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Abstract

Characterization of poultry microbiota is becoming increasingly important due to the growing

need for microbiome-based interventions to improve poultry health and production perfor-

mance. However, the lack of standardized protocols for sampling, sample processing, DNA

extraction, sequencing, and bioinformatic analysis can hinder data comparison between

studies. Here, we investigated how the DNA extraction process affects microbial community

compositions and diversity metrics in different chicken respiratory sample types including

choanal and tracheal swabs, nasal cavity and tracheal washes, and lower respiratory

lavage. We did a side-by-side comparison of the performances of Qiagen DNeasy blood

and tissue (BT) and ZymoBIOMICS DNA Miniprep (ZB) kits. In general, samples extracted

with the BT kit yielded higher concentrations of total DNA while those extracted with the ZB

kit contained higher numbers of bacterial 16S rRNA gene copies per unit volume. Therefore,

the samples were normalized to equal amounts of 16S rRNA gene copies prior to sequenc-

ing. For each sample type, all predominant bacterial taxa detected in samples extracted with

one kit were present in replicate samples extracted with the other kit and did not show signif-

icant differences at the class level. However, a few differentially abundant shared taxa were

observed at family and genus levels. Furthermore, between-kit differences in alpha and

beta diversity metrics at the amplicon sequence variant level were statistically indistinguish-

able. Therefore, both kits perform similarly in terms of 16S rRNA gene-based poultry micro-

biome analysis for the sample types analyzed in this study.

Introduction

The importance of gut and respiratory microbiota in poultry health and production performance

has resulted in an increase of studies aimed towards developing microbiome-based intervention
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strategies [1–5]. Consequently, different protocols for sampling, sample processing, DNA extrac-

tion, sequencing, and bioinformatic analysis have emerged. The varying protocols utilized by dif-

ferent research groups can introduce confounding factors and complicate data comparison

between studies. For example, the variation attributed to different protocols and its effect on bio-

diversity profiles in human gut and environmental microbiota has been widely reported [6–14].

We and others have evaluated the sample collection methods for poultry respiratory and gut

microbiota [2, 15–17]. However, confounding factors associated with DNA extraction, sequenc-

ing strategies, and bioinformatic analysis in poultry microbiota remain to be studied.

An investigation carried out by the Microbiome Quality Control Project, where identical

sets of samples were processed in 15 laboratories, identified the DNA extraction process as a

significant cause of variation between laboratories, only second to sample type and origin [7].

Efficient and bias-free bacterial DNA extraction for microbiota analysis requires effective dis-

ruption of the diverse cell wall structures and compositions present in different types of bacte-

ria [18]. Kits for bacterial DNA extraction are designed to disrupt cell walls mostly through

mechanical, chemical, and enzymatic methods [19]. Each of these lysis methods has its own

advantages and disadvantages. While mechanical lysis can disrupt all types of bacteria and

increase DNA yield, it can shear or fragment genomic DNA and compromise the outcomes of

downstream applications, including sequencing [20, 21]. Enzymatic and chemical lysis meth-

ods are less likely to damage DNA, but their inefficiency in disrupting certain types of bacteria

may introduce bias in the biodiversity profiles [22]. Another important consideration for

choosing extraction kits are the contaminating DNAs that are ubiquitously present in kits and

reagents. Kit contaminants, especially nucleotide contaminants, critically impact the biodiver-

sity results obtained from low biomass samples [23, 24].

Five different DNA extraction kits were previously used in poultry respiratory microbiota

studies, including BiOstic FFPE Tissue DNA Isolation Kit, PowerSoil DNA Isolation Kit,

QIAmp DNA Mini Kit, Maxwell RSC PureFood Pathogen Kit, and Qiagen DNeasy Blood and

Tissue Kit [2, 15–17, 25–28]. These kits typically employ a combination of mechanical, chemi-

cal, and enzymatic disruption methods to increase DNA yields. In our previous poultry respi-

ratory microbiota studies [2, 15–17], the Qiagen DNeasy Blood and Tissue kit (BT kit), which

utilizes chemical and enzymatic lysis, was used. The BT kit uses proteinase K, a broad-spec-

trum serine protease, that can potentially lyse all types of bacteria, but an optional use of lyso-

zyme can ensure complete lysis of gram-positive bacteria. However, the BT kit is not certified

for the extraction of low biomass samples, such as respiratory tract swabs, without the use of

carrier nucleic acids, which can complicate downstream applications [29].

In this study, we compared the biodiversity profiles of chicken respiratory microbiota gen-

erated from DNA samples extracted using the BT kit and ZymoBIOMICS DNA Miniprep kit

(ZB kit). The ZB kit uses a combination of mechanical and chemical disruption methods and

is a certified low bioburden kit (guaranteed to contain < 3 contaminating bacterial back-

ground genomic copy per μL of eluate) [30]. Pre-sequencing results showed great differences

between the BT and ZB kits in DNA yield and 16S rRNA gene copies per unit volume. How-

ever, after sequencing of normalized samples, both kits produced similar microbiome data in

terms of bacterial diversity at the amplicon sequence variant (ASV) level and taxonomic pro-

files at the class and genus levels.

Materials and methods

Animals and ethics statement

Animal management and euthanasia were in correspondence with protocol #2015A00000056

approved by The Ohio State University Institutional Animal Care and Use Committee. This
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protocol conforms with the U.S Animal Welfare Act, Guide for Care and Use of Laboratory

Animals and Public Health Service Policy on Humane Care and Use of Laboratory Animals.

The Ohio State University is accredited by the Association for the Assessment and Accredita-

tion of Laboratory Animal Care International. White leghorn chickens were obtained from

our institution’s (Food Animal Health Research Program, Wooster, OH) specific-pathogenfree

poultry flock [17]. The chickens were provided with ad libitum access to feed and water and

their welfare was monitored twice daily. All birds were clinically healthy and were all included

in the study. Prior to the collection of invasive samples, the birds were humanely euthanized

through carbon dioxide exposure as previously described [17].

Experimental design and sample collection

A total of 72 four-week-old specific-pathogen-free chickens were hatched in the same incuba-

tor, then co-housed together for four weeks prior to sampling. At the day of sampling, the

birds were randomly assigned to three groups for sample collection based on the target sample

types and sampling techniques (Fig 1). The sample size was decided based on our recent

reports showing that four or more respiratory samples were sufficient for 16S rRNA gene-

based taxonomic and diversity analysis [17]. An assortment of invasive and non-invasive respi-

ratory samples including, nasal cavity wash, upper and lower tracheal wash, lower respiratory

lavage, as well as choanal and tracheal swabs, were obtained from either live or euthanized

birds. For the collection of tracheal and choanal swab samples, the swabs were gently inserted

into the trachea or choanal cleft, moved 5 times along the cleft or the trachea, and then subse-

quently immersed in 1 mL of 1X PBS. To collect tracheal washes, the upper and lower tracheal

tissues were aseptically excised, stored in a sterile tube, then immediately snap-frozen in liquid

nitrogen. Each frozen trachea was thawed, and the luminal mucosa was washed using 1X PBS

in a biosafety cabinet. For the collection of nasal cavity wash, the outer nares were thoroughly

wiped with a cotton ball containing 100% ethanol to remove any visible organic material. The

nasal cavity was then flushed through the nostrils with 1X PBS, until a total of approximately 1

mL of nasal wash was collected from each bird. For the collection of lower respiratory lavage, a

25 mL syringe containing 1X PBS with a fitted pipet tip was used to wash the lower respiratory

Fig 1. Experimental design. A total of 72 four-week-old SPF chickens were divided into three groups on the day of sampling. Samples were collected from individual

birds and pooled as shown above. Each sample pool was aliquoted into several replicates that were evenly divided between the BT and ZB kits. LCS, live choanal swab;

ECS, euthanized choanal swab; LTS, live tracheal swab; ETS, euthanized tracheal swab; NC, nasal cavity wash; UT, upper trachea wash; LT, lower trachea wash; LRV, lower

respiratory lavage.

https://doi.org/10.1371/journal.pone.0241732.g001
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tract until a total of 40–45 mL of lavage was collected. The samples were pooled as follows: 24

samples per pool for tracheal swabs from live birds, choanal swabs from live birds, tracheal

swabs from euthanized birds, choanal swabs from euthanized birds, upper tracheal wash pel-

lets, lower tracheal wash pellets; and 48 samples per pool for nasal cavity wash pellets and

lower respiratory lavage pellets. Pooling of the lower respiratory lavage and nasal cavity wash

samples depended on whether the trachea was to be excised, or not. Birds in group 3 could not

be used for lower respiratory lavage for practical reasons, since the entire trachea was excised

leaving no place to attach the lavage collection apparatus. On the other hand, in groups 1 and

2, the trachea was cut at about 5 mm above the syrinx to support the attachment of the appara-

tus. Likewise, the nasal cavity wash was collected only from swabbed birds after swabbing, to

prevent cross contamination between the nasal cavity and the trachea, since the procedure of

washing the nasal cavity can have some leakage to the trachea. The pooled samples were

homogenized and divided into 8 replicates for tracheal and choanal swabs and tracheal wash

pellets, and into 16 replicates for the nasal cavity wash pellets and lower respiratory lavage pel-

lets. The sample pools were evenly divided to be extracted with either the BT or ZB kit. This

study did not involve treatment groups and, therefore, no control animals were required.

Sample processing and DNA extraction

All the respiratory samples were pelleted by centrifugation at 10,000 × g at 4˚C for 10 mins.

After the supernatant was removed, the pellet was resuspended and divided accordingly into

replicates (Fig 1).

The general steps for BT kit extraction were as follows: all the respiratory samples were pre-

treated for gram-positive bacteria using an enzymatic lysis buffer containing 20 mM Tris�Cl, pH

8.0, 2 mM sodium EDTA, 1.2% Triton X-100, and 20 mg/mL of lysozyme. After incubation time

(3 hours for nasal cavity wash and swab samples, 45 min for the trachea wash and lower respira-

tory lavage samples) at 37˚C, 100% ethanol was added. The mixture was then added to a spin col-

umn for DNA isolation, and each column was washed with buffers AW1 and AW2, respectively.

Finally, 50 μL of elution buffer AE was used to elute DNA from the spin column membrane.

Since our samples were collected from multiple respiratory sites, subtle modifications to the

BT kit extraction protocol were implemented. For extraction of nasal cavity wash, tracheal

swab, and choanal swab samples, the manufacturer’s protocol was modified to include the

lysozyme-based enzymatic lysis buffer option for disruption of gram-positive bacteria and

increasing the lysis incubation time from 30 min to 3 hours (MBT-A protocol) [29]. The lon-

ger incubation time was implemented due to the high levels of organic material in these sam-

ples [17]. Upper tracheal wash, lower tracheal wash, and lower respiratory lavage samples were

extracted using another modified protocol where the enzymatic lysis incubation time was

increased from 30 min to 45 min (MBT-B protocol) as previously described [17]. In the

MBT-A protocol, proteinase K, Buffer AL, and 100% ethanol volumes were as recommended

by the manufacturer’s protocol, while AW1 and AW2 Wash Buffer volumes were increased

from 500 μL to 730 μL. The volumes of these reagents were increased 5 times in the MBT-B

protocol to improve DNA quantities and purity as previously described [17]. In both proto-

cols, DNA was eluted using 50 μL of elution Buffer AE, reapplied in the column, incubated for

5 min, and eluted once more.

Extraction of DNA from respiratory samples using the ZB kit was performed as per the

manufacturer’s direction [30]. Identical ZB kit extraction protocol was implemented regardless

of the sample type. The steps for the ZB kit extraction were as follows: initially, 730 μL of lysis

solution and beads (size = 0.1 & 0.5 mm) were added to the respiratory pellets. The tubes were

fastened to a Disruptor Genie vortex (Scientific Industries, Bohemia, NY) using a vortex
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adapter. The samples were vortexed at maximum speed for 20 min. The samples were then

centrifuged at 8,000 × g for 1 min, and 400 μL of supernatant was added to III-F filter and cen-

trifuged once more at 8,000 × g for 1 min. Afterwards 1,200 μL of DNA binding buffer was

added to the filtrate and the mixture was transferred to IICR Column and centrifuged at

10,000 × g for 1 min. Once the flow-through was discarded, the column was washed with

400 μL of Wash Buffer 1 and 700 μL of Wash Buffer 2, centrifuged at 10,000 × g, and the flow-

through was discarded. Next, an additional 200 μL of Wash Buffer 2 was added to the column

and centrifuged for 10,000 × g for 1 min. For the elution process, 50 μL of DNase/RNase free

water was directly added to the column, incubated for 1 min, and centrifuged at 16,000 × g for

3 min. As a final step, the DNA eluate was passed through the III-HRC prepped filter and cen-

trifuged at 16,000 × g for 3 min.

Both a mock community control (ZymoBIOMICS Microbial community standard) and

negative extraction controls (1X PBS) were extracted alongside the samples in both kits. At

least two negative extraction controls were collected with each sample type for each kit. The

negative extraction controls were subjected to each step, all the way from sample collection to

16S rRNA gene sequencing.

16S rRNA gene sequencing

Our optimized methods for pre-sequencing and sequence processing are detailed in our recent

reports [15–17]. Briefly, DNA concentration was quantified using NanoDrop 2000c spectro-

photometer (Thermo Fisher Scientific, Waltham, MA) and adjusted to a concentration of 100

ng/μL. Next, 16S rRNA genes in the DNA samples were PCR-amplified and sequenced at the

University of Minnesota Genomics Center. The 16S rRNA gene copies in the samples were

determined by using quantitative PCR (qPCR) of the V4 hypervariable region using primer

sets 515F (50-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGCMGCCGCGGT
AA-30) and 806R (50-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACHV
GGGTWTCTAAT-30) Nextera primers [31]. The conditions for qPCR were as follows: one cycle

of 95˚C for 5 min; followed by 35 cycles of 98˚C for 20 s, 55˚C for 15 s, and 72˚C for 1 min; and

one cycle of 72˚C for 5 min using QuantStudio Real-Time PCR System (Thermo Fisher Scien-

tific, Waltham, MA). The Cycle Threshold (CT) values were then converted to 16S rRNA gene

copy numbers using a standard curve. The samples were then normalized to 1.67 × 105 16S

rRNA gene copies/μL then subjected to two rounds of PCR. In the first round, 515F and 806R

Nextera primers were used for the amplification of V4 region from 3 μL of normalized DNA

using the following cycling parameters: one cycle of 95˚C for 5 min, followed by 25 cycles of

98˚C for 20 s, 55˚C for 15 s, and 72˚C for 1 min. The PCR product was then diluted to 1:100,

and 5 μL was used in the second round of PCR using forward (50-AATGATACGGCGA
CCACCGAGATCTACAC(i5)TCGTCGGCAGCGTC-30) and reverse (50-CAAGCAGAAGACGG
CATACGAGAT(i7)GTCTCGTGGGCTCGG-30) indexing primers (Integrated DNA Technolo-

gies, Coralville, IA). In the second PCR, the following cycling parameters were used: 1 cycle at

95˚C for 5 min, followed by 10 cycles of 98˚C for 20 s, 55˚C for 15 s, and 72˚C for 1 min. Pooled

size-selected samples were denatured using NaOH, diluted to 8 pM in Illumina’s HT1 buffer,

spiked with 20% PhiX, and heat denatured at 96˚C for 2 min immediately before loading.

MiSeq 600 (2 × 300 bp) cycle v3 kit (Illumina, San Diego, CA) was used to sequence the sam-

ples. This protocol is an optimization of the Earth Microbiome Project protocol [32, 33].

Data processing and statistical analysis

Fastq files for each sample were generated after sequence demultiplexing. BBTools (v35), a

suite of DNA/RNA analysis software provided by the Joint Genome Institute, was used to
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trim both proximal and distal primers and adapters from the sequences using the BBDuk

module, and paired-end reads were merged using the BBMerge module [34]. Cutadapt

(v1.4.2) was used to remove 16S rRNA gene amplicon primers [35]. The BBMap module of

BBTools were used to filter sequence lengths of less than 245 and greater than 260 base pairs

[34].

QIIME 2 (qiime2-2019.1) and software implemented therein, were used for additional data

processing and statistical analysis [36]. Using a Casava 1.8 single-end demultiplexed format,

sequences were imported into QIIME 2. DADA2, pooled chimera filtering method, was used

to denoise the sequences [37]. VSEARCH [38] was used for chimeric sequence detection, non-

16S rRNA gene identification, and open reference clustering of amplicon sequence variants

(ASVs) with a similarity threshold of 100% using the SILVA (release 132) reference database

[39]. Furthermore, ASVs with a total frequency of< 10 in the entire table and present in only

1 sample were removed. In addition, to generate a feature table using MAFFT, a de novo align-

ment of the representative set of sequences was used, which eliminated non-conserved and

highly gapped alignment columns by applying the ’mast’ option of the alignment plugin. The

aligned filtered sequences were used to reconstruct a phylogenetic tree using Fast Tree, that

was then rooted at the mid-point prior to beta diversity analysis.

A Naïve Bayes classifier was trained using the 16S rRNA gene sequences covered in the

515F (GTGYCAGCMGCCGCGGTAA) and 806R (GGACTACNVGGGTWTCTAAT) primer pair

region for taxonomic classification [40]. For the respiratory samples, the classifier was trained

on the reference sequences derived from the SILVA 16S rRNA gene database (release 132)

based on matches with this primer pair and a taxonomic identification table (majority classifi-

cation) based on 99% identity clustered reference sequences. For the mock community sam-

ples, the classifier was trained using the 16S rRNA sequences provided by ZymoBIOMICS

with identical parameters as described above. Finally, the classifier was used in our experimen-

tal data to assign taxonomy to the observed ASVs. 5000 reads per sample was the rarefaction

cut-off in the final feature table [15–17].

Weighted and unweighted UniFrac distance metrics were used to assess beta diversity var-

iations in the bacterial community structure between extraction kits [41]. Statistical differ-

ences in the beta diversity for each sample type between the kits were quantified by pairwise

permutational multivariate analysis of variance (PERMANOVA) with a Benjamini-Hoch-

berg correction for false discovery [42]. The number of observed ASVs [43] was used for

alpha diversity analysis to evaluate the richness of bacterial species for each sample, and Pie-

lou’s evenness [44] was used to evaluate the relative evenness of species richness. Statistical

differences between DNA quality and quantity, 16S rRNA gene copies in total DNA per sam-

ple, number of 16S rRNA gene sequences per sample, avian mitochondria sequences per

sample, and alpha diversity were examined using a nonparametric Kruskal-Wallis test with

Benjamini-Hochberg correction for false discovery [45]. Differences were considered signifi-

cant at p < 0.05.

Additionally, differentially abundant analysis (DESeq2) and contamination removal

(decontam) were conducted in R [46]. DESeq2 was used to detect statistically significant differ-

entially abundant taxa between kits for each respiratory sample type [47]. Adjusted p

values< 0.05 (Wald statistic, with a Benjamini-Hochberg correction for false discovery) were

considered to be significant [47]. Decontam frequency method (version 1.2.1) was used to

identify taxa with significant inverse correlations with 16S rRNA gene concentration as mea-

sured via qPCR [48]. Moreover, respiratory samples were filtered based on the number of 16S

rRNA gene copies found in the negative extraction control. Samples that contained lower 16S

rRNA gene copies compared to the respective negative extraction controls were removed from

analysis.
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Results

BT and ZB kits differ greatly in DNA yield and 16S rRNA gene copy

numbers

For both kits, DNA was eluted in a volume of 50 μL to allow between-kits comparison of DNA

concentrations and purity. DNA quality was spectrophotometrically measured and expressed as

ratios of absorbances at 260 nm and 280 nm wavelengths (A260/A280) and 260 nm and 230 nm

wavelengths (A260/A230). The mean A260/A280 values for most of the samples were around

1.8 and were not statistically different between the kits. However, the mean value for the lower

respiratory lavage samples extracted with the ZB kit was higher than 2.0 which was significantly

higher compared to the BT kit (Fig 2A). On the other hand, higher mean A260/A230 ratios

were observed for most of the samples extracted using the BT kit, with significantly higher ratios

in the live choanal swab, euthanized choanal swab, euthanized tracheal swab, nasal cavity wash,

and lower respiratory lavage (Fig 2B). DNA yield was spectrophotometrically measured and

expressed as mass per unit volume (ng/μL). In general, the BT kit tended to have more DNA

yield than the ZB kit, with DNA quantities being significantly higher for most of the sample

types except for the lower trachea wash and lower respiratory lavage (Fig 2C).

The DNA was subsequently subjected to qPCR to determine the number of 16S rRNA gene

copies. Negative extraction controls were included to facilitate filtering out of samples with

low amounts of 16S rRNA gene copies. The highest amounts of 16S rRNA gene copies detected

in the negative controls were set as elimination thresholds for the corresponding sample types.

The elimination cut-offs for the BT kit were 1.6 × 103, 1.4 × 104, 2.0 × 103, 3.1 × 103, and

1.1 × 104 16S rRNA gene copies per nanogram of total DNA for choanal swab, lower respira-

tory lavage, nasal cavity wash, tracheal swab, and lower and upper tracheal washes, respec-

tively. The elimination cut-offs for the ZB kit were 20, 50, 20, 60, and 15 16S rRNA gene copies

per nanogram of DNA for choanal swab, lower respiratory lavage, nasal cavity wash, tracheal

swab, and tracheal wash, respectively. Using these criteria, 3 out of the 40 samples extracted

using the BT kit were dropped from further analysis (1 live tracheal swab and 2 lower respira-

tory lavage samples). In contrast, all 40 samples extracted using the ZB kit were retained.

Among the retained samples, the nasal cavity wash, euthanized tracheal swab, and eutha-

nized choanal swab samples extracted with the ZB kit had significantly higher numbers of 16S

rRNA gene copies than those extracted using the BT kit (Fig 3A). Subsequently, all samples

were normalized to 1.67 × 105 16S rRNA gene copies/μL. This was done to achieve 5 × 105 16S

rRNA gene copies in 3μL of normalized sample used for pre-sequencing PCR, which approxi-

mately translates to a target sequencing coverage of at least 10X. The PCR products were sub-

sequently used for sequencing library preparation. No significant differences in the 16S rRNA

gene sequence counts from the normalized samples were observed between the kits, except for

the lower respiratory lavage samples (Fig 3B). Additionally, a substantial number of non-16S

rRNA gene sequences, including host avian mitochondria gene sequences, were detected in

samples extracted with either kit (Fig 4). Avian mitochondria gene sequences were 175, 176,

178, and 194 bp in length, while the 16S RNA gene sequence lengths were between 250–264 bp

(Fig 4A). For all sample types, no significant differences were detected in the number of avian

mitochondria gene sequences between the kits (Fig 4B).

Minimal contaminants were identified, and the kits displayed subtle

differences in extraction efficiencies

Several bacterial taxa were found in the negative extraction controls, indicating the presence of

contaminants originating from either the reagents, sample processing steps, or sequence
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library preparation. These taxa were analyzed using decontam R package to identify contami-

nants in the respiratory samples [48]. Of the 1487 ASVs detected among the samples, 14 were

identified to be contaminants (Table 1). The contaminants were detected in low abundances

(< 0.15% relative abundance) independently of the kit used for extraction.

A mock community control was processed alongside the respiratory samples to assess the

efficiency of extraction between the kits and the extent of contamination during the extraction

process. Contaminants in the mock community samples were identified based on their

absence in the compositional shotgun sequence data provided by ZymoBIOMICS in the certif-

icate of analysis [49]. Consistent with our previous findings [17], the mock community

had< 1% contaminant bacteria (Table 1). While all bacteria in the mock community were

Fig 2. Comparison of quantity and quality of DNA from samples extracted using the ZB and BT kits. The elution volume was standardized to 50 μL for

both kits. DNA quality was expressed as ratios of absorbances at (A) 260nm and 280nm wavelengths (A260/A280) and (B) 260nm and 230nm wavelengths

(A260/A230). (C) DNA yield was expressed as mass per unit volume (ng/μL). Statistical differences, � p< 0.05 (pairwise Kruskal-Wallis tests, with a

Benjamini-Hochberg correction for false discovery). LCS, live choanal swab; ECS, euthanized choanal swab; LTS, live tracheal swab; ETS, euthanized tracheal

swab; NC, nasal cavity wash; UT, upper trachea wash; LT, lower trachea wash; LRV, lower respiratory lavage.

https://doi.org/10.1371/journal.pone.0241732.g002
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detected in samples extracted with either kit, their relative abundances based on 16S rRNA

gene sequencing varied compared to the theoretical 16S rRNA gene abundances (Table 2)

[50]. Even though disparities in the relative abundance of 16S rRNA gene sequences were

detected between the kits, only Listeria monocytogenes and Staphylococcus aureus, both gram-

positive bacteria, were found to be significantly higher in the ZB kit as detected using DESeq 2

[47]. However, this difference may be due to the low number of mock community replicates

available for this study (Table 2).

Method of extraction had minimal effects on taxonomic composition and

diversity

After filtering the sequence data based on the 16S rRNA gene copy numbers and contaminants

in negative extraction controls, the impacts of the extraction kits on basic microbiota parame-

ters were assessed. Both of the extraction kits were able to detect the following predominant

taxa at the class level: Bacilli, Clostridia, Gammaproteobacteria, Bacteroida, Erysipelotrichia,

Actinobacteria, Mollicutes, and Alphaproteobacteria (Fig 5). Furthermore, several ASVs that

were shared between the extraction methods within each sample type constituted > 92% of

total abundance in the corresponding bacterial community (Table 3). Although several unique

ASVs were detected by either kit, their relative abundances were low (S2 File). In addition,

Fig 3. Between-kit comparison of pre- and post-sequencing 16S rRNA gene copies for each sample type. (A) Pre-sequencing 16S rRNA gene copies

per nanogram of total DNA. Quantitative PCR was used to determine the number of 16S rRNA gene copies per μL of sample. The DNA samples were

then normalized to 1.67 × 105 16S rRNA gene copies/μL for subsequent PCR prior to sequencing. (B) Post-sequencing 16S rRNA gene sequence counts.

The sequences were quality-filtered as described in Materials and methods. Statistical differences, � p< 0.05 (pairwise Kruskal-Wallis tests, with a

Benjamini-Hochberg correction for false discovery). LCS, live choanal swab; ECS, euthanized choanal swab; LTS, live tracheal swab; ETS, euthanized

tracheal swab; NC, nasal cavity wash; UT, upper trachea wash; LT, lower trachea wash; LRV, lower respiratory lavage.

https://doi.org/10.1371/journal.pone.0241732.g003
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differentially abundant shared taxa were assessed (Table 4). While majority of these differen-

tially abundant taxa had very low relative abundance, Vibrio prevalence was highly pro-

nounced in the BT kit.

The characteristics of the microbial communities detected by each kit were evaluated fur-

ther through alpha and beta diversity metrics. In majority of the samples, the number of

observed ASVs in a given sample type were statistically indistinguishable between the kits,

except in the live choanal swab where, on average, samples extracted using the BT kit had a

higher number of ASVs (Fig 6A). Similarly, the extraction kit did not affect the species even-

ness in any of the sample types (Fig 6B). Beta diversity was assessed by comparing within sam-

ple type UniFrac distances between kits. No statistical differences were observed between the

kits (Fig 7).

Discussion

The DNA extraction process can be a major source of variation between microbiome studies

[7]. This poses a potential problem with inter-study comparison among the growing number

of poultry respiratory microbiome studies. Using the BT kit in our previous studies, we were

able to characterize the microbial communities present in sinus cavities, tracheas and lower

respiratory tracts of turkeys, chicken broilers, and chicken layers raised in commercial settings,

and specific-pathogen free chickens raised for research [2, 15–17]. Although we optimized the

BT kit for increased DNA yields and removal of PCR inhibitors from respiratory samples [2,

15, 17], the kit is not specifically certified for microbiome sample extraction [29]. Here, we

Fig 4. Host sequences detected in Illumina sequencing data. (A) Sequence length distribution showing the size ranges for avian mitochondria (175, 176,

178, and 194 bp) and 16S rRNA gene sequences (250–264 bp). (B) Statistical comparisons of mitochondria gene sequences in different tissue types. Statistical

differences, � p< 0.05 (pairwise Kruskal-Wallis tests, with a Benjamini-Hochberg correction for false discovery).

https://doi.org/10.1371/journal.pone.0241732.g004
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compared the performance of the BT kit with that of the ZB kit, which is validated for extrac-

tion of low-bioburden microbiome samples [30]. Overall, while statistical differences were

observed between kits in the pre-sequencing results, post-sequencing microbiota data obtained

with normalized samples showed only minimal differences between the kits.

Both kits were very efficient in eliminating protein contaminants absorbing at 280 nm as

indicated by A260/A280 ratios within the expected range of 1.8–2.0 [29, 51, 52]. However, the

ZB kit seemed inefficient at removing non-protein contaminants absorbing at 230 nm from

some sample types, especially the nasal cavity wash and lower respiratory lavage samples, as

indicated by A260/A230 ratios that were below the expected range of 2.2–2.5 (Fig 2B) [53].

While the exact nature of these impurities remain undetermined, their impact on PCR amplifi-

cation was negligible as samples extracted with the ZB kit tended to have similar or higher 16S

rRNA gene copy numbers compared to those extracted with the BT kit (Fig 3A). Nevertheless,

the ZB kit may require further optimization since the A260/A230 ratios reported in other stud-

ies comparing the performances of several commercial kits for bacterial DNA extraction from

different sample types were all within the expected range [22, 54, 55]. On the other hand, the

extraction process with the BT kit tended to acquire higher levels of contaminating bacteria

Table 1. Contaminants identified in negative and mock community controls.

Negative Mock Community

BT ZB BT ZB

Acetobacteroides 0.004� 0.000

Acinetobacter 0.004 0.000

Bacillus 0.000 0.034

Bacteroides 0.011 0.000

Candidatus Woesebacteria 0.004 0.000

Clostridiales 0.004 0.006

Clostridium sensu stricto 1 0.004 0.000

Corynebacterium 1 0.020 0.138

Faecalibacterium 0.003 0.007

Flavobacterium 0.003 0.000

Halomonas 0.033 0.026

Lactobacillus 0.090 0.057

Lactobacillus vaginalis 0.000 0.026

Phascolarctobacterium 0.000 0.052

Phyllobacterium 0.004 0.006

Polymorphobacter 0.004 0.000

Pseudoalteromonas 0.003 0.000

Pseudochrobactrum 0.000 0.009

Ruminiclostridium 0.004 0.000

Ruminococcaceae 0.004 0.006

Sphingomonas 0.029 0.037

Stenotrophomonas acidaminiphila 0.004 0.000

Streptococcus 0.004 0.000

Streptococcus varani 0.000 0.004

uncultured bacterium 0.004 0.000

Vibrio 0.141 0.143

Total abundance 0.064 0.242 0.318 0.31

�Values represent relative abundance as a percentage of pooled sequences from all sample types extracted with the indicated kit.

https://doi.org/10.1371/journal.pone.0241732.t001
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resulting in 16S RNA gene copy cut-off values that were 2 to 3 orders of magnitude higher

compared to the ZB kit. We speculate that the minimal steps and low bioburden reagents in

the ZB kit contributed to lower 16S copies found in the negative extraction controls.

Our protocol for 16S rRNA sequencing on the Illumina platform calls for sample normali-

zation to 5 × 105 16S rRNA copies/ 3μL before PCR amplification and library preparation to

have a 10X target sequencing coverage. This normalization appeared to eliminate between-kit

differences in the number of 16S rRNA gene sequences (Fig 3B). Studies evaluating kit effects

on bacterial diversity typically focus on the differences observed in the concentration of 16S

rRNA gene copies detected via quantitative PCR without paying much attention to the actual

number of 16S rRNA gene sequences recovered [54, 56]. The contribution of unnormalized

DNA concentrations to the observed difference in microbiota profile between kits needs to be

clarified. Furthermore, the number of non-16S rRNA gene sequences, most of which were

derived from the host (Fig 4A), accounted for 18% and 24% of total sequences obtained

through BT and ZB kit extraction processes, respectively, confirming that the 16S rRNA gene

Table 2. Efficiency of mock community extraction.

Mock Community Taxonomic Identity Gram stain Relative Abundance of 16S rRNA gene sequences (%)

BT (n = 3) ZB (n = 2) Theoretical†

Bacillus subtilis + 15.6 ± 1.4 16.3 ± 0.8 17.4

Listeria monocytogenes� + 4.3 ± 1.2 9.9 ± 0.9 14.1

Staphylococcus aureus� + 6.5 ± 0.7 15.4 ± 4.5 15.5

Enterococcus faecalis + 8.6 ± 1.1 7.5 ± 0.3 9.9

Lactobacillus fermentum + 25.6 ± 0.4 21.8 ± 1.2 18.4

Escherichia coli - 13.3 ± 0.2 10.3 ± 2.4 10.1

Salmonella enterica - 13.3 ± 0.6 9.6 ± 3.6 10.4

Pseudomonas aeruginosa - 12.7 ± 0.4 9.1 ± 1.7 4.2

†Theoretical 16S values were calculated based on theoretical genomic DNA composition as provided by ZymoBIOMICS for Catalog No: D6300, using the following

formula: 16S/18S copy number = total genomic DNA (g) × unit conversion constant (bp/g) / genome size (bp) × 16S/18S copy number per genome. https://files.

zymoresearch.com/protocols/_d6300_zymobiomics_microbial_community_standard.pdf.

Statistical differences

� p < 0.05 adjusted p-value (Wald statistic, with a Benjamini-Hochberg correction for false discovery).

https://doi.org/10.1371/journal.pone.0241732.t002

Fig 5. Comparison of relative abundances of different bacteria classes in samples extracted using the BT and ZB kits. LCS, live choanal swab; ECS, euthanized

choanal swab; LTS, live tracheal swab; ETS, euthanized tracheal swab; NC, nasal cavity wash; UT, upper trachea wash; LT, lower trachea wash; LRV, lower respiratory

lavage.

https://doi.org/10.1371/journal.pone.0241732.g005
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primer set used in this study was highly specific and PCR thermocycling conditions were

optimal.

In addition to pre-sequencing data, bacterial compositions and diversity metrics are com-

monly used as proxies for performance in extraction kit-comparison studies [22, 55, 57, 58].

Here, all the predominant ASVs detected in samples extracted with one kit were present in

replicate samples extracted with the other kit and did not show significant differences at the

genus level (Tables 3 and 4 and Fig 5). Probing further into shared taxa at higher levels of taxo-

nomic resolution, a total of 11 genus level and 2 family level taxa were differentially abundant

in one or more sample types (Table 4). Although majority of these differentially abundant taxa

were low in relative abundance, Vibrio was more prevalent in samples extracted with the BT

kit, which is intriguing since gram-negative bacteria are easy to lyse [59], and should therefore

be represented at similar levels in samples extracted with either kit. However, between-kits

Table 3. Comparison of the number of shared and unique ASVs and their relative abundance between the kits.

Sample type Shared ASVs Unique ASVs

# of ASVs Relative Abundance

(%)

BT ZB

BT ZB # of ASVs Relative Abundance (%) # of ASVs Relative Abundance (%)

Euthanized choanal swab 178 99.42 99.7 99 0.58 59 0.3

Live choanal swab 288 95.15 98.59 151 4.85 123 1.41

Euthanized tracheal swab 128 99.54 99.49 88 0.46 80 0.51

Live tracheal swab 141 92.07 97.76 130 7.93 137 2.24

Nasal cavity wash 285 99.58 99.7 104 0.42 100 0.3

Upper tracheal wash 63 97.67 99.51 72 2.33 72 0.49

Lower tracheal wash 53 98.63 99.59 76 1.37 54 0.41

Lower respiratory lavage 196 98.43 96.9 118 1.57 186 3.1

https://doi.org/10.1371/journal.pone.0241732.t003

Table 4. Differentially abundant shared taxa.

Differentially Abundant Taxon DCS LCS DTS LTS NW UT LT LV

BT ZB BT ZB BT ZB BT ZB BT ZB BT ZB BT ZB BT ZB

Lactococcus 0.03 0.0 0.4 0.3 0.0 0.0 0.1 0.1 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.1

CHKCI001 0.02 0.1 0.1 0.4 0.0 0.2 0.1 0.3 0.1 0.4 0.0 0.0 NS NS 0.0 0.1

[Eubacterium] hallii group 0.05 0.2 0.1 0.5 0.0 0.2 0.0 0.2 0.1 0.4 0.0 0.0 NS NS 0.1 0.1

Ruminococcaceae UCG-004 NS NS 0.0 0.2 0.0 0.0 NS NS 0.0 0.1 NS NS NS NS 0.0 0.0

Subdoligranulum 0.17 0.4 1.1 3.0 0.2 0.4 0.4 1.3 0.7 1.3 0.0 0.1 0.0 0.1 0.1 0.6

Ochrobactrum 0.00 0.0 NS NS 0.0 0.0 NS NS NS NS 0.1 0.0 NS NS 0.1 0.0

Pseudoalteromonas NS NS 1.4 0.0 NS NS NS NS 0.0 0.0 NS NS NS NS 0.6 0.0

Vibrio 0.85 0.0 14.4 0.0 0.7 0.0 17.2 0.1 0.9 0.0 7.8 0.0 5.3 0.1 8.4 0.1

Stenotrophomonas NS NS 1.2 0.0 NS NS NS NS NS NS 0.6 0.0 NS NS 0.6 0.0

Halomonas NS NS NS NS NS NS NS NS 0.1 0.0 NS NS 0.7 0.0 NS NS

Romboutsia 0.51 1.0 3.0 5.2 0.3 0.8 1.5 2.1 0.2 1.1 0.2 0.3 0.1 0.3 0.0 0.3

unclassified Peptostreptococcaceae 0.07 0.2 0.2 0.9 0.1 0.3 0.1 0.4 0.2 0.7 0.0 0.1 0.0 0.0 0.0 0.1

unclassified Enterobacteriaceae 0.16 0.1 1.4 0.2 0.4 0.6 2.7 2.1 0.2 0.2 0.7 0.2 0.4 0.2 0.7 0.4

Differentially abundant shared taxon within a sample type between kits identified by DESeq2. Numbers in bold formatting represent significant differences between BT

and ZB, p < 0.05 adjusted p-value (Wald statistic, with a Benjamini-Hochberg correction for false discovery). Numbers with an additional gray highlight represents

relative abundance differences between the kits of about 1% or higher.

Note: NS denotes taxa that is not shared between the kits within a sample type. Additionally, any zero value on the table is a non-zero value if significant digits are

increased to > 5 decimal places.

https://doi.org/10.1371/journal.pone.0241732.t004
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differences in alpha and beta diversity metrics were statistically indistinguishable (Figs 6 and

7). The high variability in the weighted UniFrac distances reflects differential abundances of

several taxa between the kits (Table 4, S1 File).

Other studies have typically compared multiple extraction kits using a single sample type

[22, 55, 57, 58]. In this study, although post-sequencing analysis revealed comparable perfor-

mances between the BT and ZB kits across multiple types of respiratory samples, the impact of

sample type on other DNA extraction methods requires further investigation. For example,

between-kit differences appear to be magnified in gut samples [54, 60] and reduced in respira-

tory samples [56, 57], possibly due to body site differences in microbial densities and other fac-

tors such as PCR inhibitors, complexity of matrix, high bacteria density and inhibitors present

in the sample. Nevertheless, both BT and ZB kits performed similarly in terms of extracting

specific bacteria in the mock community and showed differences in bacterial compositions

and diversity metrics between different respiratory sites (Tables 2, 3), and have therefore vali-

dated our previous reports [2, 15–17]. While high numbers of unique ASVs were present in

samples extracted with either kit, their total relative abundances were very low. The presence

of unique ASVs in low biomass samples, such as respiratory samples, is not unexpected [23,

24]. However, since there is no standard reference for avian respiratory microbiome, we can-

not determine whether the unique ASVs are contaminants despite multiple steps of filtering,

or rare taxa inhabiting the avian respiratory tract [61–63]. We suggest that these low abun-

dance taxa be investigated further using a combination of culture dependent and independent

approaches. With that said, the ZB kit is less likely to contain contaminant bacterial DNA,

thereby reducing the likelihood of excluding samples with low DNA concentrations from anal-

ysis. Note that while both kits performed similarly in the detection of bacterial taxa from

Fig 6. Comparison of alpha diversity metrics from samples extracted using the ZB and BT kits. (A) Species richness was estimated based on the

number of observed amplicon sequence variants (ASVs) in each sample. (B) Species evenness in each sample was estimated using Pielou’s evenness index.

Statistical differences, � p< 0.05 (pairwise Kruskal-Wallis tests, with a Benjamini-Hochberg correction for false discovery). LCS, live choanal swab; ECS,

euthanized choanal swab; LTS, live tracheal swab; ETS, euthanized tracheal swab; NC, nasal cavity wash; UT, upper trachea wash; LT, lower trachea wash;

LRV, lower respiratory lavage.

https://doi.org/10.1371/journal.pone.0241732.g006
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different sample types, the number of ASVs from live choanal swab were exaggerated with the

BT kit (Fig 6A), suggesting that this kit is not optimal for this sample type.

The design of this study resulted in uneven distribution of sample replicates between sam-

ple types. For each kit, there were 8 replicates/sample type for lavage and nasal wash samples

and 4 replicates/sample type for tracheal wash and swab samples. Therefore, reasonable com-

parisons between sample types within each kit could not be achieved in this study.

In conclusion, both the ZB and BT methods of DNA extraction produced similar chicken

respiratory microbiome data in terms of bacterial diversity and taxonomic profiles.

Supporting information

S1 File. Data workbook. DESeq2 analysis for shared taxa within a sample type between kits.

(XLSX)

S2 File. Data workbook. Average relative abundance of shared and unshared taxa within a

sample type between kits.

(XLSX)
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56. Pérez-Losada M, Crandall KA, Freishtat RJ. Comparison of two commercial DNA extraction kits for the

analysis of nasopharyngeal bacterial communities. microbiology 2016, Vol 2, Pages 108–119. 2016

[cited 29 Jun 2020]. https://doi.org/10.3934/microbiol.2016.2.108

57. Terranova L, Oriano M, Teri A, Ruggiero L, Tafuro C, Marchisio P, et al. How to Process Sputum Sam-

ples and Extract Bacterial DNA for Microbiota Analysis. Int J Mol Sci. 2018; 19. https://doi.org/10.3390/

ijms19103256 PMID: 30347804

58. Lazarevic V, Gaïa N, Girard M, François P, Schrenzel J. Comparison of DNA Extraction Methods in

Analysis of Salivary Bacterial Communities. PLOS ONE. 2013; 8: e67699. https://doi.org/10.1371/

journal.pone.0067699 PMID: 23844068

59. Silhavy TJ, Kahne D, Walker S. The Bacterial Cell Envelope. Cold Spring Harbor Perspectives in Biol-

ogy. 2010;2. https://doi.org/10.1101/cshperspect.a000414 PMID: 20452953

60. Lim MY, Song E-J, Kim SH, Lee J, Nam Y-D. Comparison of DNA extraction methods for human gut

microbial community profiling. Systematic and Applied Microbiology. 2018; 41: 151–157. https://doi.org/

10.1016/j.syapm.2017.11.008 PMID: 29305057

61. Kaminsky R, Morales SE. Conditionally Rare Taxa Contribute but Do Not Account for Changes in Soil

Prokaryotic Community Structure. Front Microbiol. 2018; 9. https://doi.org/10.3389/fmicb.2018.00809

PMID: 29755437
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