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The purpose of this study was to enhance the performance of steady-state visual
evoked potential (SSVEP)-based visual acuity assessment with spatial filtering methods.
Using the vertical sinusoidal gratings at six spatial frequency steps as the visual
stimuli for 11 subjects, SSVEPs were recorded from six occipital electrodes (O1, Oz,
O2, PO3, POz, and PO4). Ten commonly used training-free spatial filtering methods,
i.e., native combination (single-electrode), bipolar combination, Laplacian combination,
average combination, common average reference (CAR), minimum energy combination
(MEC), maximum contrast combination (MCC), canonical correlation analysis (CCA),
multivariate synchronization index (MSI), and partial least squares (PLS), were compared
for multielectrode signals combination in SSVEP visual acuity assessment by statistical
analyses, e.g., Bland–Altman analysis and repeated-measures ANOVA. The SSVEP
signal characteristics corresponding to each spatial filtering method were compared,
determining the chosen spatial filtering methods of CCA and MSI with a higher
performance than the native combination for further signal processing. After the visual
acuity threshold estimation criterion, the agreement between the subjective Freiburg
Visual Acuity and Contrast Test (FrACT) and SSVEP visual acuity for the native
combination (0.253 logMAR), CCA (0.202 logMAR), and MSI (0.208 logMAR) was
all good, and the difference between FrACT and SSVEP visual acuity was also all
acceptable for the native combination (−0.095 logMAR), CCA (0.039 logMAR), and MSI
(−0.080 logMAR), where CCA-based SSVEP visual acuity had the best performance
and the native combination had the worst. The study proved that the performance
of SSVEP-based visual acuity can be enhanced by spatial filtering methods of CCA
and MSI and also recommended CCA as the spatial filtering method for multielectrode
signals combination in SSVEP visual acuity assessment.

Keywords: visual acuity, steady-state visual evoked potential, spatial filtering, multielectrode signals
combination, canonical correlation analysis

INTRODUCTION

Visual acuity, one of the most necessary parameters to test visual function, is a measure of the spatial
resolution of the visual processing. In general, it is mainly tested by psychophysical methods, e.g.,
Sloan letters and tumbling E charts (Ricci et al., 1998). However, these methods require the subjects
to have sufficient intelligence to comply with the test process and are hard for preverbal or infantile
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children, the mentally disabled, and malingerers (Incesu and
Sobaci, 2011; Zheng et al., 2020c).

Noninvasive electroencephalography (EEG), e.g., steady-state
visual evoked potentials (SSVEPs), has been proved to provide
an alternative method to estimate visual acuity objectively
(Regan, 1973; Norcia et al., 2015). By varying the spatial
frequency of the visual stimuli, visual acuity can be measured
by a threshold determination criterion by establishing the
mathematical model between spatial frequency and SSVEP
signals (Hamilton et al., 2021a). Besides, previous studies proved
that a larger number of posterior electrodes was relevant to
optimize visual function assessment (Hemptinne et al., 2018)
and recommended multielectrode montage, e.g., six-electrode of
O1, Oz, O2, PO3, POz, and PO4 (Zheng et al., 2020a, 2021),
rather than single-electrode in SSVEP visual acuity assessment
(Hamilton et al., 2021b). However, in SSVEP visual acuity
assessment, SSVEPs are mainly collected at only one active
electrode, e.g., Oz at the midline over the occiput (McBain et al.,
2007; Odom et al., 2016; Ridder, 2019), except for some other
electrode montages, e.g., the bipolar electrodes of Oz and O1
(Norcia and Tyler, 1985a,b; Skoczenski and Norcia, 1999), which
was sometimes used to enhanced signal-to-noise-ratio (SNR),
especially close to the threshold (Hamilton et al., 2021b).

The spatial filtering technique combining the multielectrode
signals into single- or multichannel signals offers a better
method for extracting SSVEP features and eliminating nuisance
signals in SSVEP studies (Yan et al., 2018). Since scalp EEG is
usually regarded to be a linear mixture of multiple time series
from various cortical sources (Onton et al., 2006), the weight
coefficients can be applied for multielectrode scalp EEG signals
to estimate the cortical source activities (Nakanishi et al., 2018b).
On the basis of this idea, several methods of extracting optimal
spatial filters to reconstruct source activities from scalp EEG
signals have been carried out to enhance the SNR of SSVEPs.
For instance, the basic spatial filtering methods [e.g., Laplacian
combination (Friman et al., 2007) and common average reference
(CAR) (Zheng et al., 2020d)] and the model-based spatial filtering
methods [e.g., minimum energy combination (MEC) (Friman
et al., 2007), canonical correlation analysis (CCA) (Bin et al.,
2009; Zheng et al., 2020b; Li et al., 2021), and multivariate
synchronization index (MSI) (Zhang et al., 2014a)] have been
applied to improve the performance of SSVEPs. However, to
date, little is known about whether there is an enhancement
of the spatial filtering technique from multielectrode signals on
SSVEP visual acuity.

On the basis, in this study, 10 commonly used training-
free spatial filtering methods, i.e., native combination (i.e.,
single-electrode) (Friman et al., 2007), bipolar combination
(Hamilton et al., 2021b), Laplacian combination, average
combination (Friman et al., 2007), CAR, MEC, maximum
contrast combination (MCC) (Friman et al., 2007), CCA, MSI,
and partial least squares (PLS) (Ge et al., 2017), were compared
for multielectrode signals combination in SSVEP visual acuity
assessment. First, SSVEPs were induced by the vertical sinusoidal
gratings at six spatial frequency steps and recorded from six
occipital electrodes (O1, Oz, O2, PO3, POz, and PO4) for 11
subjects. Next, the SSVEP signal characteristics corresponding

to each spatial filtering method were compared to determine
the chosen spatial filtering methods with good performance for
further signal processing. Then, SSVEP visual acuity can be
obtained by the threshold estimation criterion for each chosen
spatial filtering method, and the statistical analyses, e.g., Bland–
Altman analysis and repeated-measures ANOVA, were used to
explore the performance of the spatial filtering technique from
multielectrode signals on SSVEP visual acuity. The main purpose
of this study was to enhance the performance of SSVEP visual
acuity with spatial filtering methods.

MATERIALS AND METHODS

SSVEP Model
For the visual stimulus with a temporal frequency of f, the
SSVEP signal, yi(t), measured as the voltage between a reference
electrode and the ith electrode at time t, can be modeled as
(Friman et al., 2007; Zerafa et al., 2018):

yi (t) =
Nh∑

h=1

ai,hsin
(
2πhft + φi,h

)
+ ei (t) (1)

This linear model consists of two parts: the evoked SSVEP
response signal and the noise signal. The evoked SSVEP response
consists of many sinusoids with the frequency given by the
stimulus frequency f and its harmonic frequencies. Nh is the
number of harmonic frequencies. Each sinusoid is determined by
its specific amplitude ai,h and phase φi,h. The noise signal ei(t) is
composed of other signals that are unrelated to SSVEP response,
such as electromyography (EMG), electrooculogram (EOG), and
other components.

Hence, the SSVEP signal for a time segment of Nt samples with
a sampling frequency Fs can be defined in vector form:

yi = Xf gi + ei (2)

where yi =
[
yi(1), . . . , yi(Nt)

]T
∈ RNt×1 contains the SSVEP

signal of the ith electrode in one segment of Nt samples, and ei ∈
RNt×1 is the noise vector. The SSVEP reference signals model
Xf ∈ RNt×2Nh is defined by Nakanishi et al. (2018b):

Xf =



sin
(

2πf
m
Fs

)
cos

(
2πf

m
Fs

)
...

sin
(

2πNhf
m
Fs

)
cos

(
2πNhf

m
Fs

)



T

, m = 1, . . . , Nt. (3)

The vector gi ∈ R2Nh×1 contains the corresponding amplitude
ai,h and phase φi,h.

Finally, for SSVEP signals recorded from Ne electrodes, the
model Y can be further defined as:

Y = Xf G+ E (4)
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where Y =
[
y1, . . . , yNe

]
∈ RNt×Ne contains the sampled SSVEP

signals from all electrodes, with each column corresponding to
an electrode. E ∈ RNt×Ne is the noise matrix, and G ∈ R2Nh×Ne

contains the amplitudes and phases for all sinusoids.

Spatial Filtering Model
In SSVEPs, the method of linearly combining the multielectrode
signals into single- or multichannel signals is called spatial
filtering (Yan et al., 2018) to enhance the SNR of SSVEP
response. Given Ne-electrode SSVEP signals Y as expressed
in Equation (4), single-channel s ∈ RNt×1 can be created by
combining Y linearly using weights w ∈ RNe×1 (Friman et al.,
2007):

s = Yw. (5)

More generally, multichannel signals S can be created by
combining Y linearly using weights W (Friman et al., 2007):

S = YW (6)

where S = [s1, , sNc ] ∈ RNt×Nc are the spatially filtered signals,
and Nc is the number of the channels considered for further signal
analysis. When Nc is 1, Equation (5) is the same as Equation (6).
W = [w1, . . . ,wNc ] ∈ RNe×Nc is the weight matrix for spatial
filtering. Below, 10 commonly used spatial filtering methods for
choices of W were introduced.

Spatial Filtering Methods
Here, we aimed to compare the effect on visual acuity assessment
by SSVEPs with different spatial filtering methods to combine
multielectrode signals into a single-channel signal. The visual
acuity results depend on the SSVEP amplitude changes versus
spatial frequencies (Zheng et al., 2020c), and the SSVEP
amplitude is usually obtained from single-channel SSVEP by
using Fourier analysis to transform an SSVEP signal from the
time domain to the frequency domain and extracting the specific
SSVEP amplitude at the fundamental frequency of the visual
stimulus from the resulting spectrum (Hamilton et al., 2021a,b).
Hence, here, we only focused on the single-channel spatial
filtering methods, i.e., Nc = 1, and W = w ∈ RNe×1.

Native Combination
The native combination is also called the monopolar
combination where only the SSVEP signals from one of the
electrodes are analyzed (Friman et al., 2007; Zerafa et al., 2018).
In the SSVEP analysis, the most used electrode is Oz (Yan et al.,
2021; Zheng et al., 2020c). Assuming that the SSVEP signals
from the Oz electrode are corresponding to the first column in
Ne-electrode SSVEP signals Y (same below), the spatial filtering
weights w can be expressed as:

w = [1, 0, . . . , 0]T. (7)

Bipolar Combination
The bipolar combination is used to reduce the common
noise signals by measuring the voltage of two closely placed
electrodes (Friman et al., 2007). In SSVEP visual acuity
assessment, the bipolar combination sometimes is also used

(Hamilton et al., 2021b). According to the previous studies
(Norcia and Tyler, 1985a,b), we chose the commonly used
electrode pair (Oz–O1). Hence, assuming that the SSVEP signals
from the O1 electrode are from the second column in Y , w can be
expressed as:

w = [1,−1, 0, . . . , 0]T. (8)

Laplacian Combination
The Laplacian combination is the improvement of the bipolar
combination by using the mean voltage of the surrounding
electrodes from one center electrode as the reference voltage
(Hamilton et al., 2021b). Laplacian combination is mainly divided
into two types in SSVEP visual acuity studies: one- and two-
dimensional Laplacian combination (Hamilton et al., 2021b).
One-dimensional Laplacian combination in SSVEP acuity studies
is carried out by using voltage from Oz − 1/2(O1 + O2) as
the signal (Bach and Heinrich, 2019; Knotzele and Heinrich,
2019; Kurtenbach et al., 2013). A two-dimensional Laplacian
combination, i.e., the fourth Laplacian combination of Oz −
1/4(O1 + O2 + POz + Iz) (Hamilton et al., 2013), is also used
in the relevant study. Here, assuming that the SSVEP signals
from the O1, O2, POz, and Iz electrode are the second, the
third, the fourth, and the fifth column in Y , respectively, w for
one-dimensional Laplacian combination can be expressed as:

w =
[

1,−
1
2
,−

1
2
, 0, . . . , 0

]T
. (9)

and w for two-dimensional Laplacian combination can be
expressed as:

w =
[

1,−
1
4
,−

1
4
,−

1
4
,−

1
4
, 0, . . . , 0

]T
. (10)

Average Combination
The average combination is used by taking the average signals
from all electrodes to amplify the SSVEP component and cancel
the electrode-specific noise (Friman et al., 2007), where the
weights w can be expressed as:

w =
[

1
Ne

, . . . ,
1

Ne

]T
. (11)

Common Average Reference
Common average reference, a commonly used spatial filtering
method, is achieved by subtracting the mean signals of all
electrodes from the selected electrode signals (Zheng et al.,
2020d). Here, also choosing the Oz electrode, the weights w can
be expressed as:

w =
[

Ne − 1
Ne

,−
1

Ne
, . . . ,−

1
Ne

]T
. (12)

Minimum Energy Combination
The MEC-based spatial filtering is proposed by Friman et al.
(2007) to minimize the energy from nuisance signals. First, by
removing any potential SSVEP activity from Ne-electrodes signals
Y by projecting them onto the orthogonal complement of the
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SSVEP model matrix Xf in Equation (3), the nuisance signals
Ỹ f ∈ RNt×Ne can be expressed as (Friman et al., 2007):

Ỹ f = Y − Xf

(
XT

f Xf

)−1
XT

f Y. (13)

where Ỹ f contains only nuisance signals and noise. In other
words, Ỹ f ≈ E.

Next is to find a weight vector ŵf ∈ RNe×1 to minimize the
energy of the combination of electrode signals Ỹ f ŵf :

ŵf = argmin
ŵf

‖ Ỹ f ŵf ‖
2
= argmin

ŵf

ŵT
f Ỹ

T
f Ỹ f ŵf . (14)

The above minimization problem can be solved by
decomposing the eigenvalues of the matrix ỸT

f Ỹ f , and the
spatial filter weights ŵf are defined by the eigenvector v1
corresponding to the smallest eigenvalue λ1 (Friman et al., 2007;
Yan et al., 2019):

ŵf =
v1
√

λ1
(15)

Maximum Contrast Combination
Maximum contrast combination is realized by maximizing
the SSVEP energy and minimizing the nuisance noise energy
simultaneously. Hence, MCC can be achieved as follows (Friman
et al., 2007):

ŵf = argmax
ŵf

‖ Yŵf ‖
2

‖ Ỹ f ŵf ‖
2 = argmax

ŵf

ŵT
f Y

TYŵf

ŵT
f Ỹ

T
f Ỹ f ŵf

. (16)

The above maxima can be found by a generalized eigen-
decomposition of the matrices YTY and ỸT

f Ỹ f , and the spatial
filter weights ŵf are defined as the eigenvector corresponding to
the largest eigenvalue (Zerafa et al., 2018).

Canonical Correlation Analysis
Canonical correlation analysis, a statistical way to measure the
underlying correlation between two sets of multidimensional
variables, was first used in SSVEP analysis by Lin et al. (2007).
Till now, CCA has become the most widely used method in
SSVEPs as a result of its effectiveness, robustness, and simple
implementation (Bin et al., 2009; Zheng et al., 2020b; Li et al.,
2021). Here, CCA finds the weights wy ∈ RNe×1 and wxf ∈

R2Nh×1 to maximize the linear combinations between y = Ywy ∈

RNt×1 and x = Xfwxf ∈ RNt×1 representing the multichannel
SSVEP signals and the SSVEP reference signals. Hence, the
weight vectors wy and wxf can be obtained as follows:

wy,wxf = argmax
Wy,Wxf

ρ
(
y, x

)
=

E
[
yTx

]√
E
[
yTy

]
E
[
xTx

]
=

E
[
wT
yYTXfwxf

]
√

E
[
wT
yYTYwy

]
E
[
wT
xfX

T
f Xfwxf

] . (17)

The maximum of ρ is the maximum canonical correlation.
The spatial filter weights wy is defined as the eigenvector

corresponding to the largest eigenvalue after transforming the
above optimization problem into the eigenvalue decomposition
problem (Yan et al., 2019).

Multivariate Synchronization Index
Multivariate synchronization index, introduced by Zhang et al.
(2014a), is another multichannel detection method for SSVEPs.
Assuming that the reference signal Xf is synchronized to the
SSVEP signals Y , MSI is used for estimating the synchronization
between Y and Xf . First, the matrices of Y and Xf are normalized
to have a zero mean and unitary variance. Then, a correlation
matrix C is estimated as (Zhang et al., 2014a):

C =

[
CYY CYXf

CXf Y CXf Xf

]
(18)

where

CYY =
1

Nt
YYT, CXf Xf =

1
Nt

Xf XT
f , CYXf = CXf Y =

1
Nt

YXT
f .

(19)
To weaken the effect from the autocorrelation on the

synchronization measure, the following linear transformation is
adopted:

U =

[
C-1/2
YY 0

0 C-1/2
Xf Xf

]
(20)

The transformed correlation matrix C′ is as follows after
canceling out the autocorrelation:

C
′

= UCUT (21)

Here, rather than the previous studies using the
synchronization index S-estimator in MSI-based frequency
recognition in SSVEPs (Zhang et al., 2014a; Zerafa et al., 2018),
the spatial filter weights w is directly obtained by the eigenvector
corresponding to the largest eigenvalue of the matrix C

′

.

Partial Least Squares
Partial least squares is a commonly used multiple linear
regression method to compute the linear regression between
multidimensional predicted variables and multidimensional
observable variables (Trejo et al., 2006; Wang et al., 2014a). Wang
et al. (2014a) and Ge et al. (2017) proposed a double PLS-based
recognition method in SSVEPs, where the first step is to use PLS
as a spatial filter to enhance the SNR. Here, we mainly focused
on the first step.

In PLS, the SSVEP signals Y and the reference signal Xf are
first decomposed into bilinear terms by an iterative procedure to
extract the latent variables with maximal correlation (Rosipal and
Krämer, 2006):

Y = TPT
+ E (22)

Xf = UQT
+ F (23)

where matrices T = {ti}
D
i=1 and U = {ui}

D
i=1 are the extracted D

latent vectors (i.e., score vectors), P and Q are loading matrices,
and E and F are residual matrices. Since Y can be regarded as
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a linear mixture of Xf and noise [see Equation (4)], Xf can be
decomposed by Y :

Xf = YW f + Ff (24)

where Ff is the residual matrix. W f is the matrix of linear
regression coefficients, which can be defined as (Rosipal and
Krämer, 2006):

W f = YTU
(
TTYYTU

)−1
TTXf (25)

The spatially filtered SSVEP signals S can be obtained by
removing the residual matrix Ff :

S = YW f (26)

Here, the spatial filter weights w is obtained by the eigenvector
corresponding to the largest eigenvalue of the matrix W f .

EXPERIMENT

Participants
Eleven healthy volunteers (four female, ages 22–27 years) were
recruited from Xi’an Jiaotong University. The subjective visual
acuity was evaluated by Freiburg Visual Acuity and Contrast
Test (FrACT) monocularly (Bach, 1996). The experimental
protocol was approved by the Human Ethics Committee of Xi’an
Jiaotong University, conforming to the Declaration of Helsinki.
All subjects also submitted the written consent after informed of
the contents of the experiment.

Experimental Equipment
Electroencephalography was recorded by an EEG system
(g.USBamp and g.GAMMAbox, g.tec, Schiedlberg, Austria) with
a sampling frequency of 1,200 Hz. According to the previous
studies (Hemptinne et al., 2018; Zheng et al., 2020a), six occipital
electrodes (O1, Oz, O2, PO3, POz, and PO4) were used to acquire
EEG signals, as shown in Figure 1. The ground electrode was
placed on the forehead (Fpz), and the reference electrode was
placed on the left earlobe (A1). Besides, a notch filter from 48
to 52 Hz was applied to eliminate the power line interference.
A 24.5-in LCD monitor (PG258Q, ASUS, Taipei, China) with a
resolution of 1,920 × 1,080 pixels, and a refresh rate of 240 Hz
was used to present visual stimuli.

Visual Stimuli
In this study, the vertical sinusoidal gratings with a reversal
frequency of 7.5 Hz were used as the visual stimuli with the
Michelson contrast of 50% and the mean background luminance
of 80 cd/m2 (Kurtenbach et al., 2013; Zheng et al., 2020c). The
visual angle of the stimulus pattern with a side length of 720
pixels was set as four degrees by adjusting the distance between
the display and subjects. Six spatial frequencies in logarithmically
equidistant steps of 3.0, 4.8, 7.5, 12.0, 19.0, and 30.0 cycles per
degree (cpd) corresponding to the optotypes of 1.0, 0.8, 0.6, 0.4,
0.2, and 0.0 logMAR were presented to subjects in each run
(Zheng et al., 2019). Each run contained six blocks corresponding

FIGURE 1 | Location of scalp electrodes.

to six spatial frequency steps. Each block contained five trials,
and each trial lasted 5 s with a 2-s interval between two trials.
The right eye was tested first and then the left eye. Besides,
four subjects accomplished two eyes’ experiments, while the
others only accomplished the right eye’s experiment. The visual
stimuli were developed by MATLAB (MathWorks, Natick, MA,
United States) using the Psychophysics Toolbox (Brainard, 1997).

Signal Processing
Data Preprocessing
Following the start and end times of each trial, the SSVEP data
segments were extracted. Then, a band-pass filter from 3 to 40 Hz
was imposed to exclude the high-frequency interferences and
low-frequency drifts. The five data segments of the same spatial
frequency corresponding to five trials in one block were averaged
to a 5-s data epoch for further data processing.

Spatial Filtering and Feature Extraction
The above 10 spatial filtering methods were used to linearly
combine the 5-s six-electrode data epoch into 5-s single-channel
signals, respectively. Since there was only one stimulus frequency,
i.e., 7.5 Hz, in stimulus presentation, the SSVEP reference signals
model Xf ∈ RNt×2Nh in this study was defined as:

Xf =

 sin
(

2πf
m
Fs

)
cos

(
2πf

m
Fs

)


T

, m = 1, . . . , Nt (27)

where f was set as 7.5 Hz, and the number of harmonic
frequencies Nh was set as 1. The number of sampling
points, Nt , was 6,000 in a 5-s data segment with a sampling
frequency of 1,200 Hz.
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Then, the SSVEP feature was extracted by the Fourier
transform to obtain the frequency-domain spectrum, and the
amplitude at the fundamental reversal frequency of 7.5 Hz was
considered as the SSVEP amplitude.

Signal-to-Noise Ratio
The noise was defined by the mean value of the 20 adjacent
amplitudes of either side of the fundamental frequency of 7.5 Hz
on the frequency-domain spectrum (Bach and Meigen, 1999;
Zheng et al., 2020b). Hence, the SNR can be determined by the
ratio of SSVEP amplitude at 7.5 Hz to noise:

SNR =
SSVEP amplitude

noise

=
a(f )

1
10 ∗

∑k=10
k=1 a

(
fk ∗ 4f

)
a(f − k ∗ 4f )

(28)

where a(f) denotes the amplitude on the frequency-domain
spectrum at frequency f, and frequency resolution 1f is 0.1 Hz.

Visual Acuity Determination Criterion
Figure 2 shows an example of the tuning curve for the SSVEP
visual acuity estimation criterion used in this study. SSVEP
amplitude can be plotted versus spatial frequency, and then
a regression line can be extrapolated from the last significant
SSVEP peak to a noise level baseline (Zheng et al., 2020b). The
range for the regression line was between the last significant
SSVEP peak and the last data point with an SNR higher than
the preset SNR level, and the noise level baseline for each visual
stimulus was defined as the mean of the noise of the six spatial
frequency steps (Hamilton et al., 2021b). Then, the SSVEP visual

FIGURE 2 | Example of tuning curve for steady-state visual evoked potential
(SSVEP) visual acuity estimation criterion. The green “ × ” represents the
noise corresponding to each spatial frequency step, and the green dashed
line represents the noise level baseline defined by the mean of the noise of the
six spatial frequency steps. The data points included in the linear regression
have an signal-to-noise ratio (SNR) higher than the preset SNR level, while the
excluded points do not. The red solid line represents the regression line
between the SSVEP amplitude and spatial frequency extrapolating from the
last significant SSVEP peak to the last data point with an SNR higher than the
preset SNR level. The red point is the intersection of the regression line and
the noise level baseline, with its corresponding spatial frequency value defined
as the visual acuity threshold.

acuity was defined as the spatial frequency corresponding to the
intersection point between the regression line and the noise level
baseline (Zheng et al., 2020b; Hamilton et al., 2021a). Besides,
the whole diagram of signal processing in this study is shown in
Figure 3.

Statistical Analysis
Bland–Altman was used to describe the agreement and difference
between the psychophysical FrACT and objective SSVEP visual
acuity for each spatial filtering method. Besides, one-way
repeated-measures ANOVA was also employed to evaluate
the difference among the FrACT and SSVEP visual acuity
results for each spatial filtering method, and the post-hoc
analysis with Bonferroni correction for multiple comparisons was
subsequently employed.

RESULTS

Comparison of the SSVEP Signal
Characteristics
Figure 4 shows an example of the time-domain, frequency-
domain, and time–frequency-domain analyses of SSVEPs after
each spatial filtering method. First, the 5-s single-channel SSVEP
signals corresponding to each spatial filtering method were
obtained according to the abovementioned signal processing flow
in Figure 3. Then, the time-domain waveforms were obtained by
averaging the 0.53-s nonoverlapping data segments subdivided
by the 5-s single-channel SSVEP signals, with each segment
containing four periods of the reversal process (Zheng et al.,
2020a). The frequency-domain spectrums were obtained by the
Fourier transform of the 5-s single-channel SSVEP signals. As
for the time–frequency-domain analysis, the 2.0-s window length
with 0.1-s sliding length over the 5-s single-channel signals
was used to obtain the time–frequency-domain characteristics
(Zheng et al., 2020a).

The time-domain waveforms in Figure 4A show that an
obvious main periodicity was the fundamental reversal frequency
of 7.5 Hz for all spatial filtering methods except for the two-
dimensional Laplacian combination, while some other periodic
components also existed in some waveforms, such as the native,
bipolar, and one-dimensional Laplacian combination. Both the
frequency-domain waveforms in Figure 4B and the time–
frequency-domain analyses in Figure 4C show clear significant
peaks at the fundamental reversal frequency of 7.5 Hz and the
second harmonic frequency of 15 Hz for all spatial filtering
methods except for the two-dimensional Laplacian combination,
indicating that all these spatial filtering methods except for
the two-dimensional Laplacian combination can obtain obvious
signal characteristics by combining the multielectrode signals
into single-channel signals.

Comparison of Spatial Filtering Effect
The main purpose of spatial filtering is to strengthen the
SSVEP components and suppress the non-SSVEP components
in EEG signals (Wong et al., 2020) and thus to enhance the
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FIGURE 3 | Diagram of signal processing in this study. First, the original signals for five trials in one block are filtered by a band-pass filter from 3 to 40 Hz, and
subsequently, the signal segments corresponding to five trials are averaged to a 5-s data epoch for each electrode. Then, each spatial filtering method linearly
combines the six-electrode signals into one single-channel signals, respectively. Next, the Fourier transform extracts the steady-state visual evoked potential (SSVEP)
amplitude and signal-to-noise ratio (SNR). Finally, the visual acuity determination criterion is carried out after six blocks in one run complete. Besides, the
model-based spatial filter is obtained by mathematical transformation of six-electrode EEG signals Y and reference signals Xf .

SNR (Friman et al., 2007). Hence, the spatial filtering effect was
evaluated by comparing the SNR values of the single-channel
SSVEP signals corresponding to various spatial filtering methods.
Since the visual stimuli at the spatial frequency of 3.0 cpd were
the clearest to all subjects, the comparison of the SNR values
corresponding to various spatial filtering methods at 3.0 cpd
over all subjects was obtained, as shown in Figure 5. Figure 5
shows that the SNR values of CCA (4.849 ± 1.101) and MSI
(4.115 ± 1.372) were higher than that of the native combination
(3.861 ± 1.188), with other spatial filtering methods had lower
or close SNR values to that of the native combination. Since
the native combination actually utilized only single-electrode
signals from Oz and was widely used in SSVEP visual acuity
assessment, here, the spatial filtering methods of CCA and MSI
were compared to the native combination in the further visual
acuity evaluation by SSVEPs.

SSVEP Visual Acuity Threshold
Determination Criterion
SSVEP visual acuity was defined by the intersection point
between the noise level baseline and the regression line
extrapolating from the last significant SSVEP peak to the last
data point with an SNR higher than the preset SNR level.
For the native combination, previous studies have given the
recommended value of SNR level, i.e., 1.0 (Yadav et al., 2009;
Zheng et al., 2020b). However, as shown in Figure 6, CCA and

MSI often obtained the higher SNR of SSVEPs than the native
combination, especially in high spatial frequencies close to the
visual acuity threshold. Hence, for the spatial filtering methods of
CCA and MSI, the SNR level of 1.0 may not be applicable since
both CCA and MSI enhanced the SNR of SSVEPs.

Here, first, the five SNR levels, i.e., 1.0, 1.5, 2.0, 2.5, and 3.0
(Zheng et al., 2019), were preselected for CCA and MSI. Then, as
shown in Figure 7, corresponding to Figure 6, the tuning curves
of the SSVEP visual acuity estimation criterion for the native
combination, CCA, and MSI with various SNR levels of 1.0, 1.5,
2.0, 2.5, and 3.0, respectively, can be obtained. Next, the range for
the linear regression of the native combination in Figure 7A was
from the first data point with the amplitude peak of 1.140 µV to
the last data point with an SNR of 1.508 higher than the SNR level
of 1.0, and the SSVEP visual acuity for the native combination
was determined as the spatial frequency of the intersection point
of the regression line and the noise level baseline, i.e., 26.554
cpd. Similar to this, as shown in Figures 7B,C, the SSVEP visual
acuities for CCA and MSI with various SNR levels were 32.470
cpd for CCA with the SNR levels of 1.0, 1.5, 2.0, and 2.5; 26.097
cpd for CCA with the SNR level of 3.0; 25.237 cpd for MSI with
the SNR levels of 1.0, 1.5, 2.0, and 2.5; and 20.892 cpd for MSI
with the SNR level of 3.0.

The unit of logMAR was used in the final visual acuity
expression for its uniformity in spatial frequency (Bach, 2007).
Finally, after SSVEP visual acuities for CCA and MSI at various
SNR levels over all subjects were obtained, the Bland–Altman
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FIGURE 4 | Example of the time-domain, frequency-domain, and time–frequency-domain analyses of steady-state visual evoked potentials (SSVEPs) at 3.0 cpd
after various spatial filtering methods (right eye of subject S9, Freiburg Visual Acuity and Contrast Test (FrACT) acuity = 0.00 logMAR). (A) Time-domain analysis. The
vertical dashed lines correspond to four periods of the reversal process. (B) Frequency-domain analysis. (C) Time–frequency-domain analysis. The vertical dashed
lines in Panel (B) and the horizontal dashed lines in Panel (C) correspond to the reversal frequency of 7.5 Hz and the second, third, and fourth harmonic frequencies
of 15, 22.5, and 30 Hz, respectively. “f” in all subfigures represents the reversal frequency of 7.5 Hz.

analysis was used to analyze the difference and agreement
between subjective FrACT visual acuity and objective SSVEP
visual acuity for CCA and MSI at each SNR level, as shown in

Table 1. Hence, the SNR level of 2.0 was chosen for CCA with
a low 95% limit of agreement (i.e., 0.202 logMAR) and a low
difference (i.e., 0.039 logMAR). Similarly, the SNR level of 1.5
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FIGURE 5 | Comparison of the mean values and SD of the signal-to-noise ratio (SNR) of the single-channel steady-state visual evoked potential (SSVEP) signals
corresponding to various spatial filtering methods at 3.0 cpd over all subjects.

FIGURE 6 | Examples of the steady-state visual evoked potential (SSVEP) response to six spatial frequency steps after three spatial filtering methods of native
combination, canonical correlation analysis (CCA), and multivariate synchronization index (MSI) (right eye of subject S2, FrACT acuity = −0.06 logMAR). (A) Native
combination. (B) CCA. (C) MSI. The vertical dashed lines correspond to the reversal frequency of 7.5 Hz.
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FIGURE 7 | Examples of the tuning curves for steady-state visual evoked potential (SSVEP) visual acuity estimation criterion corresponding to the native
combination, canonical correlation analysis (CCA), and multivariate synchronization index (MSI) with various signal-to-noise ratio (SNR) levels of 1.0, 1.5, 2.0, 2.5,
and 3.0, respectively (right eye of subject S2, FrACT acuity = −0.06 logMAR). (A) Native combination with the SNR level of 1.0. (B) CCA with the SNR levels of 1.0,
1.5, 2.0, and 2.5 for the left subpanel and 3.0 for the right subpanel. (C) MSI with the SNR levels of 1.0, 1.5, 2.0, and 2.5 for the left subpanel and 3.0 for the right
subpanel. The representations of the symbols and lines are the same as in Figure 2.

was chosen for MSI with a low 95% limit of agreement (i.e., 0.208
logMAR) and a low difference (i.e.,−0.080 logMAR).

Comparison of Visual Acuity Results
Figure 8 shows the Bland–Altman analysis between subjective
FrACT visual acuity and final objective SSVEP visual acuity
over all subjects for the native combination, CCA, and MSI,
respectively. The 95% limits of agreement for the native
combination, CCA, and MSI were 0.253 logMAR, 0.202 logMAR,
and 0.208 logMAR, respectively, indicating that SSVEP visual
acuity of the spatial filtering methods of CCA and MSI had better
accuracy than the native combination.

Figure 9 shows the comparison in visual acuity estimated
by four methods, i.e., FrACT and SSVEPs for three spatial
filtering methods of the native combination, CCA, and MSI,
over all subjects. One-way repeated-measures ANOVA found a
significant difference in visual acuity among these four methods
[F(3,45) = 10.277, p < 0.001]. Then, Bonferroni post-hoc analysis
showed no difference between psychophysical FrACT visual
acuity and each SSVEP visual acuity for the native combination,
CCA, and MSI (p > 0.05), as shown in Table 2, demonstrating
that the SSVEP visual acuity obtained by these three spatial
filtering methods all had a good agreement and a similar
performance with subjective FrACT visual acuity. Besides, a

Frontiers in Neuroscience | www.frontiersin.org 10 August 2021 | Volume 15 | Article 716051

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-716051 August 14, 2021 Time: 15:44 # 11

Zheng et al. Enhancing SSVEP-Based Visual Acuity

TABLE 1 | Results of Bland–Altman analysis between subjective Freiburg Visual
Acuity and Contrast Test (FrACT) visual acuity and objective steady-state visual
evoked potential (SSVEP) visual acuity for the native combination at
signal-to-noise ratio (SNR) level of 1.0, and canonical correlation analysis (CCA)
and multivariate synchronization index (MSI) at each SNR level of 1.0, 1.5, 2.0,
2.5, and 3.0, respectively.

SNR level Difference/logMAR LoA/logMAR

Native 1.0 −0.095 0.253

CCA 1.0 0.057 0.204

1.5 0.050 0.215

2.0 0.039 0.202

2.5 −0.011 0.230

3.0 −0.065 0.348

MSI 1.0 −0.902 0.254

1.5 −0.080 0.208

2.0 −0.158 0.290

2.5 −0.269 0.304

3.0 −0.298 0.256

LoA, 95% limit of agreement.

significantly higher SSVEP visual acuity was found in CCA
than the native combination (p = 0.005) and MSI (p < 0.001),
indicating CCA had a better performance in combining the
multielectrode signals in SSVEPs, especially when the spatial
frequency near the psychophysical threshold, causing the higher
SNR, i.e., higher SSVEP amplitude and lower noise, as shown in
Figure 5.

In summary, compared to FrACT visual acuity, SSVEP visual
acuity for the native combination, CCA, and MSI all had a
good agreement with it, demonstrating that these three spatial
filtering methods all had a good performance in SSVEP visual
acuity assessment. Besides, CCA-based SSVEP visual acuity had
a better performance than MSI and the native combination,
with a difference and a limit of agreement of 0.039 logMAR
and 0.202 logMAR, respectively, lower than −0.080 logMAR
and 0.208 logMAR for MSI and −0.095 logMAR and 0.253
logMAR for the native combination, as shown in Table 1. Hence,
this study recommended CCA as the spatial filtering method
for multielectrode signals combination in the SSVEP visual
acuity assessment.

DISCUSSION

In this study, to enhance the performance of visual acuity by
SSVEPs, 10 commonly used spatial filtering methods, i.e., native
combination, bipolar combination, Laplacian combination,
average combination, CAR, MEC, MCC, CCA, MSI, and PLS,
were compared to combine multielectrode SSVEP signals into
single-channel SSVEP signals for the vertical sinusoidal gratings,
finding that the Fourier analysis of SSVEP signals after these
10 spatial filtering methods all had a significant peak at the
fundamental reversal frequency, where CCA- and MSI-based
SSVEP signals had a higher SNR than the traditional single-
electrode from Oz, i.e., the native combination. Then, CCA and
MSI were used in the further SSVEP visual acuity evaluation.

Compared to the SNR level of 1.0 for the native combination,
according to the Bland–Altman analysis, the SNR levels of
2.0 and 1.5 were chosen for CCA and MSI, respectively, to
determine the regression range for visual acuity determination
criterion. After the calculation of SSVEP visual acuity over all
subjects, SSVEP visual acuity for the native combination, CCA,
and MSI all had a good agreement with subjective FrACT
visual acuity, with CCA-based SSVEP visual acuity realizing the
best performance, recommending CCA as the spatial filtering
method for multielectrode signals combination in SSVEP visual
acuity assessment.

The CCA-based SSVEP visual acuity achieved a difference
of 0.039 logMAR and a limit of agreement of 0.202 logMAR
from FrACT visual acuity, and that for MSI-based SSVEP visual
acuity were −0.080 logMAR and 0.208 logMAR, which was
all lower than them of SSVEP visual acuity for the native
combination with a difference and a limit of agreement of−0.095
logMAR and 0.253 logMAR. Since the spatial filtering methods
can enhance the SNR of SSVEPs and suppress the non-SSVEP
noise (Nakanishi et al., 2018b), this result illustrated that the
unrelated noise, e.g., EMG and EOG (Friman et al., 2007; Zhang
et al., 2021), was one of the reasons for the difference between
SSVEP and behavioral visual acuity (Hamilton et al., 2021b),
and the other methods of enhancing the SNR, such as signal
preprocessing (Kołodziej et al., 2016), e.g., time-domain filtering
(Zheng et al., 2021) and blind source separation (BSS) (Ji et al.,
2019), and SSVEP recognition algorithms (Zhang et al., 2021),
e.g., wavelet transform (WT) (Rejer, 2017) and empirical mode
decomposition (EMD) (Huang et al., 2013; Tello et al., 2014), may
also have the property to improve the agreement between SSVEP
and behavioral visual acuity.

The 10 commonly used spatial filtering methods in this
study can be divided into two categories. One is the basic
spatial filtering methods canceling the common noise of each
electrode via averaging or subtracting (Friman et al., 2007),
such as native combination, bipolar combination, Laplacian
combination, average combination, and CAR, and the other
is called model-based spatial filtering methods using the
mathematical transformation between multielectrode SSVEP
signals and the SSVEP reference signals l (Zerafa et al., 2018),
such as MEC, MCC, CCA, MSI, and PLS. Figure 5 shows that
the model-based spatial filtering methods generally had a better
performance than the basic spatial filtering methods in vertical
sinusoidal gratings except for the average combination (Friman
et al., 2007), and the reason for this may be that the model-based
spatial filtering methods can adjust the weight coefficients to each
electrode adaptively for various SSVEP signals.

All the spatial filtering methods used in this study were the
training-free methods (Wong et al., 2020), which did not require
any training data, and a new user can use this brain–computer
interface (BCI) system immediately (Zerafa et al., 2018). Because
of the fast and accurate requirement and infrequent testing
for visual acuity assessment (Zheng et al., 2021), the training-
free methods were adequate here. The filter bank strategy in
training-free methods, such as filter bank CCA (FBCCA) (Chen
et al., 2015) and filter bank MSI (FBMSI) (Qin et al., 2021),
may be also used to enhance the performance of SSVEP-based
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FIGURE 8 | Bland–Altman analysis between psychophysical Freiburg Visual Acuity and Contrast Test (FrACT) visual acuity and objective steady-state visual evoked
potential (SSVEP) visual acuity over all subjects for the native combination, canonical correlation analysis (CCA), and multivariate synchronization index (MSI),
respectively. (A) Native combination. (B) CCA. (C) MSI. In each panel, the red solid line represents the average value of the difference. The blue solid lines represent
the 95% limit of agreement. The dashed line represents the difference of zero.

FIGURE 9 | Comparison of the visual acuity assessed by Freiburg Visual Acuity and Contrast Test (FrACT) and steady-state visual evoked potentials (SSVEPs) from
three spatial filtering methods of the native combination, canonical correlation analysis (CCA), and multivariate synchronization index (MSI) over all subjects.

visual acuity assessment in future work. In contrast, the subject-
specific training methods with the best performance (Zerafa
et al., 2018), requiring training data from the specific user
and needing the cost of long and tiring training sessions, such
as individual template-based CCA (itCCA) (Bin et al., 2011),
combined-CCA (Nakanishi et al., 2014; Wang et al., 2014b),
multiway CCA (Zhang et al., 2011), multiset CCA (Zhang et al.,
2014b), and task-related component analysis (TRCA) (Nakanishi
et al., 2018a), may be more suitable for the situation where
the subjects need long-term use of BCI system, such as the
vision training with SSVEP biofeedback in amblyopia (Lapajne
et al., 2020). Besides, the subject-independent training methods
requiring training data from various subjects, providing a good
trade-off between training effort and performance (Zerafa et al.,
2018), such as transfer template CCA (ttCCA) (Yuan et al., 2015)
and combined-tCCA (Waytowich et al., 2016), may be further
applied in SSVEP visual acuity assessment.

As for the threshold determination criterion in this study,
the extrapolation technique by extrapolating a regression line
between significant SSVEP amplitudes and spatial frequencies
to a noise level baseline was used. Compared to the threshold
determination criterion of the finest spatial frequency evoking a
significant SSVEP (Hamilton et al., 2021a), where the precision
depends on the sampling density of spatial frequency when

near the threshold (Hamilton et al., 2021b), this extrapolation
technique is more practical (Zheng et al., 2020b). Compared
to the other stimulus paradigms, such as concentric rings with
oscillating expansion and contraction (Zheng et al., 2019), the
visual stimulus paradigm of vertical sinusoidal gratings in this
study can easily be realized, as recommended by the International
Society for Clinical Electrophysiology of Vision (ISCEV) standard
(Hamilton et al., 2021a).

Here, the basic spatial filtering methods used the fixed
reference electrode, Oz, for all subjects, but this may not
necessarily be the best choice for each subject (Yan et al., 2021), so
an adaptive reference electrode selection method may be explored

TABLE 2 | Bonferroni post hoc analysis of visual acuity among Freiburg Visual
Acuity and Contrast Test (FrACT) and steady-state visual evoked potentials
(SSVEPs) from three spatial filtering methods of the native combination, canonical
correlation analysis (CCA), and multivariate synchronization index (MSI).

Method Native CCA MSI

FrACT p = 0.061 p = 0.522 p = 0.096

Native – p = 0.005** p = 1.000

CCA – – p < 0.001***

***p < 0.001; **p < 0.01.
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in future work to improve the performance. In the model-based
spatial filtering methods, only the eigenvector corresponding to
one extreme value was chosen as spatial filter weights, e.g., the
spatial filter weights corresponding to the largest eigenvalue in
CCA, and there may be also some more signal information at
eigenvectors of the second largest eigenvalue or even the latter
eigenvalues (Zhao et al., 2020). Hence, future work may propose
more algorithm strategies to make full use of the information
from the spatial filtering methods. Finally, some subjects with
lower visual acuity rather than the normal visual acuity may be
also required for further research.

CONCLUSION

This study introduced the spatial filtering methods in SSVEP-
based visual acuity assessment, finding that CCA-based SSVEP
visual acuity had a better performance with an agreement of 0.202
logMAR and a difference of 0.039 logMAR, compared to the
single electrode and other spatial filtering methods. The study
proved that the performance of SSVEP-based visual acuity can
be enhanced by spatial filtering methods and also recommended
CCA as the spatial filtering method for multielectrode signals
combination in the SSVEP visual acuity assessment.
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