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Overload wave-memory induces amnesia of a
self-propelled particle
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Information storage is a key element of autonomous, out-of-equilibrium dynamics, especially
for biological and synthetic active matter. In synthetic active matter however, the imple-
mentation of internal memory in self-propelled systems is often absent, limiting our under-
standing of memory-driven dynamics. Recently, a system comprised of a droplet generating
its guiding wavefield appeared as a prime candidate for such investigations. Indeed, the
wavefield, propelling the droplet, encodes information about the droplet trajectory and the
amount of information can be controlled by a single scalar experimental parameter. In this
work, we show numerically and experimentally that the accumulation of information in the
wavefield induces the loss of time correlations, where the dynamics can then be described by
a memory-less process. We rationalize the resulting statistical behavior by defining an
effective temperature for the particle dynamics where the wavefield acts as a thermostat of
large dimensions, and by evidencing a minimization principle of the generated wavefield.
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any simple active biological systems possess memory

mechanisms which are commonly thought to play a key

role in their statistical dynamical behaviors. However,
assessing the influence of memory in such active systems is an ill-
defined task!. Indeed, what is commonly called biological mem-
ory involves mechanisms acting at different time scales from
allosteric switching (~107>—1073s) to biochemical circuits
(~1072—1s). In contrast, in synthetic active matter, already
crafting a system able to self-propel, such as light-activated
colloids?, colloidal rollers® or self-propelled disks?, is by itself an
experimental tour de force. As a consequence, these systems are
intentionally designed to be minimalistic so there is a chance to
rationalize them. Implementing a memory repository in these
physical systems would raise complex experimental issues,
althought, some recent robotic® or electronically back-
controlled® strategies could solve this issue. Correlation times
may potentially play the role for a memory of a physical
system”, but in practice, their tunabilty and controllabilty upon
a variation of experimentally controllable parameters are
often limited. For all these theoretical and experimental reasons,
physicists, including the authors themselves, are often ill-at-ease
to rationalize the influence of memory in physical or biological
active systems. As a consequence, this question has often
been evaded in the field of active matter-10, even if this mul-
tiscale and ill-posed concept has fascinated and puzzled for
long!!.

In the last two decades, a candidate for such an investigation
appeared with walking droplets, or walkers for short!2-14,
Experimentally, a droplet bounces periodically on a vertically
and sinusoidally oscillating oil surface. The result is the emer-
gence of a complex standing wavefield!>1¢ which propels the
droplet and stores information about its past positions!7-2,
Indeed, each bounce of the droplet imprints a standing long-
lasting axisymmetric wave centered at the point of impact,
which lifetime is controlled by the vertical acceleration mag-
nitude of the bath. In this system, because the droplet slides
down the gradient of the local liquid surface, the wavefield acts
as a memory that drives the droplet motion. Crucially, the
amount of information encoded in the wavefield is completely
controllable in a continuous fashion through the magnitude of
the acceleration of the interface.

This unique feedback between the droplet and the wavefield
dynamics is at the core of a stream of research mainly motivated
by analogies with quantum systems2’-3°. In addition, recent
numerical, theoretical and experimental studies*9-47 have shown
that the memory of the walker leads to run-and-tumble-like
chaotic dynamics*8-°0, similar to Marangoni-driven drops!, or
particles in in-silico superfluids®2. All these studies*0-47 identify
the key role of the wavefield memory in the emergent statistical
behavior. Nevertheless, the dynamics and statistical properties of
the wavefield are poorly understood. Indeed, most of the dyna-
mical descriptions of the walker wavefield focus on the regime of
so-called “low memory” where memory time is small?3>3, or in
the infinite memory limit where correlations become irrelevant#2.
In between, in the high memory regime, the complex and highly
correlated interaction between the droplet and the wavefield
makes theoretical analysis a daunting task, while numerical
investigations are requiring large resources to obtain statistically
relevant measures.

In this article, using simulations and experiments, we show that
a walker trapped in a weak harmonic potential with large memory
reaches an active statistical limit where the wavefield becomes a
memory-controlled thermostat. We show that an excess of
memory leads to an effective memory-less particle dynamics,
paving the way for further understanding of highly correlated
memory-driven dynamics.

Results
Walker as a memory-driven agent. A walker is the association of
a sub-millimetric oil droplet, periodically bouncing on a
vertically-vibrated oil surface, and the guiding standing waves
generating by the drop bounces (see Fig. 1a)!17-26 (see Methods).
In this article, for practical reasons, the space available to the
walker is bounded by confining the particle with an applied
external potential. Experimentally, the external potential is
applied to the ferrofluid core of the droplet through a combina-
tion of magnetic fields originating from electric coils and a per-
manent magnet (see Fig. la and Methods). The harmonic
potential per unit mass is noted U= w?|r|?/2, with w/
2m ~0.01—0.4 Hz its frequency. It is worth noticing that, since the
liquid surface has no ferromagnetic susceptibility, it is not altered
by the presence of the magnetic field. In addition, previous studies
have focused on the different ways to confine a walker, such as
circular or elliptic confinements3:37, or quasi one-dimensional
channels3#3>. Nevertheless, these confinement strongly alter the
shape of waves and add a new layer of complexity to the walker
dynamics. For these reasons, in this article, the confinement is
only originating from a weak external force to be as close as
possible to a free walker dynamics.

The dynamics is simulated by solving the recurrent coupled
equations relating the speed v of the walker and wavefield (
through [Egs. 1, 2]%°

V(tN+1) = V(tN) - ﬁTFv(tN) — 15 VU(ry)

1
— 1 V(ry, ty) + (Q(V(l‘N)V((rN7 tN)z)7 M

and

N 2 —|r—r,] ty —t
{(r,ty) = (Opgolo <A—: Ir — rp|> exp <Tp> X exp <_ :;M:)' 2)

B is the effective damping coefficient applied to the walker, 75 is the
bouncing period, U is the external confining potential per unit
mass, ¢ is the wave coupling coefficient, ], is the bessel function of
first kind and order zero, Ar is the wavelength and § is a spatial
damping factor. Me is the memory parameter which controls the
amount of information in the wavefield. Experimentally, Me is
controlled by the temporal dampening of the wave 7, controlled by
the proximity of the applied vertical acceleration magnitude y,, of
the surface to the Faraday threshold yp ie, Me= /1 =
(1—1y,/ys)"". One should note that several models?252%54,
varying in their strategies to solve the walker’s equation, have been
proposed, and share the same core ingredients. They are in good
qualitative agreement with the model we use. In all models, the
control parameters is the amount of information, and not the
duration of a single delay, in contrast with recent electronic
systems with temporal feedbacks®. Finally, to be precise, the wave
coupling slightly depends on the speed at each impact which is
denoted by O(v(ty)V(ry, tN)z) (see SI and Methods).

Figure 1b and c illustrate the dynamics from the waves and
particle point of view. The wavefield stores information from a
chain of standing-waves sources following the walker trajectory.
This chain characteristic length scales as ~MeVtp, with V being
the mean particle speed. We highlight that it is not possible to
reduce this physical system (droplet and waves) to a point-like
particle whose motion depends only on its current position and
velocity. The droplet is able to read its memory (the two last
terms in Eq. (1)) and to edit its memory (through the Bessel
function in Eq. (2)), similarly to a Turing machine>”. Erasing the
memory is also possible with a specific protocol®. The concept of
memory is therefore justified since the walker can therefore write,
read and also edit the information it inscribes onto the liquid
interface.
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Fig. 1 Dynamics of a walker confined in a harmonic potential in the high memory regime. a Schematic of the simulations and experiments. A drop of
silicon oil bounces onto a silicon oil/air interface oscillating vertically at a frequency f and an amplitude A. Experimentally, the core of the droplet is made of
ferrofluid (see Methods). A set of coils in the Helmholtz configuration (light gray in the picture) generates a magnetic moment inside the ferrofluid core
(depicted by a arrow). An additional permanent magnet (dark gray on the figure) applies a harmonic potential on the walker, confining it in the center of
the experimental set up. b, ¢ lllustration of the wavefield and associated trajectory. Decreasing gray scale is a qualitative indication of the wave sources
intensity. The mean number of secondary sources contributing to the wavefield, Me, leads to a characteristic memory length, MeVzg, with V being the
mean speed, and 7¢ being the bouncing period and the frequency of the standing waves. d-f Simulated trajectories showcasing the many dynamics of the
walker when Me increases for w/2zx = 0.25 Hz. Low memory parameters (d) lead to self-organized trajectory and wave sources. Medium memory
parameters (e) generate chaotic and intermittent trajectories: green trajectories represent circle motion, red accounts for lemniscates trajectories and blue
for loops. The limit of large memory (f) shows erratic dynamics reminiscent of the dynamics observed in40. g, h Experimental trajectory of a walker and the
corresponding stationnary probability density function for a frequency w/2z = 0.24 Hz and Me = 250. i Probability density functions for the position x and
y of the walker in the case illustrated in (g). The black points are the experimental distribution and the red curve is a fit by a Gaussian distribution.

Dynamics of the particle: overview of the regimes with the intermittent and chaotic dynamics is triggered where the trajec-
memory. In Eq. (2), the memory parameter Me acts as a control  tory navigates between the many possible eigenmodes of the
parameter which allows to numerically span several and different ~dynamics, as investigated experimentally in32 and theoretically
dynamical regimes (Fig. 1d, e and f, see also Fig. SI 2 for com-  in2642. While a chaotic behavior has been measured and char-
plementary numerical results at large Me). At low memory acterized in this regime, the dynamics still shows strong auto-
(typically Me < 20), only circular trajectories are observed®® and  correlation, as proved by the appearance of circle, lemniscates or
the walker speed increases monotonously with Me. At inter- loops in the trajectory. This coherence fades away as the memory
mediate values of the memory parameter (typically 20 < Me < 135, is increased even further (Fig. 1f). In the high memory regime
Fig 1d), a quantized set of close-looped trajectories are observed (Me > 135), the corresponding dynamics does not present any
and result from a wave-energy minimization33>3, As the memory  signature of patterns reported in the literature3> and instead the
is further increased in this intermediate regime (Fig le), an dynamics shows a fully developed chaos without apparent
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underlying structure which results from a Shil'nikov
bifurcation?. In the limit Me — oo, the temporal decay of the
waves is removed and each past impact contributes with the same
intensity to the wavefield, which is only investigated neatly in
simulations and theory®”->8. In the intermediate, high and infinite
memory regimes, the mean walker speed is relatively constant
while the persistence length of the dynamics decreases with the
memory parameter?). In what follows, we focus only on the
mainly-unexplored high memory regime.

We report in Fig. 1g a typical trajectory obtained experimen-
tally in the high memory regime. Both experimentally and
numerically, the trajectories are disordered with the presence of
many loopy paths without apparent underlying structure. Over a
long period of time, the overall trajectory shares the same
symmetry of the confining potential (Fig. 1h) and the radial
probability density function is Gaussian (Fig. 1i). Interestingly,
the trajectories for lower memory parameters do not lead to
Gaussian probability density functions (PDF) (Fig. SI 1). In this
memory regime, the self-organization of the overall trajectory
(Fig. 1d) and the intermittent dynamics (Fig. le) leads to
structured statistics, which are not Gaussian.

High-memory dynamics of the wavefield. The dynamical rules
of the walker evolution are mediated by the information stored in
a wavefield, so that the statistical properties of the trajectory are
directly related to those of the wavefield through the force F,, «
— V{(rn, tn) (see Eq. (1)). We expand the wavefield onto a
cylindrical Bessel frame of reference by using Graf's addition
theorem® (see SI). The complex quantity

1 T, (i—: rp> exp (—inﬁp) exp (— ML() (3)

is the weight of the eigenmode invariant by a rotation of 27/n, with
n € 7. While the simulations assume § = 2.51 (see Methods), the
limit § — oo has been used to compute the modes a,, (Eq. (3)). This
choice does not remove the fundamental features of the wavefield
and walkers dynamics. Even though there is an infinity of eigen-
modes a,, only a handful number of modes are necessary, which
are determined by the confinement applied to the walker. Indeed,
for n> 1, J,,(2nr,/Ap) = 0 around r, = 0, as well as all their (n — 1)-
th derivatives. Consequently the interval of r, such that J,(2nr,/
Ap) <1 increases as the index n increases too. As a results only a
limited number of modes contributes effectively to the wave field.

Typical time series for the amplitudes |a,| are erratic as a
consequence of the chaotic dynamics of the droplet#? (Fig. 2a and
Fig. SI 3a, real part of the associated eigenmodes are shown in
Fig. 2b). Given the apparent lack of simple structure in their time
series, we investigate their associated statistical PDF. The PDF
P(|a,|?) shows an exponential decrease (Fig. 2c), indicating that
P(|a,|) follows a Gaussian distribution as would be a sum of
uncorrelated memory-less events. This evolution is especially
valid for large |a,|. In addition, the distribution for |a,| differ
from the others, presumably because this mode plays a special
role since it shares the same spatial symmetry as the harmonic
potential containing the walker. Note that even though the modes
n>0 do not share the potential symmetry, they do not vanish.
This is due to the temporal decay of the waves, which lead to an
axial symmetry breaking of the source positions. Furthermore, the
different wave modes of amplitude a,, are weakly correlated to
each other (Fig. 2d, Fig. SI 3d). This correlation decreases with the
memory parameter Me.

The standard deviation of P(|a,|?) is found to be identical for
0 <n <7, which hints toward an equipartition of energy within
the eigenmodes. Measuring the root mean squared (rms) width

a™ = \/{(|a,|*) of the PDF (Fig 2e, Fig. SI 3e), we observe that

n

M= =

anZCO

p

a;™ decreases slowly with n (barely a 10% decrease for the first 25
modes) indicating that many modes fluctuate strongly. Further-
more, the modes PDF does not change significantly with the
memory parameter Me. Indeed, as Me changes from 500 to
10,000, the value of a{™ changes approximately from 4{, to 6.

We further analyze the wavefield dynamics by computing the
field intensity E which we defined as (see SI) [Eq. 4]

E=la| +23 |a,|" )

The PDF P(E) is well fitted by a Gamma distribution, especially
for large Me (Fig. 2f, Fig. SI 3f, see SI for the fitting parameters).
Such a choice is guided by the fact that a sum of independent
variables whose distribution follows the same exponential
distribution follows a Gamma distribution. Given the moderate
correlations between the effectively-contributing modes a,, the
exponential distribution of the |a?| and the weak variation of a™®
with #, this choice is expected to approximate correctly the wave-
intensity distribution. Also we observe that larger Me lead to an
increase and widening of P(E), which is a consequence of the
increasing a;™* (Fig. 2e). Finally, we note that the numerical PDFs
are in quantitative agreement with the experimentally-highest-
reachable Me (Fig. SI 4). Three independent experiments at similar
Me and different frequencies also show Gaussian P(|a,|), a slow
decrease of a;™ with #, and a Gamma-like PDF of the wavefield
intensity.

To isolate the influence of the correlations between the
successive walker positions, we compare the wave-driven
dynamics of the walker with a random wavefield generated by
the superposition of 5x Me random sources. The radial PDF of
the random sources is chosen to be equal to the radial PDF of the
walker position for Me=2500. This random field is then
statistically equivalent to the wavefield generated from rando-
mized positions of the particle. Similarly to the case of walkers,
the PDFs P(|a,|) are Gaussian (Fig. 2¢, Fig. SI 3c), a},™* decreases
over one hundred units of n (Fig. 2e, Fig. SI 3e), and P(E) can be
fitted by a Gamma function (Fig. 2f, Fig. SI 3f).

Yet, important differences exist. Contrarily to the walkers case,
the correlation matrix shows no correlation between modes
(Fig. 2d, Fig. SI 3d), a feature which results from our randomly-
generated field. As Me increases, the different a,"* for the random
field increase by a common factor. Indeed, for a random
distribution of source positions P(r) with standard deviation o,
a;™ reads [Eq. 5]

m *Me 47? 4%
(an S)random= 02 exp —A—ZO'Z In A—ZO'Z ) (5)

F

where I, is the modified Bessel function of first kind of order n
(see SI). This result plotted in Fig. 2e implies that the number of
wave modes in the case of a random distribution is only
determined by the standard deviation of the distribution of
sources. On the contrary, the walker case shows an increase of the
number of modes storing energy while keeping a roughly
identical distribution of wave sources P(|r|) as discussed in
further details in the following sections. The increase of modes
effectively contributing to the wavefield can be understood as
effective degrees of freedom (DOF) which we define by [Eq. 6]

Z?:o”’an{z
Z?:O |an|2

The DOF does not depend on Me for a random wavefield, while
the DOF increases logarithmically with the memory in the case of
a walker, as if the wavefield were acting as a reservoir of
increasing dimension (Fig. 2g, Fig. SI 3g). As a conclusion, the

DOF = ©]
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Fig. 2 Statistical description of the numerical dynamics of the wavefield. a Numerical time series for |a,| for several different values of n, for memory
parameters Me = 1000 and w/(2x) = 0.25 Hz, and (b) vizualisation of the real part of the eigenmodes. € Numerical probability density function P that the
mode a, takes the value |a,|2 for a walker (resp. randomly constructed field) for =0, ..., 7 (from blue to yellow) at Me = 1000 and /27 = 0.25 Hz
(logarithmic scale along the y axis). d Correlation matrix for the modes a, for w/2x = 0.25 Hz and Me =1000. Both the random of the walker-generated
and randomly-generated wavefield are presented. @ Numerical root mean squared value (rms) of |a,| as a function of n for memory parameters Me = 500,
2000 and 10,000 (purple, red and orange as indicated by the arrow) in the case of the walker dynamics (resp. randomly constructed field). The theoretical
prediction of Eq. (5) is indicated with dotted lines. f Numerical probability density function for the wave intensity E (in semi-logarithmic scale) for the
walker dynamics (resp. randomly constructed field). Memory parameters are Me =500, 2000 and 5000, and they follow the same color code as indicated
by the arrow. g Numerical evolution of the number of degree of freedom DOF (Eq. (6)) as a function of the memory parameter for the walker dynamics (full
circles) and the random dynamics (empty triangles) in semi-logarithmic scale along the x axis. h Comparison of the evolution of the average wavefield
intensity (E) with Me, between the walker wavefield (full circles) and the random wavefield (empty triangle) in double logarithm scale. Dashed lines are
power laws fitted to the simulation data. For the walker, the exponent obtained from a power law fit and is 0.382 £ 0.024 (error is the 95%-confidence
interval, coefficient of determination R2 = 0.9997). For the random field, the exponent is 0.991+ 0.007 (95%-confidence interval, R2 = 0.999).

memory parameter gives a control on the properties of the
reservoir surrounding the walker.

A last difference between the randomized and walker wavefield
lies in the evolution of the mean wave intensity E with the
memory Me. The average wave intensity increases differently in
the case of the walker and a random wavefield (Fig. 2h, Fig.
SI 3h). The mean intensity of the random field is proportional to
Me (R2 =0.999) as expected from our theoretical prediction Eq.
(5), (see SI) while the correlated chain-like distribution created by
walkers presents a sublinear scaling MeP with p =0.382 +0.024
(R? = 0.999). For a random field, the intensity per unit memory is
E/Me ~ 1 which means that each source contributes in average
equally. In contrast, the intensity per unit memory for the walker

wavefield yields E/Me ~ Me~%-62. This decaying evolution indi-
cates that the system tends to decrease significantly its wave
intensity by selecting trajectories which promote destructive
interference. A significant decrease of the wavefield intensity has
already been observed for lower values of the Me with quantified
trajectories>33. Here we show that via destructive interference,
this wave minimization mechanism extends to more complex and
chaotic trajectories at high Me. Our analysis proves that the
averaged modes depend not only on the probability density
function but also of higher-order correlation functions, a
difference with the result of Durey et al.*?> which we expect to
hold when the memory time exceeds the averaging period of time
required to insure ergodicity.
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Fig. 3 The wavefield acts as a thermal reservoir for the walker. a Numerical time series of the wave force along the x direction, F,,,, for different values of
the memory parameter Me and the same frequency w/2x = 0.25 Hz. From top to bottom the memory parameter is Me = 500, 2500 and 25,000 (purple,
red and orange). b,c Numerical correlation functions for the wave force along the x direction, C,, (top) and along the direction tangent to the velocity, Cr
(bottom). The memory parameters and frequency are as in (a). Two points of view are presented. The time t is rescaled by (b) the bouncing time 7z and (c)
by the memory time z. d Numerical probability density function P for the wave force along the x direction on a semi-logarithmic scale. Parameters are as in
(). The solid gray curve is a Gaussian fit to the data obtained at Me = 25,000. e Density power spectrum S for the wave force along the x direction on a
double logarithmic scale. Parameters are the same as in (a). The dashed black line is a guide for the eyes and the black line indicates the density power

spectrum in the low memory parameter regime, Me = 50.

Markovian walker dynamics from an overload of memory. We
now consider the influence of the dimensional increase of the
dynamics resulting from the additional wave DOF triggered by
the walker, with increasing Me. The time series of the force F,, ,(t)
experienced by the walker solely originating from the waves along
the x direction is erratic, as expected from previous studies*?
(Fig. 3a, Fig. SI 5a). The y direction is statistically identical given
the axisymmetry of the confining potential. For the smallest
memory parameter illustrated (Me = 500), we observe a corre-
lated signal (Fig. 3b, Fig. SI 5b), especially for low frequency of the
harmonic potential. This correlation exists because of the inter-
mittent dynamics of the walker>>.

As the memory parameter Me is increased, the correlation is
lost and the auto-correlation C.(f) = (F, (fp)F, (t + t0)>t0

converges toward a sharp peak at t=0, which can be
approximated by a Dirac function, namely C,(t) ~2DJ(t) where
D defines an effective diffusion coefficient. This feature is even
more pronounced when renormalising the correlation time by the
memory time (Fig 3¢, Fig. SI 5¢). Indeed, the time-correlation
within F,, , becomes practically non-existent when compared to
the amount of information stored into the wavefield for
increasing Me. At memory parameter Me = 500 the correlation
time is of the order of 10727, while for memory parameter
Me = 25,000 the correlation time is of the order of 10~4r.
Along the tangential direction however, the auto-correlation
for the force F,, r does not converge to zero. Indeed, C,(t) =

(F,,(tg)F,, r(t + t5)), presents a sharp peak at the origin and a
’ ' 0

plateau at longer time which ensures the average propulsion of
the particle at mean speed v,. Small oscillations at high frequency
are observed at short time scales, in particular at small Me. They
correspond to the oscillations of the walker speed, which can
trigger chaotic behaviors as described in*’. As a consequence, the

force exerted by the wavefield on the particle can be divided into
two contributions, a constant tangential component ensuring self-
propulsion, and a random component.

The PDF of the force F,,,, P(F,,,), is Gaussian for all values of
Me >500 (Fig. 3d, Fig. SI 5d). It is worth noticing that the
standard deviation of this probability density function shows a
very weak increase with Me. The associated power spectral
density S(F,,) (Fig. 3e, Fig. SI 5e) shows that for the highest
memory investigated, Me = 25,000, S(F,) is flat over three
orders of magnitude in frequency, equivalent to a white noise.
Observed deviations from the flat power spectrum have two
origins. First, for smaller values of Me and low frequency (Fig.
SI 5e), a small bump is observed around ¢! ~ 4.10727;!, which
corresponds to the characteristic orbital period of a walker at low
memory parameter>>>3°6, This deviation vanishes for large
memory parameters. The second source of deviation is observed
at high frequency for all Me. It can be attributed to the non-
vanishing correlations over a few (=10) bounces as discussed in“0.

As a consequence of those observations, from the particle
point-of-view, the wave reservoir eventually preserves the self-
propulsion, and the fluctuating component acts as a white noise
force. The wave force can be described as a combination of a
simple deterministic propelling force F,(v) aligned with the
velocity which contains the correlations at short time scales, and a
memory-less white noise #(f). It is surprising to lose all
correlations in a memory-driven dynamics such as it becomes
approximated by a Markovian process.

Effective temperature induced by a memory. As a result of the
previous observations, the probability P(r, v) to find the particle at
a position r and a velocity v can be approximated with good
accuracy by a Fokker-Planck equation®. Neither in the
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Fig. 4 Statistical description of the walker experimental and numerical dynamics. a Probability density function P of the radial position r of the walker
(with respect to the center of the harmonic potential) from both simulations and experiments. The potential energy U = w?r2/2 is measured in K units.
Colored points: simulations for a memory parameter Me = 2500 and various frequencies w/2x = 0.25 Hz (red plus), 0.125 Hz (orange cross), 0.1Hz (light
orange star), 0.05 Hz (yellow-green square), 0.025 Hz (light-green circle), 0.01Hz (green triangle). Black symbols: three independent experiments at
different frequencies of the harmonic potential and memory (w/2x (Hz),Me): (0.20,244) (black star), (0.36,250) (black open circle), (0.30,244) (black
filled circle). Black lines: theoretical predictions. b Probability density function of the speed v of the walker from both simulations and experiments. The
same color code as in (a) is used. ¢ Evolution of the effective temperature per unit mass p~'. Color code is that of (a and b) but for increasing Me
parameter. Dash line: value of p~1 averaged over Me. Gray area: fluctuations of 1 averaged over Me.

experimental analysis, nor in the numerical simulations, were
correlations between position and velocity identified. Hence we
infer the ansatz P(r,v) = P(r)P(v). For practical purposes, we
define the time-average kinetic energy per unit mass K = J (v?)
which is a quantity independent of w. K is also found to vary less
than 0.6% with Me in the range [200:25,000]. The position PDF
for the position P(r) is well described by a Boltzmann-Gibbs
probability density function P(r) = aw?|r| exp(—pw?|r|*/2) with
« a normalization factor and ! the equivalent temperature of
our system (per unit mass) (Fig. 4a). This observation holds for
both numerical simulations and experiments, and for all fre-
quencies investigated (w/2m € [0.01;0.25]) and Me > 200.

As suggested in®!, we expect the velocity PDF P(v) to be given
by o exp(—q)(v)/ D), with F,=—V,®, D an effective diffusion
coefficient and ®(v) a velocity potential to be determined. The
velocity potential ®(v) = ¢, (|v| — v0)2 /2 shows a good agree-
ment between the theoretical prediction and the numerical speed
PDF (Fig. 4b). The experimental data also collapses adequately
onto the master curve. It is interesting to compare the velocity
potential used here, namely ®(v) = ¢, (|v| — v0)2 /2, with the one
used in previous investigations performed at lower memories36->0
which is stiffer with the presence of v* terms. This suggest that the
constrain on the self-propulsion speed v is softer at high memory
than at short memory.

However, the properties of P(r) and P(v) related to the walker
dynamics do not change strongly with memory. This can be
measured by computing the standard deviation of the PDFs
shown in Fig. 4a, which also corresponds to the effective system
temperature of the walker. We measure this quantity over two
decades of values of the memory parameter by fitting the PDF
P(r) with a Gaussian (Fig. 4c). We obtain f~!~3.1 +0.5K 1. A
very weak evolution with the memory Me could be argued, in
which case a power law fitting f~1 o Me gives a very small
exponent v = 0.096 + 0.021 (95% confidence interval) when the fit
is applied to all frequencies (0.010-0.25 Hz) at once to increase
the precision. Mostly all the numerical and experimental data fall
onto the same master curve, at the exception of the numerical
points at w/2w = 0.25 Hz and experimental data at w/27 = 0.2 Hz
where an inflection is observed, leading to a deviation of  with
respect to the other frequencies. This behavior might be related to
the external potential which is strong and for which the chaotic
dynamics are at the edge of a strongly-developed chaos. Finally,
while B! increases very weakly with Me, 31 strongly correlates

with the wave intensity E linking back the features of the
wavefield to the dynamics of the walker (Fig. SI 6).

Discussion

The analysis conducted in this article reveals a complex interplay
between the agent and its wavefield. If Egs. (1) and (2) together
describe a deeply non-Markovian dynamics, the build-up of the
memory wavefield with increasing Me breaks the correlations in the
dynamics of the walker and leads to a stochastic dynamics described
in average by a white-noise-driven Markovian dynamics. In addi-
tion, the observations related to the wavefield statistical behavior
allow us to conclude that the erratic nature of the droplet dynamics
does not arise from a chaotic mode mixing. Indeed, as evidenced in
Fig. 2d and also by Fig. SI 3d, the eigenmodes of the wavefield are
still moderately correlated. Therefore, the main statistical properties
cannot result from a chaotic mixing of the wave modes but rather
from an increase, up to a factor seven, of wave DOF (see Fig SI 3g)
which stems from the increasing memory parameters and amount
of information.

We finish by discussing our results in the context of cortical
waves following a thought-provoking and inspirational review
article by Muller et al.2. Although there are differences between
the two systems, and our investigation is not motivated by neu-
roscience, the parallel between the two systems is very intriguing.
In the visual cortex, it has been shown that stimulus-evoked
responses can be described by a stationary bump and a propa-
gative wave over a domain of several millimeters. These two
responses encode separately the position and the initial time of
the stimulus. As a consequence, two or more stimuli generate two
or more responses centered at different loci which superpose onto
each other. Although, the superposition mechanism is more
complex than the simple linear superposition of density waves, it
has been proposed that the wave state resulting for the super-
position of several cortical waves may serve as computational
principles. The case of many spatio-temporally-separated stimuli,
which, in our analogy, would correspond to many secondary
sources, would be of particular importance. The correlation
between these stimuli may be of crucial importance in informa-
tion processing, as the statistical features of a field resulting either
from spatio-temporally-correlated or from uncorrelated sources
strongly differ.

In this article, we numerically implemented a deterministic
dynamical system which stores information and showed an
experimental proof of principle. In this system, the past trajectory
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of the particle is encoded into a standing wavefield built by the
drop previous bounces, which in return propels the particle. The
unique property of this system is the control of the amount of
information stored. Here, this information storage shapes the
properties of the wavefield which acts as a indirect controllable
thermal reservoir for the particle. In the long memory regime, we
have shown that the wave reservoir conserves a short-term cor-
relation, which is sufficient to maintain a propulsion. In the long-
term limit, the wavefield possesses the properties of a white noise.
The intensity stored in the waves does not diverge with memory
and is self-regulated by means of destructive interference. It is
very striking to observe that a system with multiple readable
memories can be used to embed the properties of a thermal
reservoir.

Methods

Experiments. In a 14 cm-circular tank filled with 5 mm of silicon oil with viscosity
#=20cp and surface tension o=20.9 x 1072 N/m, a droplet of diameter

D =700 + 50 um of the same silicon oil and with a core of ferrofluid is deposited. The
coalescence of the droplet in the tank is prevented by vertically and sinusoidally
oscillating the tank at 80 Hz and with an acceleration magnitude around y,, =3.8¢, g
being the gravitational acceleration (see Fig. 1a). This leads to a droplet bouncing
period which is twice the tank oscillation period, i.e., the Faraday period 7= 2/
f=2.5x%10"2s and a wavelength which is the Faraday wavelength Az =4.75 mm. A
small amount (=5% in volume) of ferrofluid (iron-cobalt nanoparticles in glycerol,
magnetic susceptibility y = 2.6) is encapsulated inside the drop, so that it becomes
paramagnetic. Using a combination of a homogeneous magnetic field generated by
two coils in the Helmholtz configuration, and a radial gradient parallel to the bath
surface generated by a permanent magnet, we confine the drop in a harmonic well,
whose minimum is located at the center of the tank (see Fig. 1a). Details of the
calculation for the magnetic confinement can be found in ref. 33. The frequency of the
potential well can be tuned by the distance between the permanent magnet and the oil
surface. Note that the magnetic fields applied do not interfere with wave generation as
the silicon oil has no magnetic properties. The magnetic force acting on the drop was
calibrated by recording the motion of the drop on circular trajectories for various
values of the potential well frequency. The procedure is described in details in®3. The
particle trajectory is tracked using image processing, and each drop is recorded for
1 h, corresponding to 1.5 x 1057 and a travelled distance of 7.2 x 103\.. We analyze
the trajectory statistics for a memory parameter Me = 250 + 50, which is directly
related to the magnitude of the oil surface acceleration by the formula

Me = (1—1y,,/ys)"" = 7/7p, yr being the threshold of the Faraday instability. The
value Me = 250 + 50 corresponds to the largest memory value that we were able to
reach with our experimental setup. We also focus on magnetic potential frequency w/
27 < 0.30 Hz, allowing for large trajectories. Special care has been given to the
homogeneity of the vertical vibration, by looking at the regularity and the homo-
geneity of the Faraday waves above the instability threshold yp.

Numerical simulations. The results presented in this article have been obtained via a
discrete step algorithm?®93. In essence, the algorithm modelling the walking droplet
dynamics consists of two phases, alternating periodically. The first phase is the
“bouncing phase” where the droplet is considered as a perfectly inelastic ball,
bouncing on a vertically oscillating rigid surface. If the surface oscillates with a
dimensionless acceleration T = y,,/g = A(271f)%/g, where A is the amplitude and f the
frequency of oscillation, the dynamics of the ball is uniquely determined®. The
dimensionless acceleration I' = 4.12 is chosen so that the bath oscillates twice as fast
as the drop. As a consequence, the relative speed at impact and the duration of
contact with the interface can be computed. The former information is related to the
wave intensity and therefore the amplitude of each wave, and the latter to the
duration of interaction with the fluid interface. The second phase is the period during
which the ball sits on the interface. During that period, the droplet get a kick of
momentum from the standing wavefield in the direction normal to the liquid
interface, then the wavefield is updated by adding a new wave source at the drop
impact position and finally, the drop loses kinetic energy via friction with the
interface. For the kick of momentum, an increase of horizontal speed is applied and
reads [Eq. 7]

dv = |V.N|n, 7)

where V = (v, v,) is the 3D velocity of the droplet, and N = (n, n.) is the 3D vector
normal to the surface. Lowercase symbols corresponds to the horizontal component
of the 3D vectors. The normal vector N reads [Eq. 8]

1
N=—+——(-V(1). 8)
VI IVi?
Following the kick of momentum, a new standing wave is created on the interface at
the impact position while the droplet gets a kick of momentum in the direction

normal to the wavefield. The shape of the standing wave and its time evolution obeys
Eq. (2), with 7z =2.5% 10?5, \p=4.75 mm and & = 2.5). Finally, the droplet speed
decreases exponentially with a characteristic time scale 7, = 4.5 x 10~2's during the
contact time. The stability and reproducibility of the numerics have been tested and
validated in?*4. The initial conditions of the walking dynamics are identical for each
simulation. No waves exist on the interface prior to the particle motion. The particle
starts its motion with (xo, yo) = (0, 1/2) and (v, vy,0) = (6.66,3.33) mm/s. These

values were chosen to break the symmetry of the potential, while being close to the
equilibrium speed value. For statistical investigations in Figs. 3 and 4, the algorithm
was integrated over 5 x 106 bounces, i.e., period of the waves 7z In order to remove
transient dynamics, the first 10% of the dynamics were not considered. In Fig. 2, the
algorithm was used over 2.5 x 10% bounces and 125 waves modes were considered. As
previously, the first 10% of the dynamics were not considered. PDFs presented in this
article are normalized such as the sum of all obtained probability equals to one.
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