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Abstract

Adenosine receptors (ARs) have been demonstrated to be potential therapeutic targets

against Parkinson’s disease (PD). In the present study, we describe a multistage virtual

screening approach that identifies dual adenosine A1 and A2A receptor antagonists using

deep learning, pharmacophore models, and molecular docking methods. Nineteen hits from

the ChemDiv library containing 1,178,506 compounds were selected and further tested by

in vitro assays (cAMP functional assay and radioligand binding assay); of these hits, two

compounds (C8 and C9) with 1,2,4-triazole scaffolds possessing the most potent binding

affinity and antagonistic activity for A1/A2A ARs at the nanomolar level (pKi of 7.16–7.49 and

pIC50 of 6.31–6.78) were identified. Further molecular dynamics (MD) simulations sug-

gested similarly strong binding interactions of the complexes between the A1/A2A ARs and

two compounds (C8 and C9). Notably, the 1,2,4-triazole derivatives (compounds C8 and

C9) were identified as the most potent dual A1/A2A AR antagonists in our study and could

serve as a basis for further development. The effective multistage screening approach

developed in this study can be utilized to identify potent ligands for other drug targets.

Author summary

Parkinson’s disease (PD) is a long-term degenerative disorder of the central nervous sys-

tem. Dual adenosine A1/A2A receptor antagonists provide a possible effective therapy that

can simultaneously solve motor symptoms and nonmotor symptoms in the medical treat-

ment of PD. Here, we applied a multistage virtual screening approach involving deep

learning, pharmacophore models, and molecular docking methods to the ChemDiv

library, which contains 1,178,506 compounds, and identified two 1,2,4-triazole derivatives

as dual adenosine A1 and A2A receptor antagonists. We used a cAMP functional assay and

radioligand binding assay to evaluate the biological activity and binding affinities towards

adenosine A1 and A2A receptor of 8 selected compounds, respectively. The molecular
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dynamics (MD) simulations showed similarly strong binding interactions of the com-

plexes between the adenosine A1/A2A receptors and the compounds. The results showed

that the multistage virtual screening approach can effectively identify potent dual adeno-

sine A1/A2A receptor antagonists. The multistage screening approach offers an alternative

and effective strategy for the identification of potent ligands for other drug targets.

This is a PLOS Computational Biology Methods paper.

Introduction

Parkinson’s disease (PD) is a common and complex neurodegenerative disorder that is charac-

terized by the early prominent death of dopaminergic neurons in the substantia nigra pars

compacta and the abnormal aggregation of the α-synuclein protein, called Lewy bodies and

Lewy neurites [1]. Decreased dopamine in the basal ganglia can cause classical motor symp-

toms [2], including bradykinesia, resting tremors, and postural instability [3], and nonmotor

symptoms, including constipation, depression, sleep disturbance, apathy, hallucinations and

dementia [4]. L-3,4-Dihydroxyphenylalanine (L-dopa), which is the direct precursor of dopa-

mine, is commonly used as dopamine replacement therapy in the treatment of PD motor

symptoms [5]. Although L-dopa can help relieve PD motor symptoms, its chronic use may

cause side effects such as motor complications (motor fluctuations and dyskinesias) [6]. In

addition, dopamine receptor agonists, catechol O-methyltransferase inhibitors, monoamine

oxidase B (MAOB) inhibitors, amantadine and anticholinergic drugs are available on the mar-

ket for the treatment of PD [7,8]. However, these drugs are mainly used to replace the concen-

tration and/or effect of dopamine in the brain and only solve the motor symptoms but not the

nonmotor symptoms [9]. Therefore, it is necessary to develop effective therapies that simulta-

neously solve the motor symptoms and nonmotor symptoms in medical treatments of PD.

In recent years, adenosine receptor (AR) antagonists have attracted much attention in the

development of nondopaminergic therapies for the treatment of PD. Interestingly, high-reso-

lution structures of A1 and A2A adenosine receptors are available [10–20], providing an excel-

lent opportunity for structure-based drug design (SBDD). Thus, virtual screening efforts have

identified potent antagonists [21–23]. Among the four human adenosine receptors (A1, A2A,

A2B and A3) [24], the A2A receptor, which is a potential target for the treatment of PD, has

been intensively studied. A2AAR antagonists have been developed as a potential class of non-

dopaminergic antiparkinsonian agents that can relieve patients of symptoms of depression

(nonmotor symptom of PD) [25]. The A2AAR antagonist KW-6002 has been proven to have

antidepressant activity in the forced swim test and tail suspension test in rodents [26,27]. In

addition, epidemiological and experimental data indicate that adenosine A2A receptor antago-

nists have neuroprotective effects [28]. Compared with A2AAR, A1AR is more widely distrib-

uted in the central nervous system. A1AR is highly expressed in brain regions, including the

hippocampus and prefrontal cortex. These regions are important for emotion and cognitive

function. Furthermore, since A1AR antagonists can increase the release of acetylcholine and

glutamate, and improve cognitive dysfunction [29], A1AR antagonism may improve the cogni-

tive deficits experienced in PD as illustrated in animals studies [30].

Among the adenosine receptor antagonists, caffeine, which is a xanthine derivative, has

been found to be a nonselective A1AR and A2AAR antagonist. Epidemiological research has
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shown that a correlation exists between the intake of coffee or caffeine and a reduced risk of

PD [31]. Subsequently, several dual A1/A2A AR antagonists were further developed and proven

to not only improve dyskinesia but also enhance cognition and play a neuroprotective role

through the antagonistic effect of A2AAR [3,32,33]. Dual A1/A2A AR antagonists may display

synergistic motor activation. A1AR antagonism promotes presynaptic dopamine release, while

A2AAR antagonism promotes postsynaptic dopamine release [34]. In conclusion, dual A1/A2A

AR antagonists not only treat the motor symptoms of PD and have neuroprotective effects but

may also improve nonmotor symptoms [35]. In 2007, Mihara et al. discovered the dual A1/A2A

AR antagonist 5-[5-amino-3-(4-fluorophenyl)pyrazin-2-yl]-1-isopropylpyridine-2(1H)-one

(ASP5854) (Fig 1A), which showed high affinity for human A1 and A2A receptors with Ki val-

ues of 9.03 nM and 1.76 nM, respectively [36]. In 2008, ASP5854 was further confirmed to

have activity comparable to that of existing anti-Parkinson’s disease drugs, but no further

research investigating its safety was conducted [37]. In 2010, Shook et al. designed and synthe-

sized an arylindenopyrimidine (2-amino-4-phenyl-8-(pyrrolidin-1-ylmethyl)-5H-indeno

[1,2-d]pyrimidin-5-one, Fig 1B) derivative as a dual A1/A2A AR antagonist that has excellent

activity in various animal models of PD after oral administration, but further studies revealed

that it was genotoxic [3]. In 2015, Robinson et al. characterized a small set of 2-aminopyridines

as dual A1/A2A AR antagonists. These compounds are considered useful for motor diseases,

such as PD. The most potent compound found from this campaign was 4-(5-methylfuran-

2-yl)-6-[3-(piperidine-1-carbonyl)phenyl]pyrimidin-2-amine (Fig 1C), which was able to bind

A1 and A2A receptors with Ki values of 9.54 nM and 6.34 nM, respectively [38,39]. Therefore,

the identification of novel dual A1/A2A AR antagonists is of great significance for the develop-

ment of novel agents for the treatment of PD [40].

Deep learning (DL), or deep neural networks, has been developed based on artificial neural

networks (ANNs), which are inspired by the biological structure and function of the brain. To

date, several DL frameworks, such as deep neural networks (DNNs), convolutional neural net-

works (CNNs), deep belief networks (DBNs), and recurrent neural networks (RNNs), have

been developed. Currently, the deep learning procedure, which is the dominant component of

machine learning (ML) in artificial intelligence, has emerged as a vital tool for expediting the

in silico screening of potential hits [41]. Unterthiner et al. showed that the efficacy of DL in vir-

tual drug screening was better than that of seven other screening methods using ChEMBL

benchmark data [42]. Lenselink et al. demonstrated that the screening performance of DNNs

outperformed that of other machine learning methods such as support vector machines, ran-

dom forests, naïve Bayes and logistic regression models [43]. Bilsland et al. trained an ANN

classification model to screen for senescence-inducing compounds from a library of ~2 M

Fig 1. Structures of ASP5854 (A), 2-amino-4-phenyl-8-(pyrrolidin-1-ylmethyl)-5H-indeno[1,2-d]pyrimidin-5-one (B) and

4-(5-methylfuran-2-yl)-6-[3-(piperidine-1-carbonyl)phenyl]pyrimidin-2-amine (C), which were found to be dual A1/A2A AR

antagonists.

https://doi.org/10.1371/journal.pcbi.1008821.g001
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lead-like compounds and identified a benzimidazolone compound with a low micromolar

IC50 using in vitro assays as a potential hit for the development of selective cell cycle inhibitors

[44]. Wallach et al. used CNN to design a structure-based model for the prediction of the bio-

activity of small molecules for drug development and successfully predicted new active mole-

cules for targets without known modulators [45]. Recently, Rifaioglu et al. developed

DEEPScreen, which is a novel DTI prediction system based on deep convolutional neural net-

works that can predict new interactions between the drug cladribine and JAK proteins as con-

firmed by in vitro experiments using cancer cells [46]. Overall, deep learning plays an

increasingly important role in modern drug discovery.

To date, the discovery of dual A1/A2A AR antagonists has been achieved through structural

modification of specific scaffolds to obtain new compounds, while a multistage virtual screen-

ing approach combining ligand-based and structural-based methods has rarely been used.

Although the rapid development of the pharmacophore [47] and molecular docking [48]

methods enabled the screening of very large databases containing billions of diverse molecules,

these methods are individually unable to achieve perfect effects. For example, the inaccurate

scoring functions implemented in docking methods often lead to a low hit rate and a high false

positive rate. In this study, a multistage virtual screening system consisting of deep learning,

pharmacophore models, and molecular docking methods was used to identify novel dual A1/

A2A AR antagonists from the ChemDiv database. The ChemDiv collection consists of more

than 14,000 chemical families (chemotypes) and 1,250,000 diverse drug-like small molecules.

Nineteen compounds were selected and tested to determine their A1AR and A2AAR functional

activities; of these compounds, five compounds were found to have dual A1/A2A AR antagonis-

tic activity through cAMP functional assays and radioligand binding assays. Among the five

compounds found to have dual A1/A2A AR antagonistic activity, compounds C8 and C9,

which contained a 1,2,4-triazole scaffold, showed the highest antagonistic activity, reaching

nanomolar inhibition.

Results and discussion

Construction and validation of the DNN and CNN models

In this study, we used the self-developed Python script based on the algorithm from reference

50 to construct the DNN and CNN classification models of the dual A1/A2A AR antagonists

using a library containing 310 bioactive dual A1/A2A antagonists (Ki < 40 nM) and 405 non-

bioactive antagonists (Ki > 1000 nM). The models used the extended connectivity fingerprint

4 (ECFP4) [49] and neural fingerprint (NFP) [50]. Six evaluation indicators, including sensi-

tivity (SE), specificity (SP), prediction accuracy of active molecules (Q+), prediction accuracy

of inactive molecules (Q-), Matthews correlation coefficient (MCC) and area under the curve

(AUC), were used to evaluate the classification ability of the models.

To assess the impact of the different batch sizes on the performance of the DNN and CNN

classification models, we constructed the DNN and CNN models using batch sizes from 50 to

300 with an interval of 50. Table 1 lists the statistical evaluation results of the DNN classifica-

tion models based on the ECFP4 of the test set under different batch sizes. All DNN classifica-

tion models show very good SE, SP, Q+, Q-, MCC and AUC values. Among the six DNN

classification models, Model_D5 based on ECFP4 has the best prediction ability, with an MCC

of 0.891 and an AUC of 0.997. The optimized hyperparameters of Model_D5 which had the

best performance, are as follows: batch size = 250, learning rate = 0.001, num_epochs (number

of training epochs) = 500, dropout = 0.2, L2_regulation_type (L2 regularization parameters) =

0.0001, three hidden layers with layer widths of 3000, 2000 and 1000, and a final fully con-

nected layer that uses the Softmax algorithm to produce classification results.
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We further analyzed the performance of the CNN models in predicting dual A1/A2A AR

antagonists. The statistical evaluation of six CNN models based on NFP is shown in Table 2.

The table shows that the batch size has a great impact on the prediction ability of the CNN clas-

sification models. Model_C6, which has a batch size of 300, shows the lowest MCC and AUC

values, while Model _C4, which has a batch size of 200, shows the highest MCC and AUC val-

ues. The optimized hyperparameters of Model_C4, which has the best performance are as fol-

lows: learning rate = 0.001, num_epochs (number of training epochs) = 500, batch size = 200,

L2_regulation_type (L2 regularization parameters) = 0.0001, and fingerprint_network_archi-

tecture (convolutional layers) = 5. Based on the evaluation results of the DNN and CNN classi-

fication models, Model_D5 and Model_C4, which had the best performance, were selected,

and we conducted the following virtual screening of dual A1/A2A AR antagonists.

Pharmacophore model generation and validation

A training set containing 14 active ingredients (S1 Table) was used to generate the dual A1/

A2A AR antagonist pharmacophore models. Eleven hypotheses were generated, which

matched 9–13 of the 14 activities. To evaluate pharmacophore hypotheses, a validation set of

42 dual antagonists of the A1AR and A2AAR subtypes and 913 decoy compounds was used to

explore the ability of the pharmacophore hypothesis to distinguish the dual A1/A2A AR antago-

nists from the decoys. The statistical results of predicting the dual antagonists in the validation

set are summarized in Table 3. The EF1% (enrichment factor in the top 1% of compounds

screened) and BEDROC (α-160.9) (Boltzmann-enhanced discrimination of receiver operating

characteristic) were used as “early recognition” metrics [51]. As shown in Fig 2, the AADR_4

and AAADR_1 hypotheses shared the same four pharmacophore sites including two hydrogen

bond acceptors (A), one hydrogen donor (D) and one aromatic ring (R); however, the

AAADR_1 hypothesis contains one additional hydrogen bond acceptor at the far end. When a

minimum of four sites of the AAADR_1 model were used for screening (including the

AADR_4 model), the most dual A1/A2A AR antagonists (39 of 42) were retrieved from the

validation set, corresponding to an ROC of 0.89. Finally, the five-pharmacophore-site

(AAADR_1) hypotheses, which matched 12 of the 14 active ingredients in the training set,

were selected for further virtual screening.

Table 1. Test results of the DNN classification model under different batch sizes.

DNN Model Batch size SE SP Q+ Q- MCC AUC

Model_D1 50 1 0.901 0.818 1 0.859 0.99

Model_D2 100 0.972 0.901 0.814 0.986 0.836 0.989

Model_D3 150 0.972 0.827 0.714 0.985 0.748 0.99

Model_D4 200 1 0.889 0.8 1 0.843 0.993

Model_D5 250 1 0.926 0.857 1 0.891 0.997

Model_D6 300 1 0.889 0.8 1 0.843 0.978

https://doi.org/10.1371/journal.pcbi.1008821.t001

Table 2. Test results of the CNN classification model under different batch sizes.

CNN Model Batch size SE SP Q+ Q- MCC AUC

Model_C1 50 0.861 0.877 0.756 0.934 0.714 0.941

Model_C2 100 0.972 0.914 0.833 0.987 0.852 0.986

Model_C3 150 0.944 0.926 0.85 0.974 0.847 0.977

Model_C4 200 1 0.926 0.857 1 0.891 0.986

Model_C5 250 0.972 0.926 0.854 0.987 0.869 0.985

Model_C6 300 1 0.185 0.353 1 0.256 0.791

https://doi.org/10.1371/journal.pcbi.1008821.t002

PLOS COMPUTATIONAL BIOLOGY Discovery of novel dual adenosine A1/A2A receptor antagonists

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008821 March 19, 2021 5 / 23

https://doi.org/10.1371/journal.pcbi.1008821.t001
https://doi.org/10.1371/journal.pcbi.1008821.t002
https://doi.org/10.1371/journal.pcbi.1008821


Virtual screening

Our previous study showed that a multistage approach sequentially integrating machine learn-

ing classification models and pharmacophore and molecular docking methods is efficient in

identifying bioactive compounds from chemical databases [52]. In this study, the performance

of the hierarchical multistage virtual screening approach was evaluated through a validation

set containing 433 bioactive dual A1/A2A AR antagonists (40 nM< Ki <600 nM) and 11605

decoys (S2 Table). Then, DNN and CNN classification models, a pharmacophore model

(AAADR_1) and molecular docking were applied for the discovery of dual A1/A2A AR antago-

nists by performing multistage virtual screening against the ChemDiv library (1,178,506 com-

pounds) (Fig 3). In the first stage, the DNN and CNN classification models were separately

utilized to filter 1,178,506 compounds. Initially, 209,585 and 171,233 compounds passed the

filter that applied the DNN and CNN classification models, respectively. In total, 58,886 com-

pounds simultaneously predicted by the DNN and CNN classification models were retained.

In the second stage, a pharmacophore model was applied to remove the compounds that were

not adequate for a minimum of four sites, and 5,629 of the 58,886 compounds that matched

the requirements of the AAADR_1 model were retained. In the third stage, the 5,629 com-

pounds were subjected to molecular docking screening based on the X-ray structures of A1AR

(PDB ID 5N2S) and A2AAR (PDB ID 5IU4) using Glide HTVS, SP and XP functions. After the

XP molecular docking, 43 compounds that simultaneously bind A1 and A2A ARs remained.

Based on the assessment of chemical-protein interactions by visual inspection, 19 of the 43

compounds that matched the four pharmacophore sites (S1 Fig) were finally selected for an in

vitro evaluation of their bioactivity towards A1 and A2A ARs. Fig 3 shows a schematic work-

flow of our multistage virtual screening methods.

Biological evaluation

Functional experiments. Initially, the biological activity of selected compounds C1 –C19

towards A1 and A2A ARs was evaluated by a cAMP functional assay. The potency of the antag-

onists at the A1 and A2A ARs is depicted in Table 4, which shows that eight compounds (C4,

C7, C8, C9, C10, C15, C17 and C19) of the 19 compounds (Fig 4) display potent antagonistic

Table 3. Validation of the pharmacophore hypotheses.

Hypothesis PhaseHypoScore EF1%a BEDROC (α-160.9)b ROCc AUACd Total Actives Ranked Actives Matches

AADR_4 0.69 22.74 1 0.83 0.90 42 35 4 of 4

AAADR_1 0.65 13.64 0.73 0.89 0.90 42 39 4 of 5

AADR_5 0.65 22.74 1 0.83 0.90 42 35 4 of 4

AADR_1 0.64 22.74 1 0.88 0.92 42 37 4 of 4

AAAR_1 0.63 13.64 0.68 0.77 0.83 42 34 4 of 4

AADR_2 0.61 22.74 1 0.81 0.89 42 34 4 of 4

ADHR_1 0.6 22.74 0.97 0.50 0.74 42 21 4 of 4

AARR_1 0.56 13.64 0.64 0.73 0.80 42 33 4 of 4

ADRR_2 0.5 22.74 0.98 0.57 0.77 42 24 4 of 4

ADRR_1 0.5 22.74 0.99 0.69 0.83 42 29 4 of 4

AADR_3 0.48 22.74 1 0.90 0.93 42 38 4 of 4

a EF1%: enrichment factor at 1% of the validation set.

b BEDROC (α-160.9): Boltzmann-enhanced discrimination of receiver operating characteristics.

c ROC: receiver operating characteristic curve value.

d AUAC: area under the accumulation curve.

https://doi.org/10.1371/journal.pcbi.1008821.t003
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activity against A1AR with pIC50 values ranging from 4.28 to 6.78. Regarding the eight com-

pounds, the pIC50 values at A2AAR were subsequently determined. Among all eight com-

pounds, five compounds possessed antagonistic activity towards A2AAR with pIC50 values of

4.20–6.44. The concentration-response curves of the eight compounds in the cAMP assay are

depicted in S2 and S3 Figs. Notably, compounds C8 and C9 have the most potent antagonistic

activity towards A1/A2A ARs with pIC50 values in the range of 6.31–6.78, while C15 has the

weakest antagonistic activity towards A1/A2A ARs with pIC50 values ranging between 5.10–

5.35.

A1/A2AAR affinity experiments. All eight compounds with potent antagonistic activity

against A1/A2A ARs were further evaluated to determine their binding affinity against A1 and

A2A ARs by radioligand binding assays using the labeled A1AR antagonist 8-cyclopentyl-

1,3-dipropylxanthine (DPCPX) (Fig 5A) and A2AAR antagonist 4-[2-[[7-amino-2- (furyl)

1,2,4-triazolo[2,3-a]1,3,5-triazin-5-yl]-amino]ethyl]phenol (ZM241385) (Fig 5B). The concen-

tration-response curves of the eight compounds in the radioligand binding assay are depicted

in S4 and S5 Figs. Table 4 shows that compounds C8 and C9 also possess the highest binding

affinity for A1/A2A ARs with Ki values at the nanomolar level (pKi values in the range 7.16–

7.49), which is consistent with the highest antagonistic potency with pIC50 values in the range

6.31–6.78. Overall, these experiments confirm that compounds C8 and C9 are the most potent

dual A1/A2A AR antagonists among our selected compounds.

Fig 2. Pharmacophore features of pharmacophore hypotheses AADR_4 and AAADR_1. AADR_4 is displayed in

green, and AAADR_1 is displayed in red.

https://doi.org/10.1371/journal.pcbi.1008821.g002
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Fig 3. Schematic overview of the discovery of dual A1/A2A AR antagonists by performing multistage virtual screening against the

ChemDiv library.

https://doi.org/10.1371/journal.pcbi.1008821.g003

Table 4. Potencies and binding activities at human A1 and A2A ARs of compounds C1 –C19. A1/A2AAR Affinity Experiments.

Compound number Compound ID cAMP assays (pIC50) Binding affinities (pKi) Pharmacophore matching

A1 A2A A1 A2A

C1 6016–3052 < 4 -- -- -- 4

C2 C686-0670 < 4 -- -- -- 4

C3 C884-2451 < 4 -- -- -- 4

C4 D116-0057 5.51 < 4 5.68 4.71 4

C5 D331-0235 NAN -- -- -- 4

C6 D331-0346 NAN -- -- -- 4

C7 D481-1843 5.72 < 4 5.98 5.24 4

C8 D481-2135 6.78 6.44 7.19 7.29 4

C9 D481-2142 6.72 6.31 7.49 7.16 4

C10 D503-0436 6.46 5.00 6.77 5.08 4

C11 F026-0231 < 4 -- -- -- 4

C12 F092-0415 NAN -- -- -- 4

C13 F186-0821 < 4 -- -- -- 4

C14 F186-0830 < 4 -- -- -- 4

C15 G433-0400 5.35 5.10 5.54 < 4 4

C16 G856-9311 < 4 -- -- -- 4

C17 L935-0138 6.20 4.20 6.28 < 4 4

C18 P072-0704 < 4 -- -- -- 4

C19 P433-0232 4.28 < 4 4.97 4.93 4

DPCPX -- -- 8.60 --

ZM241385 -- -- -- 8.70

https://doi.org/10.1371/journal.pcbi.1008821.t004
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Novelty of the new hits

To evaluate the novelty of the identified dual A1/A2A AR antagonists, the pairwise similarity

between compounds C8 and C9 and known A1/A2A AR antagonists, including all dual antago-

nists found in ChEMBL25 [53], was calculated using Morgan, ECFP4 and MACCS finger-

prints in KNIME [54]. The molecular similarity between the two molecules was compared

Fig 4. Chemical structures of compounds C1—C19.

https://doi.org/10.1371/journal.pcbi.1008821.g004

Fig 5. Chemical structures of DPCPX (A) and ZM241385 (B).

https://doi.org/10.1371/journal.pcbi.1008821.g005
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using the Tanimoto coefficient (Tc), which ranges from 0 to 1. Low chemical similarity has a

correlation with a Tc value close to 0, whereas high chemical similarity has a correlation with a

Tc value close to 1. Regarding compounds C8 and C9, the maximum Tc values of the Morgan

and ECFP4 fingerprints compared to known A1/A2A AR antagonists are similar and less than

0.4 (S3 Table). The maximum Tc values of MACCS and ECFP4 conform to the relationship

studied by Maggiora et al.[55] (S6 Fig and S3 Table), indicating that compounds C8 and C9

are novel dual A1/A2A AR antagonists. Compounds C8 and C9 contain a 1,2,4-triazole core,

which is a privileged scaffold for developing potent antifungal agents [56], LSD1 inhibitors

[57], anticonvulsant agents [58], etc. 1,2,4-Triazole derivatives possess diverse pharmacological

activities, such as antiviral, antitumor, anti-inflammatory, antibacterial, antifungal, antihyper-

tensive, hypoglycemic and analgesic activities [59]. The 1,2,4-triazole scaffold was first found

to have the potential to be developed as a dual A1/A2A AR antagonist. The associated pharma-

cological activity of compounds C8 and C9 acting as dual A1/A2A AR antagonists needs to be

further studied.

Molecular modeling exploration

To explore the dual antagonistic activities of compound C8, C9 exhibited nanomolar inhibi-

tion against both A1AR and A2AAR, and molecular docking using Glide and MD simulation

studies were carried out. In our docking studies, C8 and C9 had similar binding energies

against A1AR and A2AAR (Table 5). In total, 4 complexes of C8 and C9 bound to A1AR and

A2AAR were generated, and each complex was embedded in a hydrated phospholipid bilayer

including POPE lipid molecules and subjected to 100-ns MD simulation using the AMBER

ff14sb force field. After 100 ns of the MD simulation we obtained a stable bilayer (S7 Fig), and

the RMSprot (which is the protein backbone RMSD with respect to the minimized structure)

values ranged from 2.51 to 2.96 Å with standard deviations of approximately 0.25 Å (S8 Fig).

The stability of the ligand inside the binding area was assessed by measuring its RMSD

(RMSDlig). Among the four docking poses used as starting structures, we obtained RMSDlig

less than 2 Å (Table 5 and S9 Fig), suggesting stable binding in agreement with the experimen-

tal binding and functional data.

In addition, we calculated the binding free energy of C8 and C9 with A1AR and A2AAR by

using the MM-GBSA method based on the last 5 ns trajectory of the MD simulations

(Table 5). The calculated binding free energy of the C8-A1AR complex (ΔGeff = -41.67 kcal/

mol) is similar to that of the C8-A2AAR complex (ΔGeff = -42.22 kcal/mol). In addition, the cal-

culated binding energy of the C9-A1AR complex (ΔGeff = -43.55 kcal/mol) is similar to that of

the C9-A2AAR complex (ΔGeff = -40.70 kcal/mol). Therefore, the binding free energies show

that compounds C8 and C9 have similar affinities to A1AR and A2AAR, which is consistent

with the results of the functional assay and radioligand binding assays.

Binding modes exploration. The 100-ns MD simulations showed that compounds C8

and C9 were stabilized with similar orientations in the binding pockets of both A1AR and

A2AAR (Fig 6). In the C8-A1AR complex and the C9-A1AR complex (Fig 6A and 6B), the

5-amino group and the nitrogen of the 1,2,4-triazol were hydrogen bonded to the side chain

carbonyl and amino group of N2546.55, respectively. The 1,2,4-triazol formed π-π stacking

Table 5. Glide XP scores, RMSDlig and MM-GBSA binding free energies of ligands C8 and C9 against A1AR and A2AAR.

Compound ID A1AR Glide XP (kcal/mol) RMSlig A1 (Å) A1AR ΔGeff (kcal/mol) A2AAR Glide XP (kcal/mol) RMSlig A2A (Å) A2AAR ΔGeff (kcal/mol)

C8 -11.36 1.69 ± 0.23 -41.67 ± 3.08 -10.50 0.92 ± 0.14 -42.22 ± 2.87

C9 -11.47 1.28 ± 0.24 -43.55 ± 2.62 -11.99 1.59 ± 0.19 -40.70 ± 2.83

https://doi.org/10.1371/journal.pcbi.1008821.t005
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interactions with the phenyl group of F171ECL2. These interactions are consistent with the

observations in the mutagenesis experiments that N2546.55 and F171ECL2 play important roles

in antagonist binding. These interactions were maintained from the origin to the end of the

100-ns simulation (S10 Fig). Additionally, the 3-methoxyphenyl (or 3-chorophenyl) exhibited

nonpolar interactions with the side chain of I2747.39, and the 2-chorophenyl extended deeper

into the other side of the pocket formed by the hydrophobic side chains of V873.32, L883.33 and

W2476.48. In the C8-A2AAR complex and the C9-A2AAR complex (Fig 6C and 6D), the

5-amino group and the oxygen of the methanone formed hydrogen bonds with the side chain

carbonyl and amino group of N2536.55. Additionally, the 5-amino group formed a hydrogen

bond with the carboxyl side chain of E169ECL2. The 1,2,4-triazol interacted with the phenyl

group of F168ECL2 through π-π stacking. These interactions were maintained throughout the

100-ns simulation (S11 Fig). The 2-chlorophenyl formed hydrophobic interactions with

Y2717.36, and the 3-methoxyphenyl (or 3-chorophenyl) extended deeper into the orthosteric

binding area and formed hydrophobic interactions with residues V843.32, L853.33, L2496.51 and

I2747.39. Although the orientation of C8 (or C9) was different in the binding pocket of A1AR

and A2AAR, the number of hydrogen bonds, π-π stacking and hydrophobic interactions were

Fig 6. Superposition of the starting structure (in cyan) and the final snapshot (in orange) in the MD trajectory of Compounds C8

(A) and C9 (B) in the orthosteric binding area of A1AR. Superposition of the starting structure (in green) and the final snapshot (in

orange) in the MD trajectory of Compounds C8 (C) and C9 (D) against A2AAR. The protein is shown as a gray cartoon, the ligands

are shown as sticks, and the residues in the binding pocket of A1 and A2A AR are represented as lines. The hydrogen bonds and π-π
stacking between the ligands and ARs are represented by dashed lines.

https://doi.org/10.1371/journal.pcbi.1008821.g006
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the same as those in the C8 (or C9)-A1AR complex and the C8 (or C9)-A2AAR complex, which

may lead to the similar binding affinity of C8 (or C9) to A1AR and A2AAR.

To compare the binding differences between A1AR and A2AAR of nondual A1/A2A AR

antagonists, we also performed MD simulations against compound C10, which has stronger

binding affinity and antagonistic activity to A1AR than A2AAR. In the C10-A1AR complex, the

N-propyl group and the nitrogen of the pyrazolo[1,5-a]pyrimidinformed two hydrogen bonds

with the side chain carbonyl and amino group of N2546.55. Pyrazolo[1,5-a]pyrimidin inter-

acted with the phenyl side chain of F171ECL2 through π-π stacking. In the C10-A2AAR com-

plex, C10 possessed a different orientation and formed only one hydrogen bond with the

amino group of N2536.55 via the nitrogen of pyrazolo[1,5-a]pyrimidin. Pyrazolo[1,5-a]pyrimi-

din formed π-π stacking interactions with the phenyl side chain of F168ECL2 (Figs 7 and S12).

Compared to the dual antagonists (which had similar a number of hydrogen bonds, π-π stack-

ing and hydrophobic interactions in the two receptors), C10 had one less hydrogen bond in

the C10-A2AAR complex than the C10-A1AR complex, which may be the reason for its weaker

binding affinity and antagonistic activity for A2AAR.

Conclusions

In the quest for novel dual A1/A2A AR antagonists as putative agents for the treatment of Par-

kinson’s disease, we applied a multistage virtual screening approach combining deep learning,

pharmacophore and molecular docking methods to screen the ChemDiv library (1,178,506

compounds) and tested 19 hits by in vitro assays. Initially, the cAMP functional assay identi-

fied five compounds that possessed antagonist activity towards A1/A2AAR with pIC50 values of

4.20–6.78. The radioligand binding assays confirmed that six of the eight compounds with

antagonistic activity for A1AR and A2AAR (pIC50 of 4.20–6.78) also had consistent binding

affinity against A1/A2A ARs (pKi of 4.71–7.49). In particular, compounds C8 and C9 showed

the highest binding affinity and functional activity for A1/A2A ARs with Ki values at the nano-

molar level (pKi of 7.16–7.49 and pIC50 of 6.31–6.78). Compounds C8 and C9 are novel

1,2,4-triazole derivatives acting as dual A1/A2A AR antagonists. The MD simulations of the

Fig 7. (A) Superposition of the starting structure (in cyan) and the last snapshot (in orange) in the MD trajectory of compound C10 in the

orthosteric binding area of A1AR. (B) Superposition of the starting structure (in green) and the final snapshot (in orange) in the MD trajectory

of compound C10 against A2AAR. The protein is shown as a gray cartoon, the ligands are shown as stick, and the residues in the binding pocket

of A1 and A2A AR are represented as lines. The hydrogen bonds and π-π stacking between compound C10 and ARs are represented by dashed

lines.

https://doi.org/10.1371/journal.pcbi.1008821.g007
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complexes between the A1/A2A ARs and C8 and C9 further suggest strong binding interac-

tions. Therefore, compounds C8 and C9 are hits with potential after optimization for the

development of anti-Parkinson’s disease agents.

Materials and methods

Data set preparation

Dual antagonists with binding constants (Ki) for A1AR and A2AAR subtypes were investigated

in the ChEMBL25 database [53]. A dataset consisting of 310 bioactive dual antagonists from

approximately 100 series (Ki < 40 nM) and 405 nonbioactive compounds in the same series

(Ki > 1000 nM) were used to train the DNN and CNN classification models. The dataset was

divided into a training set, test set and validation set at a ratio of 7:2:1.

Canvas similarity and clustering from Schrödinger were used to calculate the Tanimoto

coefficients (Tc) of similarity between every pair of structures among 310 dual antagonists (Ki

< 40 nM). Based on the calculated Tc values, similar structures were grouped together into the

same cluster, yielding 14 clusters. Then, 14 representative structures of the diverse clusters

were subsequently used to build dual antagonist pharmacophore models of the A1AR and

A2AAR subtypes. To evaluate the performance of the pharmacophore models, an extra valida-

tion set comprising 42 dual antagonists (Ki < 40 nM) of A1AR and A2AAR subtypes and 913

decoy compounds was applied. With respect to known dual antagonists, the decoys were

selected from the ZINC database using DecoyFinder [60] based on the following criteria: (1)

Tanimoto coefficient < 0.75, (2) number of hydrogen bond acceptors ± 2, (3) number of

hydrogen bond donors ± 1, (4) MW ± 25, (5) logP ± 1, and (6) Tanimoto coefficient less than

0.9 with respect to the other decoys.

All compounds in the training set, test set, validation set and ChemDiv library were pre-

pared using Schrodinger’s Ligprep (version 10.2, Schrödinger, LLC) with the default settings

to convert 2D structures to 3D structures, add hydrogen atoms, and generate tautomers, ste-

reoisomers and protonation states at pH 7.0 ± 2.0 using Epik (version 4.3, Schrödinger, LLC).

DNN and CNN

A deep neural network (DNN) (Fig 8A) is a neural network with a certain complexity. DNNs

comprise multiple levels of nonlinear operations and have many hidden layers. Neurons trans-

fer information or signals to other neurons according to the received input, forming a complex

network, and learning through some feedback mechanism [61]. A convolutional neural net-

work (CNN) (Fig 8B) is a feed-forward neural network consisting of one or more convolu-

tional layers and a fully connected layer at the top (corresponding to a classic neural network).

Fig 8. Architectures of neural networks. (A) Architecture of deep neural networks. (B) Architecture of convolutional neural

networks.

https://doi.org/10.1371/journal.pcbi.1008821.g008
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CNNs also include associated weights and a pooling layer [62]. This structure enables the con-

volutional neural network to utilize the two-dimensional structure of the input data. Com-

pared with other deep learning structures, convolutional neural networks can provide better

results in image and speech recognition. Compared with other deep, feed-forward neural net-

works, convolutional neural networks need to consider fewer parameters, rendering these net-

works attractive deep learning structures.

Various statistical parameters were used to validate the performance of the DNN and CNN

models. To evaluate the classification ability, parameters such as sensitivity (SE), specificity

(SP), prediction accuracy of active molecules (Q+), prediction accuracy of inactive molecules

(Q-), Matthews correlation coefficient (MCC) and the area under the receiver operating char-

acteristic curve (AUC), were calculated using the following equations [63]:

SE ¼
TP

TP þ FN
ð1Þ

SP ¼
TN

TN þ FP
ð2Þ

Qþ ¼
TP

TP þ FP
ð3Þ

Q� ¼
TN

TN þ FN
ð4Þ

MCC ¼
TP � TN � FN � FP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FNÞðTP þ FPÞðTN þ FNÞðTN þ FPÞ

p ð5Þ

where TP, FP, TN and FN denote true positives, false positives, true negatives and false nega-

tives, respectively.

In this study, we aimed to improve the performance of dual A1/A2A AR antagonist identifi-

cation by deep learning. L2 regularization and “dropout” layers were used to prevent overfit-

ting, and the rectified linear unit (ReLU) [64] was adopted as the activation function. The

adaptive moment estimation (Adam) method [65] was used as an optimization algorithm for

stochastic gradient descent in the process of training the deep learning models. In general, the

performance of deep learning models is sensitive to the appropriate hyperparameters. To select

the optimal hyperparameters for the deep learning models, a grid search approach [66] was

used to optimize the hyperparameters based on the size of the training, including the learning

rate, L2 regularization and number of hidden layers, and the size of the eigenvector in the hid-

den layers of the CNN model. In this stage, 209,585 and 171,233 compounds from the Chem-

Div library (1,178,506 compounds) passed the filter that applied the DNN and CNN

classification models, respectively. In total, 58,886 compounds that were simultaneously pre-

dicted by the DNN and CNN models were retained. The code and data sets used to train and

test both the DNN and CNN models can be downloaded at https://github.com/Houshujing/

Adenosine.

Pharmacophore modeling

For the dual A1/A2A AR antagonist pharmacophore generation, 14 diverse structures (Ki < 40

nM) selected from 310 dual antagonists were aligned in 3D space to generate common feature

pharmacophores using the Phase module (version 5.4, Schrödinger, LLC). Each antagonist
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structure was minimized using the OPLS-2005 force field [67] implemented in Macromodel

(version 11.9, Schrödinger, LLC), and described by a list of pharmacophore sites to character-

ize the chemical features contributing to the compound-protein interactions between the

antagonists and A1AR and A2AAR subtypes. The perceived pharmacophore hypotheses were

identified once the pharmacophore features were common to 50% of the antagonists. The gen-

erated pharmacophore hypotheses were examined using an extra validation set consisting of

42 dual antagonists and 913 decoy compounds. In this stage, 5,629 of the 58,886 compounds

that matched the pharmacophore model were retained.

Molecular docking

A Virtual Screening Workflow (version 7.8, Schrödinger, LLC) was used to perform the molec-

ular docking calculations using the X-ray structures of A1AR cocrystallized with the antagonist

PSB-36 (PDB ID 5N2S) and A2AAR cocrystallized with the antagonist ZM-241385 (PDB ID

5IU4). For each complex, the energy grid was generated at the centroid of the cocrystallized

ligand. In addition, QikProp (version 5.5, Schrödinger, LLC) and Lipinski’s rule were applied

to eliminate molecules with undesirable drug likeness properties. The 5,629 compounds that

passed QikProp and Lipinski’s filters were docked and ranked sequentially using the Glide

HTVS, SP and XP score functions based on the Glide score. The top 50% good scoring com-

pounds through HTVS docking were filtered using SP. The top 25% good scoring compounds

through SP docking were filtered using XP. Then, 43 of the top 25% good scoring compounds

through XP against A1AR and A2AAR were further screened using visual inspection.

Functional assay

In this work, 19 tested compounds were purchased from J&K Scientific Ltd. (Shanghai,

China). Functional assays were performed by Pharmaron (Beijing) as previously described

[52] by evaluating AR-mediated cAMP production using CHO-A1 cells and HEK293-A2A cells

stably expressing A1AR or A2AAR, respectively. The CHO-A1 cells and HEK293-A2A cells

were cultured in growth medium (Ham’s F12K (A1AR)/DMEM (A2AAR) + 10% FBS + 1�Ps

+ 400 μg/ml G418) at 37˚C and 5% CO2, collected by centrifugation and resuspended in

Hank’s balanced salt solution (HBSS), 0.1% bovine serum albumin (BSA), 20 mM N-(2-hydro-

xyethyl)-piperazine-N0-ethanesulfonic acid (HEPES) and 100 nM 3-isobutyl-1-methylxan-

thine (IBMX). The test compounds were serially diluted in DMSO at 3-fold dilutions, resulting

in 10 concentrations starting from 5.08 × 10−3 to 100 μM. To evaluate the antagonist activity,

the test compounds were added to the cell plate, and their ability to counteract the agonist (5’-

N- ethylcarboxamidoadenosine, NECA)-mediated decrease in cAMP accumulation was

assessed. cAMP production was determined using an ALPHAScreen cAMP kit according to

the manufacturer’s instructions.

Radioligand binding assays

The radioligand binding assays were also performed by Pharmaron (Beijing). In the A1AR and

A2AAR assays, the test compounds were assessed in radioligand binding assays at human

A1AR ([3H]DPCPX) and A2AAR ([3H]ZM241385). Displacement experiments of [3H]DPCPX

(2.5 nM) against A1AR (4 μg/well) and ten different concentrations of test compounds were

performed in 50 μL of assay buffer (50 mM Tris-HCl, 10 mM MgCl2, 1 mM EDTA, 1 μg/ml

adenosine deaminase, pH 7.4) for 50 min at 25˚C. The competition binding experiments of

[3H]ZM241385 (0.5 nM) against A2AAR (4 μg/well) and ten different concentrations of the

test compounds were performed in 500 μL of assay buffer (50 mM Tris-HCl, 10 mM MgCl2, 1

mM EDTA, 1 μg/ml adenosine deaminase, pH 7.4) for 90 min at 27˚C.
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Regarding the compounds that inhibited radioligand binding at A1AR and A2AAR by more

than 50% at 100 μM, the IC50 values were determined from the sigmoidal concentration-

response curves, which were generated using Xlfit (Version 5.3.1; IDBS, Guildford, UK).

Depending on the IC50 values, the Ki values of the test compounds were calculated using the

Cheng-Prusoff equation as follows: Ki = IC50/(1 + [C�]/Kd
�) [68]. In this equation, [C�] and

Kd
� are the concentration of the radioligand and the equilibrium dissociation constant of the

radioligand, respectively. The [C�]/Kd
� of the radioligands [3H]DPCPX and [3H]ZM241385

were 2.5 nM/2.1 nM and 0.5 nM/2.06 nM, respectively. S13 Fig shows the Kd determination

curves of [3H]DPCPX and [3H]ZM241385.

Molecular dynamics simulations

A1AR and A2AAR apo-proteins were extracted from the crystal structure of PSB36 or

ZM241385 with thermally stable mutants A1AR or A2AAR (PDB ID: 5N2S and 5IU4) in the

PDB database, respectively, and both apo-proteins and ligands were saved separately. The

complex of PSB36 with thermostable mutant A1AR and the complex of ZM241385 with ther-

mostable mutant A2AAR contain 9 and 10 mutation sites, respectively (5N2S: A54L2.52,

T88A3.36, R107A3.55, K122A4.43, N154A4.43, L202A5.63, L235A6.37, V239A6.41, and S277A7.42;

5IU4: M1P1.27, A54L2.52, T88A3.36, R107A3.55, K122A4.43, N154AECL2, L202A5.63, L235A6.37,

V239A6.41, and S277A7.42). The mutant receptor residues were mutated back to the wild-type

residues, the cocrystal T4 lysozyme was removed, and unnecessary small molecules were

removed. The missing residues were added using the Prime module of Schrodinger. Hydrogen

atoms were added through Schrodinger’s Protein Prepare module, and the protonation states

of hydroxyl, Asn, Gln, and His in the structure were assigned by Schrodinger’s ProtAssign

module [69].

PSB36 and ZM241385 were docked, and the resulting docking poses had RMSD values less

than 1.8 Å from the experimental structure (S14 Fig and S4 Table). Then, we docked C8, C9

and C10 using the same methods and chose the docking pose with the lowest binding free

energy. The 6 ligand-receptor complexes C8-A1AR, C8-A2AAR, C9-A1AR, C9-A2AAR,

C10-A1AR and C10-A2AAR were used to perform the MD simulations. The transmembrane

regions of A1AR and A2AAR were calculated through the Orientations of Proteins in Mem-

branes (OPM) database [70]. The amino acid numbers of the seven transmembrane fragments

of A1AR are 8–31, 46–71, 79–103, 124–144, 175–201, 236–259 and 267–287. The amino acid

numbers of the seven transmembrane fragments of A2AAR are 3–29, 40–68, 78–101, 118–141,

174–200, 234–258 and 267–288. Each complex was inserted into a 95 Å× 80 Å POPE phospho-

lipid bilayer through visualized operations in VMD [71], solvated using the TIP3P water

model [72] and neutralized using 0.15 M NaCl. Finally, each system contains approximately

71,500 atoms, with approximately 140 lipids and approximately 16,500 waters, and the simula-

tion cell had dimensions of 95 Å × 80 Å × 110 Å.

The MD simulations were carried out in triplicate using the PMEMD algorithm of AMBER

18 software [73]. The AMBER ff14SB force field [74] was used for the A1AR and A2AR sys-

tems. The standard protonation states of the protein residues were set at appropriate proton-

ation states by the LEAP plugin in AMBER 18 as calculated using the H++ program [75]. The

GAFF force field [76] and AMBER’s Antechamber were used to generate the topology and

coordinate files of the compounds C8, C9 and C10. Lipid14 force field [77] was used for the

POPE bilayer. First, each system was minimized by 10,000 steps. Second, a Langevin thermo-

stat [78] was used to heat each system from 0 K to 310 K within 500 ps. Then, a 5-ns MD simu-

lation in the NVT ensemble was performed while retaining the heavy atoms of the protein,

ligand, and lipid head groups with a constraint of 50 kcal�mol−1�Å−2. Third, an MD simulation
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in the NPT ensemble was performed for 30 ns with a constraint for the protein and ligand.

The restriction was gradually reduced from 50 (20 ns) to 10 (5 ns) and 2 kcal�mol−1� Å−2 (5

ns). Finally, each system was simulated for 100 ns without constraints under constant pressure

(NPT ensemble) using a Berendsen barostat [79]. The cutoff value for the nonbonded interac-

tions was set to 12 Å. The SHAKE algorithm [80] was used to constrain the covalent bonds

involving hydrogen atoms, and the PME algorithm [81] was applied to address remote electro-

static interactions. In the process of the dynamics simulation, the time steps were set to 2 fs,

and the frames were saved for analysis every 5,000 steps. The CPPTRAJ tool in AMBER 18 and

VMD software [71] were used to analyze the trajectories.

The binding free energy (ΔGeff) [82,83] between the ligand and the protein was calculated

using the MM-GBSA method [84–86] of the Python script MMPBSA.py [87]. For the calcula-

tion, the dielectric constant of the solvent was set to 80, and the dielectric constant of the solute

(Ein) was set to 1 for the lipophilic binding area. The polar part of the free energy of desolvation

(ΔGGB) was calculated using a modified GB model developed by Onufriev et al. [88]. The non-

polar part of the desolvation free energy (ΔGSA) was calculated based on the solvent accessible

surface (SASA) prediction calculated by the LCPO algorithm [89].

Supporting information

S1 Fig. Matching graph of 19 compounds and a pharmacophore model (AAADR_1).

(TIF)

S2 Fig. (A)—(I): Concentration-response curves of compounds against A1AR in the cAMP

assay. The data are presented as the mean ± SD of the inhibition percentage of cAMP produc-

tion in duplicate assays.

(TIF)

S3 Fig. (A)—(I): Concentration-response curves of compounds against A2AAR in the cAMP

assay. The data are presented as the mean ± SD of the inhibition percentage of cAMP produc-

tion in duplicate assays.

(TIF)

S4 Fig. (A)—(I): Concentration-response curves of compounds against A1AR in the radioli-

gand binding assay. The data are presented as the mean ± SD of the inhibition percentage of

radioligand binding at A1AR in duplicate assays.

(TIF)

S5 Fig. (A)—(I): Concentration-response curves of compounds against A2AAR in the radioli-

gand binding assay. The data are presented as the mean ± SD of the inhibition percentage of

radioligand binding at A2AAR in duplicate assays.

(TIF)

S6 Fig. Corresponding Tc values of MACCS and ECFP4 [55]. Distributions of the Tc values

of MACCS and ECFP4 were determined by conducting 10 million comparisons between ran-

domly selected ZINC compounds. Correspondence between the Tc values of MACCS and

ECFP4 was established by relating these Tc values to others that were met or exceeded by the

same percentage of comparisons (indicated as labeled points on the curve).

(TIF)

S7 Fig. Stable bilayer after 100 ns of MD simulations. (A) C8-A1AR complex embedded in

the bilayer. (B) C9-A1AR complex embedded in the bilayer. (C) C8-A2AAR complex embed-

ded in the bilayer. (D) C9-A2AAR complex embedded in the bilayer. The proteins are shown
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as blue (A1AR) and green (A2AAR) cartoons. The lipid molecules are represented as blue

(A1AR) and green (A2AAR) lines. Sodium ions and chloride ions are represented as purple and

green spheres. Water molecules are represented by red dots.

(TIF)

S8 Fig. RMSDs of the protein in the C8-A1AR complex (A), C9-A1AR complex (B),

C8-A2AAR complex (C) and C9-A2AAR complex (D) during the 100-ns MD simulations.

(TIF)

S9 Fig. RMSDs of the ligand in the C8-A1AR complex (A), C9-A1AR complex (B), C8-A2AAR

complex (C) and C9-A2AAR (D) during the 100-ns MD simulations.

(TIF)

S10 Fig. N-N distance between 1,2,4-triazol and the side chain amino group of N2546.55 in the

C8-A1AR complex (A) and C9-A1AR complex (D). N-O distance between the 5-amino group

and the side chain carbonyl of N2546.55 in the C8-A1AR complex (B) and C9-A1AR complex

(E). Distance between the centroids of 1,2,4-triazol and the side chain phenyl of F171ECL2 in

the C8-A1AR complex (C) and C9-A1AR complex (F).

(TIF)

S11 Fig. O-N distance between methanone and the side chain amino group of N2536.55 in the

C8-A2AAR complex (A) and C9-A2AAR complex (E). N-O distance between the 5-amino group

and the side chain carbonyl of N2536.55 in the C8-A2AAR complex (B) and C9-A2AAR complex

(F). N-O distance between the 5-amino group and side chain of E169ECL2 in the C8-A2AAR com-

plex (C) and C9-A2AAR complex (G). Distance between the centroids of 1,2,4-triazol and the side

chain phenyl of F168ECL2 in the C8-A2AAR complex (D) and C9-A2AAR complex (H).

(TIF)

S12 Fig. N-N distance between pyrazolo[1,5-a]pyrimidin and the side chain amino group of

N2546.55 (or N2536.55) in the C10-A1AR complex (A) and C10-A2AAR complex (E). N-O dis-

tance between the N-propyl group and the side chain carbonyl of N2546.55 in the C10-A1AR

complex (B). Distance between the centroids of pyrazole and the side chain phenyl of

F171ECL2 (or F168ECL2) in the C10-A1AR complex (C) and C10-A2AAR complex (F). Distance

between the centroids of pyrimidine and the side chain phenyl of F171ECL2 (or F168ECL2) in

the C10-A1AR complex (D) and C10-A2AAR complex (G).

(TIF)

S13 Fig. (A) Kd determination curves of [3H]DPCPX against A1AR in the filtration binding

assay. Nonspecific signal: Different ligand concentrations of 10 μM DPCPX; (B) Kd determi-

nation curves of [3H]ZM241385 against A2AAR in the saturation binding assay. Nonspecific

signal: Different ligand concentrations with 10 μM ZM241385. CPM = counts per minute,

TB = total binding, NSB = nonspecific binding.

(TIF)

S14 Fig. (A) Superposition of PSB36 in the orthosteric binding area of A1AR at the experi-

mental structure (shown as sticks in white color) and the resulting docking pose (in green). (B)

Superposition of ZM241385 in the orthosteric binding area of A2AAR at the experimental

structure (shown as sticks in white color) and the resulting docking pose (in green). The pro-

tein is shown as a gray cartoon. The hydrogen bonds are represented by dashed lines. The side

chains of F171, W2476.48, H2516.52, L2536.54, N2546.55, T2576.58 and H2787.43 (F168, N2536.55,

L2677.32 and I2747.39 in A2AAR) are represented as lines.

(TIF)

PLOS COMPUTATIONAL BIOLOGY Discovery of novel dual adenosine A1/A2A receptor antagonists

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008821 March 19, 2021 18 / 23

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008821.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008821.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008821.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008821.s011
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008821.s012
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008821.s013
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008821.s014
https://doi.org/10.1371/journal.pcbi.1008821


S1 Table. Training set for the dual A1/A2A AR antagonist pharmacophore models.

(PDF)

S2 Table. Performance of various VS methods by screening the validation set with 433

dual A1/A2A AR antagonists and 11,605 decoys.

(PDF)

S3 Table. Tc values of compounds C8 and C9 for Morgan, ECFP4 and MACCS.

(PDF)

S4 Table. RMSD between the redocked and crystallized conformations of PSB36 and

ZM241385 by Glide XP.

(PDF)
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