying physiological processes, the BOLD response

can exhibit transients not only from neuronal sources, but also
due to the properties of blood vessels: the BOLD response is
dominated by signal contributions originating from the venous
compartments, and venous CBV can be dynamically uncoupled
from CBF (i.e., venous CBV lags behind CBF), influencing the
amplitude of the early-overshoot and post-stimulus undershoot
of the BOLD-response (Buxton et al., 1998b; Mandeville et al.,
1999; Yacoub et al., 2006; Chen and Pike, 2009). Alternatively,
dynamic uncoupling between CBF and CMRO2 (i.e., CMRO2

lags behind CBF) could result in the same BOLD transients
as well (Lu et al., 2004; Frahm et al., 2008; Donahue et al.,
2009; Hua et al., 2011; Poser et al., 2011; van Zijl et al., 2012).
However, we have recently argued, supported by modeling
of experimental data, that the contribution of CBF-CMRO2

uncoupling to BOLD signal transients is much lower than that
of CBF-venous CBV uncoupling (Havlicek et al., 2017a). Thus,
neuronal and hemodynamic responses in different areas (or
voxels) and subjects exhibit dynamic features, which can be both
due to changes in E-I balance or due to biomechanical properties
of the vasculature.

In standard analysis of fMRI data, linear convolution is
applied between a stick or box-car functions (representing the
stimulation paradigm) and assumed canonical hemodynamic
response function (representing the combined transform from
stimulus time-course to neuronal signal and the measured
BOLD response) (Friston et al., 1995). However, as indicated
above, excitatory and inhibitory neuronal responses may be
nonlinearly related to stimulation (e.g., see Boynton et al.,
1996; Bandettini and Ungerleider, 2001; Birn et al., 2001; Grill-
Spector and Malach, 2001; Kida and Yamamoto, 2008; Mullinger
et al., 2013, 2014; Pérez-González and Malmierca, 2014; Havlicek
et al., 2017a; Keller et al., 2017). Furthermore, vascular
transients resulting from dynamic uncoupling induce additional
nonlinearities between the input function and subsequent
hemodynamic variables. Therefore, the linearity assumption in
BOLD data analysis may not be sufficient in many experiments
and, consequently, the inferred information about the neuronal
activity changes obtained from hemodynamic signals using linear
(de)convolution analysis might be confounded with vascular
effects. In other words, to more accurately estimate neuronal
responses from the BOLD signal, a nonlinearmodel that accounts
for dynamic relationships between neuronal and hemodynamic
physiological variables underlying the BOLD response is needed.

Recently, we have introduced a physiologically-informed
generative model of the BOLD signal within the framework of
dynamic causal modeling (Friston et al., 2003) (called P-DCM)1,
linking excitatory and inhibitory neuronal activity to the BOLD
response (Havlicek et al., 2015). In P-DCM, we employ: (i) an
adaptive excitation-inhibition neuronal model that accounts for a
wide range of neuronal time-course both during stimulation and
post-stimulation periods; (ii) a neurovascular coupling (NVC)
model that links neuronal activity to blood flow in a strictly

1As we have developed our novel generative model within the framework of the
dynamic causal model (DCM) and applied it both to single ROI and to a network
of ROIs, in this paper to avoid confusion, we use DCM and the generative model
embedded within P-DCM interchangeably.
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feedforward fashion; (iii) a balloon model (Buxton et al., 1998b)
that can account for a vascular uncoupling between CBF and
venous CBV; and (iv) field strength and sequence dependent
parameterization of the BOLD signal equation. We compared P-
DCM with other DCM models (Friston et al., 2003; Marreiros
et al., 2008) and demonstrated significant improvements in the
ability to model commonly observed neuronal and vascular
response transients in single regions (Havlicek et al., 2015)
and also within a network of several regions with task-driven
activity changes (Havlicek et al., 2017b). In the latter case, we
also showed a high fidelity of P-DCM to jointly explain CBF
and BOLD responses simultaneously measured with the arterial
spin labeling (ASL) fMRI technique, demonstrating the benefit
of additional information provided by a CBF measurement for
model inversion.

In general, multi-modal imaging is a powerful approach
to study the relationship between neural activity and the
BOLD fMRI signal. Measurements of different physiological
variables can increase the ability to disambiguate neuronal and
vascular effects present in the BOLD signal and potentially
unravel limitations of the hemodynamic models. In the
current work, we aim to explore the versatility of P-DCM to
explain dynamic relationships between various combinations of
measured physiological variables and to deduce the excitatory
and inhibitory neuronal dynamics from hemodynamic data.
This is done under the constraints of assumed physiological
mechanisms and experimental manipulations. In particular, we
use: (1) newly acquired CBF and BOLD responses to static
and flickering stimuli in human subjects; (2) CBF, total CBV
and BOLD response to square-wave grating stimulus acquired

in the cat brain from the study of Jin and Kim (2008);
and (3) positive and negative neuronal and BOLD responses
induced by rotating visual stimuli measured in the monkey
brain from the study of Shmuel et al. (2006). In our modeling,
we emphasize stimulus-type-dependent modulation of response
transients that can be linked to a dynamic interplay between
excitatory and inhibitory activity. In addition, we allow for
differences between stimulation and post-stimulation response
periods and account for vascular-, magnetic field strength-, and
MRI sequence-dependent properties. The current approach can
also be generalized to other invasive and non-invasive multi-
modal data, such as EEG-fMRI, provided generative models exist
for both modalities.

METHODS

General Description of P-DCM
The generative model in P-DCM consists of four causally-linked
components that define how the neuronal signal is transformed
to the measured BOLD response (see Figure 1 for an illustration
and the summary of model equations). For a more detailed
description of the model and its comparison with previous DCM
models, please see (Havlicek et al., 2015, 2017b).

Neuronal Model of E-I Balance
In this model, an exogenous input u (t) (e.g., sensory stimulus)
drives the change in excitatory activity, ne (t), which is directly
coupled with a change in inhibitory activity, ni (t). The strength
of this input, expressed with the parameter c, scales the amplitude
of the neuronal response. The shape of the neuronal response

FIGURE 1 | On the left, a schematic depicts the four main components of P-DCM generative model, representing the causal chain between the neuronal and the

BOLD response. In the middle, shapes of the physiological responses generated at different stages of the generative models are shown. The shaded areas around the

responses represent the amount of response transient variability that can be modeled by P-DCM. This illustration highlights the two main sources of BOLD response

transients: caused either by (1) neuronal transients generated by the model of E-I balance; or by (2) vascular transients due to dynamic uncoupling between CBF and

venous CBV; or mixture of these two. On the right, a summary of all equations underlying P-DCM is provided.

Frontiers in Neuroscience | www.frontiersin.org 3 November 2017 | Volume 11 | Article 616

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Havlicek et al. From fMRI to Excitation and Inhibition

is tuned by the transient imbalance between excitatory and
inhibitory activity. In particular, the typical overshoot at the onset
can be produced by gradually increasing inhibitory activity that
modulates the excitatory activity via negative feedback. Next,
persistence of the inhibitory activity following stimulus cessation
can produce post-stimulus deactivation. This temporal evolution
of excitatory and inhibitory activity, including their dynamic
mismatch, is controlled by the parameters σ and λ, respectively,
and the strength of the inhibitory activity modulating the
excitatory activity is encoded by the parameter µ. Optimization
of these neuronal parameters allows modeling a broad repertoire
of neuronal response adaptation profiles and of possible post-
stimulus deactivations separately for the stimulation period (SP)
and the post-stimulation period (PSP)2.

Neurovascular Coupling (NVC):
The output of the neuronal model, i.e., the excitatory
activity modulated by inhibitory activity, is transformed
to CBF, f (t), in a strictly feedforward fashion, via
vasoactive signal a(t). Neuronal excitation/inhibition leads
to arterial vasodilatation/vasoconstriction associated with
increased/decreased CBF (Devor et al., 2007). Thus, the modeled
neuronal response transients are conveyed to a CBF response,
albeit in a smooth version. Decay and delay of the CBF response
with respect to the neuronal response is regulated with three
constants, ϕ, φ and χ , with only χ being optimized during model
inversion.

Hemodynamic Model:
The hemodynamic model is represented by the balloon model
(Buxton et al., 1998a,b). It models themass balance of normalized
changes in CBV, v(t), and deoxyhemoglobin content, q(t), as
they pass through the venous compartment. Their changes are
driven by changes in the inflowing CBF, f (t), and CMRO2,
m(t), respectively. It is assumed that CBF and oxygen extraction

faction, E(t), are dynamically coupled, thus m (t) = f (t) · E(t)
E0

,
where E0 is the value of oxygen extraction faction at rest (please
see discussion of this assumption in (Havlicek et al., 2015), and
the Discussion section for more details). Furthermore, during
steady-state, the blood leaving the venous compartment (i.e.,
the outflow, fout(t)) and the venous CBV are coupled via a
power law relationship (Grubb et al., 1974), with exponent α,
whereas during the transient periods venous CBV and CBF can
be uncoupled; i.e., venous CBV can evolve more slowly than CBF.
This is due to the vessel’s resistance to changes in venous CBV,
described by the viscoelastic time constant, τ . Theoretically, the
viscoelastic time constant can have different values during SP
and PSP, τSP and τPSP. The time dimension of changes in v(t)
and q(t) is scaled by the mean transit time of the blood through
the venous compartment at rest, t0. Note that t0 is linked to the
resting venous blood volume fraction V0 via the central volume
principle, t0 =

V0
F0

, where F0 is the blood flow at rest.

2Please note that we use PSP instead of PSU, as the sign of the post-stimulus BOLD
response depends on whether it is preceded by negative or positive changes in
neuronal activity during stimulation (as in Shmuel et al., 2006; whose data are
investigated in the current study).

BOLD Signal Equation:
The BOLD signal reflects changes in the deoxyhemoglobin
content, q(t), together with changes in the deoxyhemoglobin
concentration, q(t)/v(t), and venous CBV, v(t). Their relative
contribution is weighted by parameters that are magnetic field
strength-, TE- andMRI sequence-dependent (Uludağ et al., 2009;
Havlicek et al., 2015, 2017a).

In summary, as illustrated in Figure 1, P-DCM and its
parameters allows the BOLD response to exhibit transients, such
as response adaptation during stimulation and post-stimulus
undershoot that can have both neuronal and vascular origins.
As we show below, physiological origins of these transients
can be tested under the constraints of concurrent multi-modal
physiological data and experimental manipulations.

Data Description
To demonstrate the utility and versatility of P-DCM, below we
describe three different data-sets acquired from human, cat, and
monkey brains. Each data-set consists of a different combination
of physiological measurements: I. CBF and BOLD response;
II. CBF, total volume CBV, and BOLD responses, published in
Jin and Kim (2008); and III. neuronal and BOLD responses,
published in Shmuel et al. (2006). Any additional physiological
data, next to the BOLD data (and/or experimental manipulation),
provide physiologically-informed constraints on the underlying
mechanisms of the BOLD response. This can result in a more
accurate inference on the changes in E-I balance forming the
neuronal responses (Havlicek et al., 2017b) and potentially
inform about the limitations of model structure and parameter
assumptions.

I. CBF and BOLD Responses
Four healthy volunteers (females, age range: 26–34) were
scanned for the current study on a 3 T Siemens PrismaFit MR
scanner (Siemens Medical Solutions, Erlangen, Germany). For
each subject, six functional runs and an anatomical scan were
acquired. To obtain functional measurements of both CBF and
BOLD signals, a multi-TE FAIR-Q2TIPS ASL sequence (Kim,
1995) was used with a gradient-echo echo-planar imaging (GE-
EPI) readout and the following imaging parameters: TR =

2,200ms; TI1/TI2 = 700/1,660ms; TE1/TE2/TE3 = 8/21/33ms;
FOV = 192 × 192 mm2; nominal voxel size = 3 × 3 × 3 mm3,
flip angle = 90◦; matrix size = 64 × 64; 325 volumes (total scan
duration 715 s); 10 oblique slices acquired in interleaved fashion,
covering early visual areas. The anatomical MPRAGE scan was
acquired with: 1mm isotropic nominal voxel size; FOV = 224 ×
224 mm2; matrix size= 224× 224; TE= 2.1ms; TR= 2,400ms;
TI= 1,040ms.

The subjects were instructed to fixate on a small dot at
the center of the screen throughout the experiments. Each of
the EPI functional runs began with a 55 s resting period and
continued with alternation of two static and two flickering
checkerboard conditions (each 55 s long), interspersed with
110 s resting periods. Flickering checkerboards were presented
at 4Hz (eight reversals per second). The order of static and
flickering conditions within a run was pseudo-randomized.
For the static condition, a full-field, black-and-white radial

Frontiers in Neuroscience | www.frontiersin.org 4 November 2017 | Volume 11 | Article 616

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Havlicek et al. From fMRI to Excitation and Inhibition

checkerboard was presented (Michelson contrast 1), whereas, for
the flickering condition, reduced contrast (Michelson contrast
1/3) checkerboards were presented at 4Hz (i.e., 8 reversal per
second) (Sadaghiani et al., 2009). The resting periods consisted
of a gray screen isoluminant with the mean luminance of the
checkerboard. In order to maintain the subjects’ attention, the
color change of the fixation dot (altering between red and blue
at three pseudo-random intervals within each stimulation block)
was passively observed. For each subject, there were twelve trials
per condition.

For each subject, the CBF time-series were derived from the
ASL data acquired with TE = 8ms using surround subtraction
(Mumford et al., 2006). The BOLD time-series were obtained
from the ASL data acquired with TE = 33ms using surround
averaging. The data were preprocessed using SPM12 (R6470)
(http://www.fil.ion.ucl.ac.uk/spm). To correct for head motion,
the realignment parameters with respect to the first volume
were estimated using BOLD data and the same realignment
parameters were applied to the corresponding volumes of CBF
data. The mean BOLD image was coregistered to the anatomical
image and the estimated spatial transformation matrix was
applied to the functional BOLD and CBF data. CBF data were
modeled voxel-wise using a general linear model (GLM). This
model included main predictors representing the periods of
static and flickering visual stimulation and additional predictors
representing the stimulus onset and offset. All predictors (i.e.,
three per condition) were convolved with a gamma-variate
hemodynamic response function (“spm_Gpdf.m”) with shape and
scale parameters 4 and 0.5, respectively. The additional predictors
were introduced to explain deviations of the hemodynamic
response shape between conditions during stimulation and post-
stimulation periods. The predictors were not orthogonalized in
order to retain a direct interpretation of the model. Furthermore,
data were high-pass filtered (cut-off = 1/256 s) to remove low
frequency signal drifts and a first-order autoregressive model
was used to remove serial correlations. Based on a conjunction
analysis of the two main contrasts for static and flickering
conditions, significant voxels within the gray matter of the left
and right visual cortex (p< 0.05, corrected for family-wise errors)
were selected from the CBF data. The same voxels were selected
from the BOLD data. The statistically significant BOLD signal
map (not reported) included the CBF ROI, but had a larger spatial
spread. Voxel’s time-courses from the CBF and BOLD data (∼40
voxels per subject) were extracted, high-passed filtered (cut-off=

256 s), and the average responses in percent signal change were
calculated for the two experimental conditions.

CBF, Total CBV and BOLD Responses
Hemodynamic responses of CBF, total CBV, and BOLD signal
were extracted from Figure 1 of the paper by Jin and Kim
(2008) using Matlab (MathWorks, Inc.). These responses were
measured using fMRI in the visual cortex of anesthetized cats
at 9.4 T. In brief, they used 60 s visual stimulus of black and
white square-wave gratings drifting with a temporal frequency
of 2 cycles/s. This was always preceded by 20 s and followed by
60 s control condition represented by the same but stationary
gratings. All data were acquired with GE-EPI readout. BOLD

and total CBV signals were acquired simultaneously with TR
= 2 s and ∼0.2 × 0.2 × 2 mm3 voxel size and CBF signal
was acquired during separate runs with TR = 3 s and ∼0.3 ×

0.3 × 2 mm3 voxel size. However, the reported responses from
Figure 1 were upsampled (using linear interpolation) to TR =

1 s. BOLD responses were derived from two TEs of 10ms and
20ms (by calculating the slope ∆R∗2 , but displayed in average
percent signal change). Furthermore, in Figure 1 by Jin and Kim,
hemodynamic responses were reported for both the middle and
top (superficial) part of the gray matter. We have taken CBF and
total CBV responses from the middle gray matter and the BOLD
response from the superficial area, where it exhibited the highest
signal change. Note that CBF and total CBV are more localized to
signal changes induced in the arterial blood compartment, while
BOLD signal is mostly represented by the venous compartment,
where the draining veins carry the signal from deeper gray matter
structures toward the surface. Therefore, from the view of blood
dynamics, the BOLD response measured at the surface mostly
reflects the CBF and arterial CBV changes that occurred deeper
in the gray matter. Finally, for all three hemodynamic responses,
it is important to preserve the exact amounts of reported percent
signal changes.

III. Neuronal and BOLD Responses
Neuronal and BOLD responses were extracted from Figures 2A,
1D of the paper by Shmuel et al. (2006), respectively.
These responses were measured simultaneously using invasive
electrophysiological recording and fMRI in the visual cortex of
anesthetized monkey brain at 4.7 T. In brief, 20 s visual stimuli
consisting of high-contrast radial checkers rotating 60◦ per s were
presented on gray background. The same background was used
5 s before and 25 s after the stimuli. Stimulation ring overlapping
with the receptive field at V1 induced positive response in the
vicinity of the electrode, while stimulus ring, which did not
overlap with the receptive field, induced negative response in the
same area. Neuronal responses were obtained by averaging the
fractional change in power spectrum over the whole range of
frequencies (4–3,000Hz) with temporal resolution of 1 s. BOLD
data were acquired with GE-EPI readout, TE = 20ms, TR =

1 s and in-plane spatial resolution of 0.75 × 0.75 × 2 mm3.
Positive and negative BOLD responses induced by two stimuli
were sampled and averaged over the same voxels within the ROI
around the electrode.

Model Specification
The multi-modal data from each study is used to identify
the neuronal and vascular parameters of the generative model.
Below, we specify the model assumptions for each study
and form the observation equation to enable joint fitting
to multiple physiological variables. In general, we aim to
constrain the model estimation by at least two physiological
measurements, experimental manipulations and properties of
the venous blood compartment, the latter being independent of
experimental manipulations, as it is given by the biomechanical
properties of blood vessels. The assumptions about time-period-
(i.e., stimulation or post-stimulation period) and experimental
condition-specificity of certainmodel parameters weremotivated

Frontiers in Neuroscience | www.frontiersin.org 5 November 2017 | Volume 11 | Article 616

http://www.fil.ion.ucl.ac.uk/spm
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Havlicek et al. From fMRI to Excitation and Inhibition

by three criteria: (1) we favor the minimum number of
parameters that can sufficiently explain the dynamic behavior of
the multi-modal experimental data; (2) we have prior knowledge
from previous results that some parameters have to be time-
period- and/or experimental condition-specific, e.g., vascular
parameters are condition independent for the same voxels;
(3) the first and second criteria should be consistent for all
three experiments described above, i.e., the same assumptions
about neuronal and vascular parameters have to hold for all
three experiments. Furthermore, if available, the model is also
constrained by the measured percent signal changes of CBF and
BOLD responses.

Experiment I: CBF and BOLD Responses:
To jointly model CBF and BOLD responses using P-DCM
during both static and flickering conditions, we made the
following specifications for the generative model in order to
determine the transfer of condition-dependent neuronal changes
to changes in the measured signals. Two independent inputs,
uS and uF , in the form of box-car functions representing 55 s
long static and flickering visual stimulation (whose strengths
were controlled by two parameters c), were used to drive the
neuronal activity. To accommodate the assumption that each
type of visual stimulus can result in a different adaptation profile
during the stimulation period (SP) but also exhibit differences
in neuronal adaptation during the post-stimulus period (PSP),
parameters of the neuronal model, σ and µ, were allowed to
vary between the two phases but also between conditions. On
the other hand, λ was allowed to vary only between the two
conditions. This is because after the static stimulus the CBF
response exhibits a slower return to the baseline without a post-
stimulus undershoot, which is effectively modeled by setting the

parameter µ close to zero. Thus, during this PSP, parameter λ

does not have an effect on the shape of the neuronal response
and becomes unidentifiable. Further, the NVC parameter χ ,
was assumed to be the same for both conditions and SP and
PSP. Within the hemodynamic model, the viscoelastic time
constant, τ , controlling the expansion and deflation of the venous
compartment was allowed to vary between SP and PSP but not
during the two conditions. The mean transit time at rest, t0, was
estimated together with the resting blood volume fraction, V0,
by assuming a blood flow value at rest, F0 = 0.01 s−1 (i.e., 60
ml/100 g/min, a typical value for human visual cortex; Donahue
et al., 2006). All these free parameters and their usage during
specific periods and conditions are summarized in Table 1. Next,
the Grubb’s exponent α and the oxygen extraction fraction at rest,
E0, were fixed to 0.3 and 0.35, respectively. The BOLD signal
equation was parameterized for 3 T magnetic field strength and
the sequence parameters utilized in this study (see Table S1).

The modeled physiological variables were linked to measured
(averaged) response at the level of CBF (i.e., the output of NVC)
and BOLD signals. To enable their joint fitting, we considered a
concatenated form of the observation equation:

[

yf
yb

]

=

[

f − 1
b

]

·100+

[

εf
εb

]

, (1)

where yf and yb are measured CBF and BOLD responses to
both static and flickering stimuli in percent signal changes,
all concatenated to a single vector. The measured data were
explained by modeled CBF and BOLD responses, f and b,
respectively, with additive error terms εf and εb, constituting the
“AR(1)+white noise” model (Friston et al., 2003).

TABLE 1 | Model parameters optimized during model inversion of the three data-sets.

Free parameters

Neuronal model NVC Hemodynamic model

c (-) σ (s−1) µ (s−1) λ (s−1) χ (s−1) τ (s) t0 (s), V0 (%)

CBF AND BOLD DATA:

SP Static � � � �† � � �

Flicker � � � �‡

PSP Static - � � † �

Flicker - � � ‡

CBF AND TOTAL CBV AND BOLD DATA:

SP Gratings � � � � � � �

PSP - � �

NEURONAL AND BOLD DATA:

SP Positive � � � �† �† � �

Negative � � � �‡ �‡

PSP Positive - � � † † �

Negative - � � ‡ ‡

�Indicates parameter that is optimized within a certain time-period or condition.

†‡
Indicates optimized parameters that were consider the same between time-periods but different between conditions (e.g.,

†
marks the static condition and ‡marks the flickering

condition in the first experiment).
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Experiment II: CBF, Total CBV and BOLD Responses:
To jointly model CBF, total CBV and BOLD responses to
the same visual stimulus, the generative model was specified
as follows: the excitatory activity of the neuronal model was
driven by a single input in the form of a box-car function
representing 60 s stimulation duration, scaled by the parameter
c. As in the previous experiment, the neuronal parameters σ

and µ were allowed to vary between SP and PSP periods,
while a single λ was estimated for both periods. The NVC and
hemodynamic model were also controlled in the same way as in
the previous experiment (seeTable 1). The BOLD signal equation
was parameterized for 9.4 T magnetic field strength and specific
sequence parameters (see Table S1). Since, we have additional
measurements of the total CBV, the observation equation had the
following form:





yf
yṽ
yb



 =





f − 1
ṽ
b



 · 100+





εf
εṽ
εb



 . (2)

Here, the total CBV data, yṽ, is modeled as a weighted sum of
CBF (i.e., approximating the response shape of arterial CBV) and
venous CBV, ṽ = wa ·

(

f − 1
)

+wv · (v− 1), with weights wa and
wv scaling the contribution of arterial CBV (i.e., proportional to
CBF) and venous CBV. In other words, the measured BOLD data
constraints the relative contributions of arterial and venous CBV
to the measured total CBV data, as in the BOLD signal model
only the venous CBV contributes to its time-course.

Experiment III: Neuronal and BOLD
Responses:
To jointly model positive and negative neuronal and BOLD
responses to non-overlapping and overlapping visual stimuli,
respectively, the generative model was specified as follows: Two
independent inputs, uP and uN , scaled by the input strength
parameters were used to induce positive and negative responses,
respectively. The stimulus duration for the positive response was
25 s but 26 s for negative response as the measured neuronal
response remained decreased ∼1 s after stimulus cessation.
Furthermore, in contrast to the two experiments above, we
assumed that NVC can differ for the positive and negative
responses (i.e., a response-type-specificχ), as themechanisms for
NVCmay differ for increases and decreases in CBF. On the other
hand, similarly as before, the dynamic properties of venous blood
compartment (i.e., the viscoelastic time constant τ ) were assumed
the same for the two response types but possibly different
between SP and PSP periods. Thus, also a single mean transit
time, t0, and resting venous blood volume, V0, were assumed
across both conditions (see Table 1). The BOLD signal equation
was parameterized for 4.7 T magnetic field strength and specific
sequence parameters (see Table S1). Since in this experiment we
also have access to neuronal recordings, the observation equation
had the following form:

[

yn
yb

]

=

[

wn · ne
b

]

· 100+

[

εn
εb

]

, (3)

where yn and yb are the measured neuronal and BOLD responses
to both types of stimuli (i.e., both positive and negative responses,
concatenated to a single vector) in percent signal changes. Since
the reported percent signal change of the measured neuronal
responses in Shmuel et al. (2006) do not directly relate to
the physiologically plausible range of CBF and BOLD signal
changes in our model, the excitatory neuronal response, ne,
in the observation equation was additionally scaled with the
parameter wn.

Model Inversion
Modeled responses were calculated by a numerical integration of
differential equations using a local linearization approach (Ozaki,
1992), with integration step 1t = 0.1 s and later downsampled
to match the TR of the measured data. Responses defined by
the above observation equations were fitted to the measured
data using variational Laplace (VL) optimization algorithm
(Friston et al., 2007) as implemented in the SPM12 toolbox
(“spm_nlsi_GN.m”). This is a Bayesian estimation procedure
designed for the estimation of nonlinear dynamic models, where
themodel parameters are specified in terms of priors. It calculates
posterior parameter estimates by iteratively maximizing the free
energy (i.e., the approximation to the model log-evidence).
Since the VL algorithm employs the Laplace assumption, all the
parameters—prior and posterior—are defined using Gaussian
distributions. As most of the physiological parameters included
in the model can only have positive values, thus, their default
values are scaled with a latent variable via the log-normal
transformations; e.g., τ · exp (τ̃ ) (see Table S2). The prior means
and variances of the latent variables are listed in Table S1.

RESULTS

CBF and BOLD Responses
Figure 2A shows the average CBF and BOLD responses to static
and flickering stimuli in percent signal changes, respectively.
With the onset of the static stimulus, the CBF response rises
first and then the BOLD response follows slightly later. They
both reach their maxima (i.e., 66% for CBF and 2.8% for BOLD)
after ∼13 s and continue with a steady decrease toward the end
of stimulation. This response adaptation has more pronounced
character in the BOLD response. After stimulus offset, both
responses rapidly decrease. The amplitude of the CBF response
first drops quickly to ∼10% and then slowly recovers to the
baseline. In contrast, the amplitude of the BOLD response drops
below baseline, with a negative peak of −0.7%, at ∼11 s after
stimulus offset. This post-stimulus undershoot then recovers to
the baseline in the next ∼60 s. The CBF and BOLD responses
to the flickering stimulus differ substantially from the responses
to the static stimulus. The CBF response reaches its maximum
(i.e., 77%) only by the end of the stimulation, exhibiting mostly
a flat plateau from ∼22 to 55 s. In contrast, the BOLD response
peaks to 3% during an earlier phase of the stimulation, i.e., after
15 s, which is slightly later compared to the BOLD response to the
static stimulus. From this time point, the BOLD response slightly
and slowly decreases toward the end of the stimulation. After
stimulus cessation, both CBF and BOLD responses drop below
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FIGURE 2 | Data and results depiction of experiment I. (A) The average CBF and BOLD responses derived from the ASL data for static (left) and flickering (right)

conditions displayed in percent signal change with thin dark red and purple lines, respectively. The error-bars represents the standard error of the measurement (n =

5). The measured responses are overlaid with the fitted CBF and BOLD responses, displayed with thick red and purple lines. The black bar below the responses

represents the stimulation period. (B) Estimated excitatory (green lines) and inhibitory (orange lines) responses in percent signal change. (C) Estimated venous CBV

(blue lines) and deoxyhemoglobin content (brown lines) responses in percent signal change.

baseline (reaching their negative peaks in ∼15 s after stimulus
offset, at −15 and −1.8%, respectively) and then slowly recover
to baseline. In general, the post-stimulus BOLD undershoot is
much larger and peaks slightly later compared to the post-
stimulus undershoot in the CBF response (both relative to their
respective positive responses). Additionally, the post-stimulus
BOLD undershoot recovery to baseline is steeper compared to
the CBF response.

The results of jointly fitting CBF and BOLD responses using
the P-DCM model are overlaid on the measured data in the

same Figure 2A. The estimated model parameters are listed in
Table 2. One can see that the model was able to accurately explain
the discrepancy in the response shape of the two hemodynamic
variables, and also the response shape variation due to differences
in the type of visual stimuli (see fitted CBF and BOLD responses
depicted with thick red and purple lines, respectively).

The estimated excitatory and inhibitory neuronal responses
are displayed in Figure 2B. The excitatory and not the inhibitory
neuronal response mostly defines the shape of the CBF response.
However, it evolves faster, with more pronounced transients,
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TABLE 2 | Estimated values of model parameters.

Free parameters

Neuronal model NVC Hemodynamic model Additional

c (-) σ (s−1) µ (s−1) λ (s−1) χ (s−1) τ (s) t0 (s), V0 (%) wn (-) wa (-) wv (-)

EXPERIMENT I: CBF AND BOLD RESPONSES

SP Static 0.08 1.15 0.73 0.05† 0.28 68.68 2.07 - - -

Flicker 0.04 0.52 0.01 0.05‡

PSP Static - 0.25 0.00 † 69.49

Flicker - 0.66 0.39 ‡

EXPERIMENT II: CBF AND TOTAL CBV AND BOLD RESPONSES

SP Gratings 0.17 2.80 7.30 0.02 0.27 59.91 2.06 - 0.12 0.19

PSP - 2.13 1.95 41.11

EXPERIMENT III: NEURONAL AND BOLD RESPONSES

SP Positive 0.13 1.87 3.19 0.15† 0.19† 9.37 2.95 12.69† - -

Negative −0.09 1.32 6.70 0.06‡ 0.85‡ 2.59‡

PSP Positive - 1.89 1.94 † † 28.53 †

Negative - 1.05 1.70 ‡ ‡ ‡

†‡
Indicates optimized parameters that were consider the same between time-periods but different between conditions as described in Table 1.

such as response adaptation in the case of the static condition
and post-stimulus deactivation in the case of the flickering
condition. Response adaptation and post-stimulus deactivation
were explained by an amplitude variation of the inhibitory
neuronal response. This means that the more pronounced
response adaptation during stimulation is caused by a larger,
gradual increase of inhibitory activity above baseline and the
post-stimulus deactivation solely reflects the sharp increase of
inhibitory activity after stimulus cessation (followed by a slower
return to baseline). Note that the inhibitory responses displayed
in Figure 2B were modulated by the period and condition
specific parameter µ (i.e., the inhibitory-to-excitatory coupling).
These experimental data and modeling results demonstrate that
the type of stimulus modulates both the positive response and
the post-stimulus undershoot, but in a different manner. This
means that the E-I balance changes with time and can be
very different between stimulation and post-stimulation periods,
which is reflected in estimated neuronal parameters (i.e., in
σ and µ).

The discrepancy between the measured CBF and BOLD
responses was explained with uncoupling between the CBF
and venous CBV responses. In Figure 2C, we can see that the
venous CBV time-course evolves in a much slower fashion than
the CBF time-course (Figure 2A). For example, for the static
stimulus, the venous CBV response slowly increases during
stimulation while the CBF response starts declining already
after ∼15 s of stimulation. Similarly, the CBF response returns
much faster to baseline after stimulus cessation than the venous
CBV response. This dynamic uncoupling during the transient
periods results in a more pronounced response transients
in the BOLD response, which approximately represents the
inverted deoxyhemoglobin response (see Figures 2A,C). The
CBF-venous CBV uncoupling parameterized by the viscoelastic
time constant was estimated separately for the stimulation and
post-stimulation periods, but yielded almost identical values

τSP ∼= 68 s and τPSP ∼= 69 s, respectively. These large
values reflect the fact that τ should scale with stimulus
duration (see Uludağ and Blinder, 2017 and references therein).
Importantly, the discrepancy between CBF and BOLD responses
was explained with the same viscoelastic time constants for
both the static and flickering conditions. This demonstrates
that the passive mechanism of CBF-venous CBV uncoupling is
independent of stimulus type (but dependent on the stimulus
duration).

CBF, Total CBV and BOLD Responses
Figure 3A shows the averaged CBF and BOLD responses in
percent signal change to 60 s visual stimulation as reported by Jin
and Kim (2008). The CBF response reaches its maximum peak (at
46%)∼12 s after the stimulus onset. The BOLD response reaches
the peak ∼2 s earlier (at 3.5%), even though the CBF response
is faster immediately after stimulus onset. The average total
CBV response (displayed in Figure 3C in percent signal change)
rises with the BOLD response but its peak (at 6.5%) is ∼3 s
delayed with respect to the BOLD response peak. After reaching
their maxima, all three responses decrease toward the end of
stimulation. While the BOLD response exhibits the steepest
decay, the decrease of the total CBV response is the slowest.
The amplitudes of CBF, total CBV and BOLD at the end of
stimulation are 21, 3.6, and 1% (i.e., in ratios of 0.46, 0.55, and
0.29 with respect to their maximum peaks), respectively. After
stimulus cessation, all responses drop below baseline and exhibit
considerable post-stimulus undershoots. The ratios of the post-
stimulus response undershoots with respect to the amplitudes
at the end of the stimulation for CBF, total CBV, and BOLD
are 0.57, 0.42, and 1.4, respectively. The BOLD response with
the largest relative post-stimulus undershoot reaches the negative
peak earliest (at−1.4%), i.e.,∼18 s after stimulus onset, then CBF
with smaller relative undershoot follows (−12%, after 20 s), and
the total CBV response has the smallest andmost sluggish relative
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FIGURE 3 | Data and results depiction of experiment II. This figure and its

sections follow the same plotting format as Figure 2. The average CBF, BOLD

and total CBV responses are replotted versions of the data reported in Figure 1

of Jin and Kim (2008). (A) The fitted and average measured CBF and BOLD

responses. (B) The estimated excitatory and inhibitory responses. (C) The

average measured and fitted total CBV responses are displayed with dark thin

and light thick cyan lines, respectively. Next, to the estimated venous CBV

response and deoxyhemoglobin content responses, also the arterial CBV

response is depicted (pink line).

post-stimulus undershoot (−1.5%, after 27 s). All responses take
almost 100 s to fully recover to baseline.

The results of jointly fitting CBF, total CBV and BOLD
responses using the P-DCM model are overlaid on the measured
data in the same Figures 3A,C. The estimated model parameters

are listed in Table 2. All fitted CBF, total CBV and BOLD
responses follow very closely the dynamic changes observed
in the experimental data. The estimated excitatory neuronal
response depicted in Figure 3B shows a strong and fast
adaptation during stimulation and drops significantly below
baseline immediately after stimulus cessation, followed by a slow
recovery to baseline. As in the previous study, neuronal response
adaptation during stimulation and post-stimulus deactivation
are modeled by dynamic changes in the inhibitory neuronal
response. Inhibitory response modulates the excitatory response
by different amounts during stimulation and post-stimulation
periods (see Table 2, for differences in optimized period-specific
neuronal parameters).

The dynamic relationship between CBF, total CBV, and BOLD
signal was explained with the CBF-venous CBV uncoupling.
Estimated arterial and venous CBV (CBVa and CBVv) responses
are displayed in Figure 3C in percent signal changes as they
contribute to the predicted total CBV response (weighted by
parameters wa and wv). One can see that the arterial CBV change
is larger than the venous CBV change (e.g., by a factor of ∼2 at
the end of the stimulation) and that venous CBV evolves slower
during the transient periods. The large dynamic uncoupling
between CBF (or arterial CBV) and venous CBV, which differed
between stimulation and post-stimulations periods (τSP ∼= 60 s
and τPSP ∼= 41 s), was estimated to significantly contribute to
the size of BOLD response transients. These τ values provide a
good explanation for the significantly more pronounced response
adaptation and post-stimulus BOLD undershoot compared to
the CBF and total CBV responses (as also reflected by the ratios
mentioned above). As a consequence of CBF and arterial CBV
responses exhibiting strong post-stimulus undershoots (due to
the aforementioned decrease of excitatory activity below baseline
during PSP), also venous CBV shows a post-stimulus undershoot,
even though it is reduced and smoothed due to the viscoelastic
properties of veins (i.e., large τ ) (see Figure 4C). The same
mechanism applies for the slower increase and strongly reduced
adaptation profile of venous CBV during SP.

Neuronal and BOLD Responses
Average positive and negative neuronal responses in percent
signal changes to 20 s visual stimuli overlapping and non-
overlapping with its receptive field, respectively, as reported
in Shmuel et al. (2006), are displayed in Figure 4B. The
corresponding average positive and negative BOLD responses
(also in percent signal changes) are displayed in Figure 4A.
The positive neuronal response reaches its maximum peak
immediately after stimulus onset (given downsampling of the
neuronal signal to TR = 1 s). Then, within the next 5 s, it rapidly
decreases to its lower plateau, where it remains till the end of
the stimulation. In contrast, the positive BOLD response shows a
rather slow increase, reaching its maximum ∼15 s after stimulus
onset (at 1.75%) and it remains about this level until the end of
the stimulation. After stimulus cessation, the neuronal response
drops quickly below baseline, producing a strong post-stimulus
deactivation followed by gradual return to baseline in the next
∼13 s. The BOLD response also decreases after stimulus cessation
but in a much slower fashion, crossing the baseline∼9 s after the
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FIGURE 4 | Data and results depiction of experiment III. This figure and its sections follow the same plotting format as Figure 2. The average positive (left) and

negative (right) neuronal and BOLD responses are replotted versions of the data reported in Figures 1D, 2A of Shmuel et al. (2006). (A) The estimated CBF and fitted

BOLD (and average measured BOLD) responses. (B) The average measured neuronal responses are depicted with dark thin green lines overlaid with fitted excitatory

responses displayed with thick green lines. (C) The estimated venous CBV and deoxyhemoglobin content responses in percent signal change.

stimulus offset. Then it continues with a stronger post-stimulus
BOLD undershoot, which is significantly delayed (∼15 s) with
respect to the neuronal post-stimulus deactivation. The limited
post-stimulus period of 25 s did not allow for a full recovery
of the BOLD undershoot to baseline. The negative neuronal
response can be seen as an inverse of the positive response,
but exhibiting significantly smaller signal change. After stimulus
onset, there is an immediate decrease in neuronal activity below
baseline followed by adaptation to the plateau of lower sustained
amplitude during SP. After stimulus offset, it first slightly

decreases3 (within 1 s) and then quickly increases, showing a
post-stimulus activation above baseline, which is mostly in phase
with the post-stimulus deactivation observed in the positive
neuronal response. The negative BOLD response follows the
course of the neuronal response more closely compared to the
positive BOLD response. It reaches the minimum peak (at ∼1%)
∼6 s after the stimulus onset and keeps increasing almost linearly

3This is the reason why we extended the stimulation period for negative response
by 1 s.
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toward the end of the stimulation (to −0.4%). Afterwards, it
crosses baseline∼4 s earlier than the positive BOLD and exhibits
a post-stimulus BOLD overshoot (with maximum at 0.4%) that
evolves significantly faster than the post-stimulus undershoot of
the positive response.

The results of jointly fitting the positive and negative
neuronal and BOLD responses with P-DCM are overlaid with
the measured data in Figures 4B,A, respectively. The estimated
model parameters are listed in Table 2. The fitted neuronal
and BOLD responses follow very closely the dynamic changes
observed in the experimental data. The estimated excitatory
neuronal responses for both positive and negative responses
provided an accurate representation of the transient features
observed in the experimental data. As before, response adaption
and post-stimulus deactivation profiles were modeled by a
variable modulation of the excitatory activity by inhibitory
activity (see Figure 4A). The dynamic features of the positive
excitatory neuronal response are well comparable to the
estimated neuronal response in the second experiment (or to
the response features seen in the first experiment). The negative
excitatory response was induced by the stimulus input function
uN(t) scaled by the negative c parameter. Thus, in contrast to
the positive neuronal response, the inhibitory response gradually
decreases below baseline during SP, which then causes an increase
of the excitatory activity after its initial drop. After stimulus
cessation, the inhibitory activity quickly increases up to∼¼of the
total decrease, and then slowly recovers to the baseline. This slow
post-stimulus recovery of the inhibitory response below baseline
causes an increase (i.e., overshoot) in the post-stimulus excitatory
response.

Next, as the NVC could differ between the positive and
negative responses, the estimated positive CBF response is
significantly delayed with respect to the neuronal response,
which smooths out the strong adaptation during SP and post-
stimulus deactivation observed in the neuronal response. This
slow evolution of the CBF response was achieved by slowing
down the feedforward mechanism of NVC (i.e., by lowering
the decay constant χ). On the other hand, the estimated CBF
response following the negative neuronal response is much faster,
closely resembling dynamic features of the neuronal response.
This is because the NVC acts faster (by employing a higher decay
constant χ).

Furthermore, the fitted positive BOLD response is even more
delayed with respect to the CBF response, with mean transit
time at rest, t0 ∼= 3 s (see Figure 4B). The CBF-CBV
uncoupling is smaller, with viscoelastic time constant, τSP ∼= 9
s, (see Figure 4C). Therefore, no response adaptation is present
during SP. Although the estimated CBF response exhibits a
minimal post-stimulus undershoot, the stronger post-stimulus
BOLD undershoot is well explained by a larger CBF-venous
CBV uncoupling (τPSP ∼= 29 s) during PSP. The venous CBV
and deoxyhemoglobin responses are displayed in Figure 4C.
The negative BOLD and CBF responses show similar response
transients even though the same viscoelastic time constants,
regulating CBF-venous CBV uncoupling during SP and PSP, were
used as in the case of the positive response. Significant post-
stimulus overshoot in the CBF response can account for a large

fraction of the post-stimulus BOLD overshoot. This is because
the actual effect of CBF-CBV uncoupling on the post-stimulus
BOLD undershoot for the negative response is smaller due to a
generally lower amplitude level of venous CBV during recovery
(see Figure 4C). Therefore, in contrast to the positive response,
the main origin of post-stimulus BOLD overshoot is neuronal.

DISCUSSION

The BOLD fMRI signal is an indirect reflection of neuronal
activity. It has been suggested that it best correlates with the post-
synaptic potentials, which—after mediation by metabolic and
vascular processes—results in the characteristic hemodynamic
delay and blurring relative to neuronal activity. Thus, the high
complexity of tissue processes associated with brain activity,
ranging from microscopic (i.e., molecular) to macroscopic (i.e.,
brain area) levels, is reduced to a spatially and temporally varying
scalar number (i.e., the dynamic fMRI signal). That is, there is
only reduced information about the excitatory and inhibitory
neuronal activity available from the fMRI signal. As a result,
temporal features of the BOLD signal, such as signal adaptation
during stimulation or signal reduction after the stimulation,
cannot be taken as a direct evidence of neuronal adaptation
or post-stimulation deactivation, respectively. Recently, we
have proposed, inspired by physiological observations, a novel
generative hemodynamic model within the DCM framework,
called P-DCM. We have demonstrated (using BOLD data and
BOLD data combined with CBF) that P-DCM is superior
in describing single ROI time-courses and also deducing the
effective connectivity between brain areas (Havlicek et al., 2015,
2017b) compared to previous DCM models (Friston et al., 2003;
Marreiros et al., 2008) and that the model inversion, in general,
benefits from additional CBF data.

In this paper, we have additionally demonstrated the versatility
of P-DCM to jointly explain dynamic relationships between
neuronal, neurovascular and hemodynamic physiological
variables underlying the BOLD signal using new and previously
published multi-modal data. For this purpose, we utilized
three data-sets of experimentally induced responses in primary
visual areas measured in the brains of human, cat, and monkey,
respectively: (1) CBF and BOLD responses to static and flickering
stimuli acquired for this study; (2) CBF, total CBV and BOLD
responses to square-wave grating stimulus (Jin and Kim, 2008);
and (3) positive and negative neuronal and BOLD responses
induced by overlapping and non-overlapping visual stimuli
with the visual receptive field (Shmuel et al., 2006). The fitting
of P-DCM to multi-modal data (i.e., the model inversion)
was performed using a VB approach (Friston et al., 2007)
under the constraint of assumed physiological mechanisms
and experimental manipulations. Specifically, we assumed
that the BOLD response transients, such as positive response
adaptation and post-stimulus undershoot, can be due to two
physiological mechanisms: (1) neuronal, due to changes in E-I
balance caused by a dynamic interaction between excitatory and
inhibitory neuronal populations (Hoge et al., 1999; Krekelberg
et al., 2006; Shmuel et al., 2006; Logothetis, 2008; Sadaghiani
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et al., 2009; Mullinger et al., 2013); and (2) vascular, due to
dynamic uncoupling between CBF and venous CBV responses
(Mandeville et al., 1998; Chen and Pike, 2009; Kim and Ogawa,
2012; Huber et al., 2014a; Havlicek et al., 2017a).We also assumed
that the experimental manipulation can modulate the neuronal
response transients by changing the E-I balance and that this can
differ between SP and PSP. Similarly, the vascular uncoupling
was allowed to vary between SP and PSP but was invariant with
respect to the experimental manipulations. P-DCM provided
accurate fits to all measured multi-modal responses and was
able to shed a light on the dynamic relationships between the
physiological processes underlying the BOLD response. The
limitations of P-DCM due to its assumptions are discussed
below.

In the first experiment using both CBF and BOLD responses,
we were able to show that a 55 s long static and flickering stimuli
induced different modulations of the CBF response transients
during SP and PSP and that there was a large discrepancy in
the size and form of transients between the CBF and BOLD
transients, as commonly observed (see e.g., Sadaghiani et al.,
2009; Havlicek et al., 2017a and references therein). P-DCM
could explain the experimentally induced modulation of the
CBF response transient by optimizing the balance between
excitatory and inhibitory activity. The accurate fit of both CBF
responses to static and flickering stimuli was achieved by allowing
some of the neuronal model parameters (σ ,µ) to be time-
period- and condition-specific, while others (λ) including the
NVC parameter (χ) were considered condition- and period-
invariant (see Table 2). Next, the large discrepancy in the size
of transients between the measured CBF and BOLD responses
was explained with a strong uncoupling between CBF and venous
CBV responses, which was identified to be similar for SP and
PSP (τSP ∼= 68 s and τPSP ∼= 69 s). More importantly,
both BOLD responses to static and flickering stimuli could be
explained by assuming the same vascular uncoupling for the two
conditions. Additionally, these estimates compared quite well
with our previous results obtained by applying P-DCM to the
single-subject BOLD responses of the same experimental ASL
data (Havlicek et al., 2015). Nevertheless, additional information
about the shape of CBF responses incorporated in the current
study provided more accurate estimation of the neuronal
and vascular component contribution to the BOLD response
transients (see Figure 6C in Havlicek et al., 2015).

By using P-DCM to explain the dynamic discrepancy in the
shape of the CBF, total CBV and BOLD responses to a 60 s
long square-wave grating visual stimulus provided by the second
experiment (Jin and Kim, 2008), we were able to accurately
jointly fit all measured responses. First, even though the response
transients (i.e., early-overshoot and post-stimulus undershoot)
were strongly present in both CBF and total CBV responses,
the BOLD response transients were even more significantly
pronounced (see Figure 3A). Thus, some additional mechanism
next to the neuronal contribution is necessary to fully explain the
BOLD response transients: As in the first study, the shape of CBF
response was well explained by optimizing the E-I balance for the
SP and PSP. Importantly, by having measurements of both CBF
and total CBV responses underlying the BOLD response, we were

able to determine that arterial CBV has a larger contribution to
the total CBV than the venous CBV, which is in good agreement
with other experimental observations (Drew et al., 2011; Kim
and Kim, 2011; Huber et al., 2014a; Gagnon et al., 2015), and
that venous CBV evolves much slower compared to the CBF
(or arterial CBV) due to a strong (but slightly different) CBF-
venous CBV uncoupling between SP and PSP (τSP ∼= 60 s
and τPSP ∼= 41 s) (Uludağ and Blinder, 2017). The strong
neuronal transients are well reflected in both the CBF and arterial
CBV responses, and also the venous CBV response transients
reflect this neuronal modulation, albeit largely smoothed out
by the strong CBF-venous CBV uncoupling (see Figure 3C).
Therefore, even though the venous CBV does not exhibit the
more typical slow increase during SP and slow return to baseline
during PSP (Kim and Kim, 2011; Huber et al., 2014a), the
vascular uncoupling still significantly contributes, in addition to
the CBF post-stimulus deactivation, to the post-stimulus BOLD
undershoot (having ∼50% neuronal and 50% vascular origin).
Thus, our modeling results agree with a suggestion by Jin and
Kim (2008) that there is a significant contribution of CBF post-
stimulus deactivation to the post-stimulus BOLD undershoot,
but disagree with their suggestion that these multi-modal data do
not support the contribution of the vascular uncoupling between
CBF and venous CBV. It is incorrect to assume that the venous
CBVmust exhibit slow return to baseline after stimulus cessation
in order to effectively contribute to the post-stimulus BOLD
undershoot if there is a post-stimulus undershoot in CBF and
total CBV.

The third experiment offered positive and negative neuronal
and BOLD responses to 20 s long visual stimuli overlapping and
non-overlapping with the receptive field of the voxels in the
ROI (Shmuel et al., 2006). The electrophysiological recordings of
neuronal activity in V1 demonstrated that the positive neuronal
responses can indeed exhibit a very pronounced response
adaptation (but see below) and significant deactivation/activation
during SP and PSP, respectively, similarly as estimated by P-DCM
from the hemodynamic responses in the two experiments above.
By modeling the dynamic changes in E-I balance during both SP
and PSP, P-DCM was also able to explain the negative neuronal
response, including the post-stimulus increase in neuronal
activity. Note that this was achieved under the assumption that
the input arriving to the excitatory population in V1 from LGN
is negative (i.e., already LGN exhibits negative response, see e.g.,
Gouws et al., 2014). Furthermore, the relationship between the
positive neuronal and BOLD responses in this experimental data
is very interesting as there is a strong adaptation in the neuronal
response during SP but no sign of adaptation in the BOLD
response. This seems to appear as a typical observation for the
BOLD responses to stimuli with a comparable stimulus duration
measured in the V1 area of anesthetized macaque monkey brain
(Logothetis et al., 2001; Logothetis, 2002; Pfeuffer et al., 2004;
Goense and Logothetis, 2006) but less common in anesthetized
cats or rats (as shown above and, e.g., Zhao et al., 2007; Kida
and Yamamoto, 2008; Kim et al., 2010). Moreover, the stronger
neuronal deactivation during PSP invites the hypothesis that
the post-stimulus BOLD response undershoot could be related
to this decrease in neuronal activity. However, the estimate of
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CBF response provided by P-DCM suggests that the neuronal
adaptation and post-stimulus deactivations are almost entirely
smoothed out by a slow rate of NVC (with χ = 0.19 Hz),
which is also necessary to explain the smoothness of the observed
BOLD response. This is in line with experimental observations
from anesthetized macaque monkey brain reported in Pfeuffer
et al. (2004), Zappe et al. (2008), and Zaldivar et al. (2014),
albeit not explicitly described by the authors (see also discussion
below for possible effects of anesthesia). Thus, in contrary to
suggestion made in Shmuel et al. (2006), our modeling results
suggest that the post-stimulus BOLD undershoot is not caused
by the neuronal deactivation but by the vascular uncoupling
(with τPSP ∼= 29 s) with a slow return of venous CBV to
baseline during PSP (but see also below). Note that this vascular
uncoupling is smaller than in the first two experiments, which
is in a good agreement with the fact that the size of the post-
stimulus undershoot and thus also size of the vascular uncoupling
is proportional to stimulus duration (Uludağ and Blinder, 2017).

On the other hand, the shape of the negative BOLD response
follows very closely the shape of the negative neuronal response
with a smaller delay of the negative peak with respect to the
stimulus onset and the post-stimulus overshoot to stimulus
offset compared to the positive BOLD response. The faster
evolution of the negative BOLD response (with an earlier post-
stimulus undershoot) compared to the positive BOLD response
was also observed in other studies using human subjects (Shmuel
et al., 2002; Pfeuffer et al., 2004; Huber et al., 2014a). As
we assumed that the passive hemodynamic properties of the
venous compartment are the same for both positive and negative
responses (including the size of vascular uncoupling), P-DCM
explained the dynamic relationship between neuronal and BOLD
response by a faster NVC (with χ = 0.85 Hz) for decreases
in neuronal activity. In contrast to the positive BOLD response,
the neuronal transients are reflected in the BOLD signal time-
course due to the fact that the relative change of neuronal
amplitude between stimulus onset and offset is larger (close to
baseline by the end of the stimulation) compared to the positive
response. Note that theoretically, one could also explain the
discrepancy between positive neuronal and BOLD responses by
making the NVC faster, increasing the mean transit time (t0)
and minimizing the vascular uncoupling (τ ), which would result
in the post-stimulus BOLD undershoot having mainly neuronal
origin. However, this would lead to t0 > 4.5 s, which would have
to significantly differ from the negative BOLD response. That is,
we would not be able to assume the same hemodynamic (i.e.,
vascular) model for both negative and positive BOLD response in
the same voxels, which is not physiologically plausible. In general,
it is more likely that the main differences between the positive
and negative BOLD responses are due to different control of
NVC (Lauritzen, 2005). Whether the rate difference in NVC for
positive and negative responses is a general distinctive feature will
need to be clarified in future experiments.

In summary, the three experimental data-sets provided
physiological measurements at different stages of the dynamic
cascade between neuronal and BOLD responses. First, we
demonstrated that P-DCM was able to estimate (excitatory and
inhibitory) neuronal responses with different amount of response

adaptation during the stimulus period and post-stimulus
deactivation/activation after the stimulation. We showed that the
response adaptation during SP can vary from fast and strong (e.g.,
in the third experiment) to minimal (e.g., in the first experiment,
response to flickering stimulus). Similarly, during PSP, the
excitatory neuronal activity can slowly return to baseline (e.g., in
the first experiment, after the response to the static stimulus) or it
can decrease below baseline following the positive response (e.g.,
in the second experiment) or increase above baseline following
the negative response. Second, the CBF response was shown
to reflect the neuronal time-courses in a smoothed fashion
via feedforward NVC, which can reduce or even completely
eliminate neuronal transients (as in the third experiment for the
positive CBF response). However, modeling of the NVC allows
recovering excitatory and inhibitory neuronal transients from
the CBF data. Additional transient phenomena in the BOLD
response are induced by CBF-venous CBV uncoupling. That
is, the discrepancy between the BOLD signal and CBF are due
to venous CBV (or, alternatively, CMRO2, but see Havlicek
et al., 2017a). That is, the presence or absence of dynamic
features in the BOLD signal is not an unambiguous indication
of the presence or absence of those features on the neuronal
level. However, P-DCM applied to multi-modal data was able
to dissociate between neuronal and vascular contributions to
the BOLD response transients induced by different types and
durations of stimuli. Furthermore, P-DCM accommodated the
magnetic field strength and sequence parameters differences
between experimental studies that also influence the size and
nonlinearity of BOLD response transients (Havlicek et al., 2015,
2017a; Uludağ and Blinder, 2017). We think that P-DCM and its
emphasis on response transients may be useful to also explain
other combinations of multimodal data (e.g., neuronal activity
recordings, CBF, CBV and BOLD) or to play an important role in
combining EEG and fMRI data (Valdes Sosa et al., 2009; Riera and
Sumiyoshi, 2010; Rosa et al., 2011; Butler et al., 2017; Friston et al.,
2017). The neuronal mass activity of post-synaptic signals can
be decomposed to non-overlapping frequency bands. The higher
frequency band (gamma) is more associated with the main signal
change of the hemodynamic response while lower frequency
bands, such as alpha, and beta carry more information about
changes in response transients (Magri et al., 2012;Mullinger et al.,
2013, 2014; Ding et al., 2016).

Finally, it is important to realize that due to complexity of
physiological mechanisms transforming the neuronal response
to the BOLD response, the standard linear analysis (e.g., Friston
et al., 1995, 1998) or (linear) deconvolution applied to BOLD
data (e.g., Gaudes et al., 2011; Ryali et al., 2011; Smith et al.,
2012; Bush and Cisler, 2013) cannot provide a reliable estimate
of the underlying changes in neuronal activity in any of the three
experiments. Our results highlight the necessity of nonlinear
models, such as P-DCM, which account for dynamic uncoupling
at both the neuronal and vascular levels and that can benefit from
multi-modal data. In addition, nonlinear generative models,
such as P-DCM, have the potential also to improve novel data
analysis approaches, e.g., single-voxel and multi-voxel-pattern or
representational similarity analysis approaches (e.g., Kriegeskorte
et al., 2008; Haxby, 2012).
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Model Assumptions and Limitations
It is generally believed that modeling E-I balance—as the
underlying source of the BOLD response (Logothetis, 2008)—
is crucial for relating neuronal and hemodynamic responses.
The applied neuronal model of E-I balance within P-DCM
represents a large simplification of the underlying complex
neuronal processes that operate at very fine temporal and spatial
scales. The aim of this model is to mainly characterize regional
post-synaptic changes in excitatory and inhibitory activity using
a simple mathematical function that can be related to changes
in the hemodynamic signal. It is assumed that the two-state
neuronal model is driven by an exogenous input entering the
excitatory state and the change in excitatory activity is followed
by a (smaller) change in the inhibitory activity that subsequently
modulates the excitatory activity via negative feedback and the
E-I (im)balance eventually settles into a new balance state.
Despite its simplicity, this model is able to represent dynamic
change in E-I balance resulting in wide repertoire of neuronal
response adaptions profiles (Hoge et al., 1999; Bandettini and
Ungerleider, 2001; Logothetis et al., 2001), including more
abrupt changes of E-I balance with stimulus cessation followed
persistence of inhibitory activity that creates the post-stimulus
deactivation (Sadaghiani et al., 2009; Mullinger et al., 2013,
2014, 2017). Therefore, P-DCM offers a new way to assess the
neuronal origin of hemodynamic response transients by means
of proxies for excitatory and inhibitory responses that can have
high neuroscientific relevance.

Changes in the E-I balance were encoded in three neuronal
parameters (σ , µ, λ). The temporal evolution of excitatory
and inhibitory activity, including their dynamic mismatch, was
controlled by the parameters σ and λ, respectively, and the
strength of the inhibitory activity modulating the excitatory
activity is encoded by the parameter µ. In this paper, we have
mostly commented on the shape of estimated neuronal response
and emphasized possible differences in excitatory and inhibitory
dynamics. However, the actual values of estimated parameters
controlling the neuronal model are informative and significantly
differed between the three experiments (especially σ and µ).
It is possible that these differences can be attributed to the
neuronal or stimulus properties, as described above (Kida and
Yamamoto, 2008), but also to the fact that responses of the
two animal experiments were acquired under anesthesia (see
below). In addition, testing for significant differences in estimated
neuronal parameters due to experimental modulation or between
healthy and diseased subjects is potentially an important area
for future P-DCM utilization (Stephan et al., 2017). Note that in
this paper we have made the specific assumption that (σ , µ) can
vary between both SP and PSP but also between experimental
conditions. On the other hand, λ was allowed to vary only
between experimental conditions. This is because we favored a
simpler model that was able to explain the observed neuronal
responses in all three experiments, even with λ being only
condition specific. Additionally, in the first experiment, the CBF
response during PSP exhibits a slower return to the baseline
without post-stimulus undershoot. This is effectively modeled
by setting the parameter µ (i.e., the influence of inhibitory to
excitatory activity) close to zero, which means that during this

PSP, parameter λ does not have an effect on the shape of the
neuronal response and becomes unidentifiable. Nevertheless, the
inhibitory responses (as displayed in Figures 2–4) are modulated
by the parameter µ, which makes them time-period specific as
well.

Furthermore, the assumption about the input entering the
excitatory state is appropriate for the majority of cortical regions
as the vast majority of long-range connections between regions
are mediated by excitatory neurons (Markram et al., 2004). For
an additional description how P-DCM can model long-range
connections, please see Supplementary Material 3 in Havlicek
et al. (2015). We have utilized the same assumption also for the
negative neuronal response but with a negative input entering the
excitatory state, as it was shown earlier that negative responses in
primary visual areas may be preceded by negative responses in
LGN (e.g., Gouws et al., 2014).

NVC in P-DCM transforms neuronal to CBF response using
a feedforward mechanism. While the motivation for utilizing
feedforward NVC is fully discussed in Havlicek et al. (2015),
we have also demonstrated in Havlicek et al. (2017b) that NVC
based on negative feedback mechanism (Friston et al., 2000) is
suboptimal and that the feedforward NVC in conjunction with
the two-state neuronal model of E-I balance is preferred for
modeling fMRI data. NVC is controlled by three parameters (ϕ,
φ, χ), but optimizing only χ is sufficient to adjust the smoothness
and delay of CBF response with respect to the neuronal
response (i.e., we prefer a parsimonious NVC model with a
minimum number of free parameters). The NVC parameter
χ was assumed to vary between conditions. This is mainly
because the third experiment involved a condition resulting
in the negative response, and it was suggested earlier that
the NVC of positive and negative hemodynamic response may
differ (see e.g., Lauritzen, 2005; Huber et al., 2014a), which is
supported here by our results obtained with constrained model
inversion by multi-modal data. In fact, our fitting results of the
first experiment showed that positive hemodynamic responses,
although resulting from two different stimulus types and having
different modulation of response transients, can have the same
NVC parameter χ (see Table 2).

In the hemodynamic model, P-DCM assumes that CBF and
CMRO2 are tightly coupled. There are three reasons to do so:
(1) It is a common assumption in DCM literature that CBF is
tightly coupled with CMRO2 (Friston et al., 2003), and other
papers showed that CBF and venous CBV are uncoupled (e.g.,
Mandeville et al., 1999; Kim and Kim, 2011; Huber et al.,
2014a), as for longer stimuli venous CBV response exhibits much
slower increase and return to baseline compared to the CBF
response; (2) If one considers both CMRO2 and venous CBV
responses uncoupled from CBF response, then both can have
similar impact on the transients of the BOLD response and the
generative model becomes unidentifiable. From modeling (and
model inversion) perspective, this is seen as redundancy and
therefore it is preferable to fix one of these two mechanisms.
This is because under normal conditions even with multimodal
data (consisting of CBF, total CBV and BOLD) one cannot
effectively disentangle these two mechanisms from each other;
(3) We have recently provided a comprehensive proof using
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multi-echo data (Havlicek et al., 2017a) that next to CBF (i.e.,
neuronal) contribution, the CBF-venous CBV uncoupling (and
not the CBF-CMRO2 uncoupling) is the mechanism behind
the BOLD response transients. In this case, the specific echo-
time dependence of the BOLD response transients (related to
contribution from both extravascular and intravascular signals)
together with a variable CBF response allowed us to identify the
underlying mechanism.

In this paper, we have selected three multi-modal data-
sets as illustrative examples to demonstrate the versatility of
P-DCM to explain underlying causal relationships under the
constraint of multiple physiological measurements. We aimed to
includemulti-modal data-sets acquired at differentmagnetic field
strengths, containing different combinations of physiological
variables next to the standard BOLD response, and possibly
involving more than one level of experimental manipulation.
Further, we favored averaged data with excellent signal-to-noise
quality, which clearly manifest discrepancy between different
physiological variables and between experimental conditions.
There are certainly many more interesting published multi-
modal data-sets that P-DCM could be further tested on. For
example, we have limited our demonstration to human, monkey
and cat data, however, there are many excellent multi-modal
data measured in rodents (e.g., Kida et al., 2007; Boorman
et al., 2010; Füchtemeier et al., 2010; Hyder et al., 2010;
Hirano et al., 2011). Since a good correspondence was shown
earlier between hemodynamic responses measured in cats and
rats (see e.g., Zong et al., 2012) and in monkeys and rats
(see e.g., Huber et al., 2015), we expect that P-DCM could
perform well also if applied to rodent data. Furthermore, as
model parameters are specified in terms of priors, it is also
possible to account for interspecies differences in physiological
parameters. For example, a higher baseline blood flow and
volume influences the main transit time, which could be
adjusted for different species (even though it was not necessary
in our case, as the mean transit time was one of the free
parameters).

All three data-sets represent evoked responses to longer
sustained stimuli measured in the primary visual cortex. This
choice allowed us to consider model assumptions that could be
shared between all three experiments (as mentioned above) and
fitting results obtained from these experiments could be more
directly compared with each other. Additionally, in our previous
aforementioned study (Havlicek et al., 2017a), the same static
and flickering stimuli, including identical stimulus durations,
provided high evidence that the BOLD response transients are
mainly of neuronal and vascular origin (with negligible or zero
contribution of CBF-CMRO2 uncoupling). Therefore, we are in
a good position to extend these results to the model assumptions
applied in this paper, especially in the case of the first experiment.
Similarly, the authors of the second experiment data-set showed
in the independent study that with the same type of stimulus,
the venous CBV response in the primary visual cortex of the
cat exhibits much slower dynamics compared to the arterial
CBV (Kim and Kim, 2011). Furthermore, other multi-modal
data acquired in the primary visual cortex of monkey brain
(i.e., comparable to the third experiment) showed that despite

deactivation of after stimulus cessation in the neuronal response,
no or negligible post-stimulus undershoot was present in the
CBF response but significantly present in the BOLD response
(Pfeuffer et al., 2004; Zappe et al., 2008; Zaldivar et al., 2014).
This supports our assumption and fitting result that CBF-venous
CBV uncoupling can play important role in explaining the
observed BOLD response transients also in third experiment.
In general, the selected data may have revealed limitations of
the structure of P-DCM and assumptions of specific parameters
in the generative model. However, as the generative model was
able to reproduce the experimental observations, P-DCM proves
to be flexible enough to accommodate a wide range of multi-
modal experimental data. Nevertheless, more work on novel
data (including short stimuli and other brain regions) must be
performed to further evaluate and develop current generative
model used in P-DCM.

Finally, the second and third experiments were performed on
anesthetized animals using isoflurane (i.e., a common anesthetic
agent used in animal research). In general, anesthesia is known
to influence the amplitude and shape of both neuronal and
hemodynamic responses (Krautwald and Angenstein, 2012;
Uludağ and Blinder, 2017). Under anesthesia using isoflurane,
the neuronal baseline (i.e., the firing rate) is decreased and
the neuronal responses exhibit smaller changes and can have
more pronounced and faster adaptation compared to the
awake state (Aksenov et al., 2015; Keller et al., 2017). This
can potentially explain the large adaptation profiles of the
neuronal responses in the second and third experiment, even
though dynamic stimuli were applied (i.e., one would expect
responses more comparable to responses to flickering rather
than static stimuli in the first experiment). Having said this,
larger differences in the shape of neuronal responses due to
experimental modulations are expected during awake state
(Haider et al., 2013; Bahmani et al., 2014; Keller et al., 2017),
highlighting some benefits of human fMRI over animal studies
under anesthesia. At the hemodynamic or NVC level, isoflurane
based anesthesia leads to vasodilatation of mainly arteries and
arterioles in the occipital areas, which results in increase of
baseline CBF but even larger increase of baseline CBV; i.e.,
the mean transit time (in the microvasculature) is increased
as well (Lorenz et al., 2001). Subsequently, the change in CBF
due to activation is smaller and more delayed compared to
awake state (Sicard et al., 2003; Pisauro et al., 2013). As a
result, BOLD responses during anesthesia are also smaller. The
anesthesia is expected to influence more the active mechanisms
of the arterial compartment (in our model represented by
CBF) than the passive mechanism of the venous compartment.
Note that, theoretically, the same type of anesthetic agents
could also have different effect on the neuronal responses
and NVC between species, which could explain the large
discrepancy between the second and third experiment (besides
the obvious differences in stimulus type and stimulus duration).
As P-DCM is able to optimize all stages of the physiological
chain from the neuronal to the hemodynamic responses, it
can also be useful in characterizing the differences in the
physiological mechanisms during both anesthesia and the awake
state.
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