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Abstract: The present short review demonstrates the involvement of sirtuins (SIRTs) in the control
of ovarian functions at various regulatory levels. External and endocrine factors can affect female
reproduction via SIRTs-mammalian target of rapamycin (mTOR) system, which, via hormones and
growth factors, can in turn regulate basic ovarian functions (proliferation, apoptosis, secretory activity
of ovarian cells, their response to upstream hormonal regulators, ovarian folliculo- and oogenesis,
and fecundity). SIRTs and SIRTs-related signaling molecules and drugs regulating mTOR can be used
for characterization, prediction, and regulation of ovarian functions, as well as for diagnostics and
treatment of ovarian disorders.
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1. Introduction

Reproduction is the most important biological process, and enables the existence of species.
The main female reproductive organ is the ovary, which produces ovarian follicles. These ovarian
follicles undergo development and selection, during which the majority of ovarian follicles are lost
due to atresia/apoptosis of ovarian cells, while few follicles complete development, ovulate, and expel
mature oocyte/egg. The exhausting of the ovarian reserve (the number of primordial follicles) and
the subsequent decrease in the number of growing follicles and quality of their oocytes due to aging,
chemotherapy, or other factors results in infertility. These processes are regulated at various regulatory
levels by numerous and interrelated endocrine and intracellular signaling molecules [1], including
sirtuins (SIRTs) [2].

SIRTs are seven peptides (SIRTs 1–7), members of the NAD+-dependent deacetylase and
ADP-ribosyltransferase family whose are present in each organ [3–5]. SIRTs control acetylation
and ribosylation, and therefore the post-translational modification and biological activity of various
regulatory proteins. It is proposed that each member of the SIRT family has its own particular biological
role, due to their localization and target molecules within the cell. Deacetylases SIRTs 1 and 2 are located
both in cytoplasm and nucleus; SIRTs 3–5, possessing both deacetylase and ADP-ribosyltransferase
activity are identified only in mitochondria; and deacetylase and ADP-ribosyltransferase SIRT6 and
deacetylase SIRT7 are located in nuclei [5].

SIRTs are able to regulate a wide variety of physiological processes, including metabolism,
cell cycle, cell differentiation, apoptosis, and aging [6,7]. SIRTs affect these processes via the
down-regulation of a serine/threonine kinase called mammalian target of rapamycin (mTOR) [8,9]
and other intracellular signaling pathways [5], although mTOR can in turn up-regulate SIRTs
production [9–12]. Recently, SIRTs and their regulators have been intensively studied to examine the
potential of SIRTs to be diagnostic and predictive indexes for some disorders, and to be useful for the
treatment of malignant and metabolic disorders. The growing body of evidence suggests that SIRTs
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could be involved in the control of female reproductive processes, and that SIRTs or their analogues
could be applicable for the characterization and regulation of animal and human female reproductive
processes and the treatment of reproductive disorders. The studies of SIRTs’ role and application are
currently using three main approaches—(1) detection of the association between the expression of SIRTs
with ovarian physiological and pathological state; (2) examination of the consequences of down- and
up-regulation of SIRTs by pharmacological regulators, cDNA, or siRNA constructs; and (3) application
of synthetic or plant mTOR inhibitors, which could promote the production of SIRTs. In this review,
we attempted to present a short overview of the current knowledge concerning the involvement
of SIRTs in the control of ovarian functions and the treatment of their disorders obtained by using
these approaches.

2. The Use of SIRTs as Markers of Ovarian Cell State

SIRT1 is present in whole ovarian follicle, ovarian epithelium, and stroma [13] and luteinized
granulosa cells [10], while SIRT3 [14] and SIRT5 [15] have been detected in ovarian granulosa cells
and cumulus oophorus surrounding the oocyte. The amount of SIRTs in ovarian cells is associated
with their state and health. Atresia of porcine ovarian follicles was associated with a decrease in
SIRT1 expression [13]. Zhang et al. [2] reported that the expression levels of SIRT1, SIRT3, and SIRT6
were decreased in the ovaries of aged mice and mice treated with chemotherapy, but increased
in calorie-restricted mice. Moreover, SIRT1, SIRT3, and SIRT6 expression showed a significantly
positive correlation with the numbers of primordial ovarian follicles. The age-dependent reduction
in mice ovarian reserve was associated with decreased SIRT1, SIRT3, and SIRT6 expression [2],
while the age-dependent decline in women’s ovarian reserve was associated with reduced expression
of SIRT3 [14] and SIRT5 [15]. These observations indicate that SIRT1, SIRT3, SIRT5, and SIRT6 can be
markers of ovarian reserve and ovarian aging. Calorie restriction, which suppresses murine ovarian
follicle development, was associated with a reduction in the follicular content of SIRT1 and SIRT6 [16].
Therefore, SIRTs 1, 3, 5, and 6 are potentially useful markers to characterize and to predict ovarian
follicular development and related fecundity. Nevertheless, the expression of these SIRTs was studied
in relation to the inhibition of ovarian folliculogenesis induced by food restriction and aging, while the
association of these and other SIRTs with reproduction rate in normal conditions seems to not have
been examined yet.Such studies would be potentially applicable for early selection of farm animals for
high reproductive efficiency.

SIRTs can be markers of the pathological state of ovarian cells. For example, polycystic ovarian
syndrome is associated with decreased expression of SIRT1 [17]. High expression of SIRT1 is associated
with malignant transformation of human ovarian tissue [18] and with poor outcomes in patients
with ovarian carcinoma [19]. Despite the potential usefulness of SIRTs for diagnostics of ovarian
dysfunctions, SIRTs other than SIRT1 do not seem to have been studied from this viewpoint.

3. The Use of SIRTs to Study, Control, and Treat Ovarian Functions

There is a growing body of evidence showing that the members of the SIRT family can
affect ovarian functions, including ovarian cell proliferation, apoptosis, folliculogenesis, oogenesis,
and embryo development at various regulatory levels (see reviews [20–22]). SIRT1-deficient mice had
reduced level of gonadotropin releasing hormone (GnRH) in hypothalamus, luteinizing hormone
(LH), and follicle stimulating hormone (FSH) in plasma [22]. Resveratrol-induced SIRT1 expression
was associated with increased levels of LH (but not FSH) receptors and steroidogenic enzymes in
rat ovaries [10]. These observations suggest that SIRT1 can promote ovarian functions via activation
of the GnRH–gonadotropin–ovarian gonadotropin receptor axis, although direct action of SIRT1 on
the ovarian cells is also evident. Transfection with a SIRT1 gene construct stimulated proliferation
(but not apoptosis), progesterone, testosterone, and IGF-1 release by cultured porcine granulosa
cells [23,24] and developmental capacity of mouse and human oocytes [25]. Either FSH or OT
additions increased the SIRT1 accumulation in cultured porcine ovarian granulosa cells, while IGF-I
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addition decreased it. mTOR blockers/stimulators of SIRT1 (see below) were able to modify FSH’s
effects on proliferation, apoptosis, and steroidogenesis in these cells. These observations suggest
that SIRT1 can modify and mediate the effect of hormonal stimulators on ovarian functions [26].
The ability of SIRT1 to promote ovarian cell proliferation and IGF-I release, as well as to promote
FSH action on these processes (from [23]) is illustrated by Figure 1. Fu et al. [27] reported the
involvement of another SIRT—SIRT3—in the up-regulation of genes involved in human ovarian
folliculo-, luteo-, and steroidogenesis: knockdown of SIRT3 resulted in decreased expression of
aromatase, 17β-hydroxysteroid dehydrogenase 1, steroidogenic acute regulatory protein, cholesterol
side-chain cleavage enzyme, and 3β-hydroxysteroid dehydrogenase in granulosa cells, and decreased
their progesterone release. Aside from mTOR, SIRTs can affect ovarian cell functions via changes
in the production of transcription factors p53, NFkB [18,23,25], FOXL2 [28], Noch 3 [29], STAT3,
steroid hormone receptors, and other intracellular signaling molecules [5], which in turn affect ovarian
proliferation, apoptosis, and steroidogenesis. Moreover, SIRT1 overexpression promoted the effects of
transcription factors p53 and NFkB on porcine ovarian cell functions [26]. The mice with knock-down
of SIRT1 but not of SIRT3 are infertile [21]. It is proposed that SIRTs can affect ovarian functions and
ovarian aging by activating the anti-oxidative processes in the reproductive system—especially in
oocytes [21,22]. Therefore, the available data suggest the involvement and potential usefulness of
SIRT1 and maybe SIRT3 for the regulation of healthy ovarian functions at the level of hypothalamus,
pituitary ovarian gonadotropin receptors, ovarian response to hormones, ovarian cell proliferation,
apoptosis, folliculo- and oogenesis, as well as ovarian hormones and transcription factors.
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Effect of FSH addition: significant (p < 0.05) differences between cells cultured with (1, 10, or 100 ng/mL) 
and without (0 ng/mL) FSH; (b) Effect of transfection: significant (p < 0.05) differences between 
corresponding groups of cells transfected and not transfected with gene construct. Reprinted from 
Animal Reproduction Science, Volume 140, Silvia Pavlová et al, The involvement of SIRT1 and 
transcription factor NF-κB (p50/p65) in regulation of porcine ovarian cell function, Pages 180–188, 
Copyright© 2013, with permission from Elsevier. 
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Figure 1. Transfection with sirtuin-1 (SIRT1) cDNA construct promotes proliferation. (a) Percentage of
cells containing cyclin B1, and (b) IGF-I release by porcine ovarian granulosa cells and the response of
these cells to follicle stimulating hormone (FSH). A monolayer of granulosa cells of prepubertal gilts
was transfected with SIRT1 cDNA or with transfection reagent with empty vector without any gene
construct (control). After 30 h of incubation with or without FSH (0, 1, 10, 100 ng/mL medium), the cells
and culture medium were analyzed by immunocytochemistry and RIA. Data are the mean ± S.E.M.
(a) Effect of FSH addition: significant (p < 0.05) differences between cells cultured with (1, 10, or
100 ng/mL) and without (0 ng/mL) FSH; (b) Effect of transfection: significant (p < 0.05) differences
between corresponding groups of cells transfected and not transfected with gene construct. Reprinted
from Animal Reproduction Science, Volume 140, Silvia Pavlová et al., The involvement of SIRT1 and
transcription factor NF-κB (p50/p65) in regulation of porcine ovarian cell function, Pages 180–188,
Copyright© 2013, with permission from Elsevier.

These molecules and processes can be mediators of SIRTs’ action on ovarian aging. Ovarian aging
in various species is characterized by a gradual decrease in both the number of follicles and the quality
of oocytes. These changes are also associated with a decrease in SIRT1, SIRT3, and SIRT6 in the ovaries
of aged mice [2], and in SIRT3 [14] and SIRT5 [15] in aged women.

The pharmacological activation of SIRT1 and SIRT6 prevented the age-dependent exhaustion of
rat [11] and mice [12] follicle reserve.

In addition, SIRTs can affect ovarian function due to their antioxidant properties. At least the
amount of SIRT3 mRNA in both mice and human oocytes was positively correlated with mitochondrial
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biogenesis [25], and SIRT3 knockdown markedly elevated reactive reactive oxygen species in human
ovarian granulosa cells [27].

The association of SIRTs with ovarian state and their ability to regulate healthy ovarian cell
functions suggested the potential usefulness of SIRTs in the treatment of ovarian disorders. For example,
the pharmacological up-regulation of SIRT1 suppressed the manifestations of polycystic ovarian
syndrome in rats [17]. Inhibition of either SIRT1 [28] or SIRT6 [29] reduced the proliferation of human
ovarian granulosa tumor cells. The overexpression of another SIRT—SIRT3—caused suppression, and
the knock-down effect promoted the development of metastasis in human ovarian carcinoma cells [30].
Therefore, SIRTs (at least SIRTs 1, 3, and 6) can be potential therapeutic tools for the treatment of the
most common ovarian disorders—polycystic ovarian syndrome and cancer.

Taken together, the available data demonstrate that SIRTs can be efficient tools to regulate the
functions of healthy ovary via action on hypothalamic GnRH, gonadotropins, gonadotropin receptors,
response to gonadotropins, transcription factors, ovarian cell proliferation, apoptosis, and hormone
release, as well as via action on ovarian aging and oxidative damage. Furthermore, they can have
a large therapeutic potential to treat the most common ovarian dysfunctions. Unfortunately, the
large-scale practical application of SIRTs in medicine, assisted reproduction, and animal biotechnology
is limited by problems in their delivery or in the direct control of their expression via cDNA and small
RNA constructs. The less time- and money-consuming approach is to promote SIRTs’ accumulation
via caloric restriction [2,16] or mTOR regulators.

4. The Use of mTOR Regulators to Study, Control, and Treat the SIRTs-Dependent
Ovarian Functions

SIRTs and SIRTs-dependent processes can be affected not only by direct up- and down-regulation
of SIRTs, but also by synthetic or natural (plant-derived) mTOR regulators. The mTOR pathway plays a
critical role in the regulation of ovarian cell proliferation, apoptosis, secretory activity, folliculogenesis,
and malignant transformation [5,11,26,31–44]. The mTOR and SIRTs are in close mutual functional
interrelationships. In non-ovarian cells, the plant mTOR blocker resveratrol can activate SIRTs 1,
3, 4, and 7. Other plant extracts and compounds like quercetin also express both mTOR-inhibiting
and SIRT1-activating properties [5]. The mTOR blockers resveratrol and rapamycin can promote the
accumulation of both SIRT1 and SIRT6 in ovarian cells [10,11]. On the other hand, SIRT1 can suppress
mTOR activity within non-ovarian [8] and ovarian [12] cells. The data concerning interrelationships
between mTOR and other SIRTs within the ovary have not yet been reported.

Recent studies demonstrated the action of mTOR inhibitors on various ovarian functions (see [29]
for review). Synthetic inhibitors of mTOR suppressed the proliferation of healthy mice granulosa
cells [32,33] and healthy porcine granulosa cells [26]. A pharmacological inhibitor of mTOR/activator
of SIRTs was able to improve the murine follicle reserve and prolong the ovarian lifespan [12], while its
plant analogue rapamycin prolongs the ovarian lifespan in rats [11,20]. Synthetic mTOR blockers were
able to inhibit the proliferation of mouse ovarian granulosa cell tumors [32] and human ovarian cancer
cells [35–37]. These inhibitors were able to promote apoptosis of human ovarian cancer cells [35,37];
however, these data were not confirmed by other studies [36]. Synthetic mTOR inhibitors failed to affect
the apoptosis of healthy mouse [33] and porcine [26] granulosa cells and mouse ovarian granulosa
cell tumors [34]. These inhibitors were able to suppress porcine granulosa cells’ progesterone and
testosterone output [26]. Furthermore, mTOR (like SIRTs) may mediate FSH action on ovarian cells;
FSH affected mTOR in rat [38] and porcine [26] granulosa cells, while synthetic mTOR inhibitors
prevented the stimulatory influence of FSH and induce the inhibitory effect of FSH on proliferation,
apoptosis, and steroidogenesis in porcine granulosa cells [26]. Natural mTOR inhibitor (rapamycin)
treatment promoted apoptosis in healthy porcine ovarian cells [13], suppressed follicular growth and
maturation in rodents [19,32], and increased the risk of oligomenorrhea in humans [39]. Resveratrol,
the other mTOR blocker and activator of SIRTs, was able to induce apoptosis/atresia in porcine ovarian
follicles [13]. Rapamycin did not affect the release of progesterone by bovine corpus luteum cells [40],
but resveratrol reduced steroidogenesis in rat ovarian theca-interstitial cells [41]. Therefore, the majority
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of available observations suggest that mTOR blockers can suppress basic functions (proliferation and
steroidogenesis), promote apoptosis, and prevent/invert the influence of physiological hormonal
stimulator (FSH) on these processes.

The easiest way to stimulate SIRTs, however, is not the application of synthetic or natural mTOR
blockers, but simple restriction of caloric intake. It can promote SIRT1 accumulation in various
non-ovarian cells [5]. Caloric restriction induces the accumulation of SIRT1 in murine ovaries, which is
associated with impairment of ovarian follicle development and follicle loss [16].

These features of mTOR inhibitors can be used for the treatment of ovarian disorders. Liu et al. [42]
successfully used resveratrol to delay puberty, save the ovarian follicle reserve, prolong reproductive
lifespan, and to prevent age-associated infertility in mice. Both synthetic and natural mTOR inhibitors
can be used for the treatment of ovarian cancers [5,35,36,43,45].

Therefore, natural and synthetic mTOR regulators and/or caloric restriction provide a less specific,
but time-, work-, and money-consuming alternative to manipulations with SIRT gene constructs to
study and affect ovarian functions, as well as to treat premature ovarian insufficiency and cancer.
These alternative ways of regulating SIRTs-dependent functions including reproduction remain the
most popular and promising ones.

5. Conclusions

The present short review of the available knowledge concerning SIRTs in the ovary suggest the
involvement of SIRTs in the control of basic ovarian functions at various regulatory levels. The possible
interrelationships of SIRTs with other signaling molecules and processes in the control of ovarian
functions are shown at Figure 2. These interrelationships, as well as the involvement of SIRTs in the
control of all basic ovarian functions, provide a basis for the application of SIRTs and SIRTs-related
signaling molecules and drugs for the characterization, prediction, and regulation of ovarian functions,
as well as for diagnostics and the treatment of ovarian disorders. Understanding and applying SIRTs
is only in the early stages. The majority of the relevant available information concerns only one
SIRT—SIRT1—whilst other SIRTs have not been or have been very poorly studied in this respect.
Efficient and cheap methods of SIRT analysis and regulation require further development. The most
promising and easy way to affect SIRTs and SIRTs-dependent ovarian functions could be the application
of synthetic or natural mTOR regulators or the reduction of caloric intake. Targets and mechanisms of
SIRTs’ action require further study. Nevertheless, these efforts could be fruitful for the development of
a better understanding of the role of SIRTs in the control of reproduction, as well as for their application
in biology, biotechnology, and animal and human reproductive medicine.
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