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Abstract: The prostate is vulnerable to two major age-associated diseases, cancer and benign en-
largement, which account for significant morbidity and mortality for men across the globe. Prostate
cancer is the most common cancer reported in men, with over 1.2 million new cases diagnosed and
350,000 deaths recorded annually worldwide. Benign prostatic hyperplasia (BPH), characterised
by the continuous enlargement of the adult prostate, symptomatically afflicts around 50% of men
worldwide. A better understanding of the biological processes underpinning these diseases is needed
to generate new treatment approaches. Developmental studies of the prostate have shed some light
on the processes essential for prostate organogenesis, with many of these up- or downregulated
genes expressions also observed in prostate cancer and/or BPH progression. These insights into
human disease have been inferred through comparative biological studies relying primarily on
rodent models. However, directly observing mechanisms of human prostate development has been
more challenging due to limitations in accessing human foetal material. Induced pluripotent stem
cells (iPSCs) could provide a suitable alternative as they can mimic embryonic cells, and iPSC-derived
prostate organoids present a significant opportunity to study early human prostate developmental
processes. In this review, we discuss the current understanding of prostate development and its
relevance to prostate-associated diseases. Additionally, we detail the potential of iPSC-derived
prostate organoids for studying human prostate development and disease.

Keywords: prostate organogenesis; prostate organoids; iPSCs; prostate cancer; BPH

1. Introduction

The prostate is a male reproductive accessory gland in the pelvis that secretes seminal
fluid components. Curiously, the prostate is more susceptible to oncogenic transformation
than other male sexual organs. Indeed, prostate cancer (PCa) is the most common cancer
reported in men, with over 1.2 million new cases diagnosed every year worldwide and
accounts for around 350,000 deaths annually [1].

PCa is characterised by a malignant transformation of cells through an accumulation of
molecular changes caused by genetic and epigenetic drivers [2,3]. PCa progression is often
driven by androgen signalling. Androgens regulate prostate development and growth
during embryogenesis and, in adolescence and later, are responsible for homeostasis of the
adult gland. Under normal conditions, the adult prostate undergoes slow cell proliferation
for tissue homeostasis. However, tissue damage or inflammation following infection
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can lead to abnormal growth of epithelial cell types and growth of the prostate [4–6].
Non-malignant enlargement of the adult prostate is also a common phenomenon associated
with ageing, termed benign prostatic hyperplasia (BPH). Around 50% of males aged about
60 years show pathological signs of BPH, and almost all males show histological signs by
90 years [7,8]. The prostate of men clinically diagnosed with BPH usually increases from an
average size of approximately 20 g, typical for a young adult around the age of 30, to a size
of over 40 g in the following two decades. This growth primarily involves the transitional-
periurethral zone (TPZ), which surrounds the urethra. Consequently, enlargement of the
TPZ can lead to narrowing of the urethra, resulting in lower urinary tracts symptoms
(LUTs), such as weak urination stream, increased frequency or urgency, and nocturia [9].
The underpinning mechanisms that lead to disease are the focus of intense research, and
it is thought that many of these mechanisms are shared with prostate development [10].
In the late 1970s, John McNeal proposed that BPH growth is characterised by an ‘embryonic
reawakening’ of the inductive prostate stroma, stimulating epithelial ducts to undergo
proliferation and branching as seen in development, to produce epithelial growth and
BPH nodules [11,12]. This theory suggests that the mature prostate epithelium maintains
or regains the ability to respond to developmental cues that the adult stroma is emitting.
Likewise, the theory has been adapted to explain some of the mechanisms underlying PCa.
For example, there is evidence that reactivation of epithelial-to-mesenchymal transition
programs that occur during embryonic development promotes metastatic PCa progression
and drug resistance in cancer stem cells [13–17].

A better understanding of early mesenchymal-epithelial interactions during prostate
development will likely offer essential insights into the mechanisms underlying PCa and/or
BPH progression. Much progress has already been made in understanding key drivers of
prostate organogenesis using rodent models [13,18,19]. While cross-species recombination
studies have indicated conserved mechanisms underlying early prostate development
(i.e., prostate specification), there are differences between the human and rodent prostate
that arise during later development. For instance, the rodent prostate is composed of
distinct lobes while the human prostate is composed of compacted zones that are not
analogous. This opens the question of which rodent prostate lobe would best represent
the human prostate. Currently, no relation between a rodent prostate lobe and the human
prostate has been uncovered [20]. Additionally, the cellular composition of human and
rodent prostates differs: humans have a 1:1 ratio of basal to luminal cells whereas rodents
have a ratio of 1:7 [21]. The amount and thickness of stroma in humans is also higher when
compared to rodents [20].

Limited access to foetal prostate tissue has hindered further exploration of prostate de-
velopment drivers and the theory of embryonic reawakening leading to prostate diseases in
humans. These limitations could be overcome by using human induced pluripotency stem
cell (iPSC)-derived prostate organoids to study developmental processes in detail. In this
review, we will describe the mechanisms of prostate organogenesis, key molecular drivers,
and their association with prostate disease. Finally, we outline additional approaches to
study prostate biology using iPSCs.

2. Prostate Organogenesis

The prostate develops from the embryonic urogenital sinus (UGS), a caudal extension
of the hindgut [22]. At about week seven of human gestation, the ventral portion of an ep-
ithelial chamber called the cloaca gives rise to the primitive urogenital sinus [23]. The UGS
comprises the endodermally-derived urogenital sinus epithelium (UGE) surrounded by
the mesodermally-derived urogenital sinus mesenchyme (UGM). In males, Leydig cells of
the embryonic testis secrete androgens, which signals to the caudal UGS to initiate prostate
specification [19]. Interestingly, other endodermal tissues along the gut tube are common
sites for human cancers, such as lung, liver, pancreas, and colorectal, suggesting a similar
developmental origin for cancers in hindgut-derived tissues. Tissues of the male repro-
ductive system originating from different germ layers, such as the mesodermally-derived
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seminal vesicles, appear to be more resistant to oncogenic transformation [24]. Cunha
and colleagues described prostatic development as five major stages: the pre-bud stage,
initial budding, bud elongation, branching morphogenesis, and ductal canalisation and
cytodifferentiation [19] (Figure 1).
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2.1. Budding, Elongation, and Branching of the Prostate

The pre-bud stage begins around 8–9 weeks gestation in humans, embryonic day
(E)13–15 in mice and E14–18 in rats [19]. During this period, androgens begin to be secreted
by the embryonic testes, with the androgen receptor (AR) being expressed in the UGM
and the apical layer of the UGE. Most of the UGE also co-expresses luminal (CK8, CK18)
and basal (CK5, CK14, p63, CK19, and GSTpi) markers [19,25]. In response to androgen
signalling, the expression of homeobox transcription factor NKX3.1 is detectable in basal
UGE cells at this stage, a prostate-specific marker [26–28].

The initial budding stage begins at 10–11 weeks gestation in humans, E16–18 in mice,
and E19 in rats and is marked with solid cords of UGE budding into the UGM. A specific
spatial pattern guides the formation of these buds, leading to the establishment of lobular
subdivisions [29]. In rodents, buds form symmetrical patterns, with sets of buds later
coming together to form lobes [19,30].

In the next stage, the buds begin to elongate distally and branch. In humans, this
occurs at 11 weeks onwards, in mice from birth to puberty (postnatal day 40, P40), and
rats from birth to puberty (P50). Genes that have been associated with elongation and
branching in rodents include FGF10 [31–34], FGF7 [35,36], WNT5A [37–39], NKX3.1 [28,34],
BMP4 [34,40], BMP7 [34,41], and SHH [42–44]. The solid buds will elongate into the
mesenchyme and branch.
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2.2. Ductal Canalisation and Cytodifferentiation

At about the same time, ductal canalisation will occur, beginning at the proximal
(urethral) end and spreading to the distal ends, creating lumens. In both humans and
rodents, it has been shown through Ki67 staining, a marker of proliferation, that bud
elongation occurs through expansion at the tips of buds, while canalised ducts near the
urethra are less proliferative [19].

Cytodifferentiation of epithelial and mesenchymal cells occurs concurrently with
ductal elongation, branching and lumenisation. Cells in the canalised regions are the first
to develop their identities. The epithelial cells differentiate into cuboidal basal cells and
columnar luminal cells at the basement membrane and the ductal lumen, respectively [45].
Basal cells will continue to express CK5, CK14, p63, GSTpi, and CK19, whilst luminal
cells will continuously express CK8 and CK18. However, only a subset of luminal cells
will also continue to express CK19 and GSTpi, likely representing a population of luminal
cells that have not entirely differentiated [25,46]. A small population of neuroendocrine
epithelial cells also begins to form, migrating from the neural crest to the UGS, though
some evidence suggests they arise from multipotent basal cells [47,48]. The UGM then
begins to differentiate into smooth muscle and fibroblasts, a process that involves crosstalk
between the UGM and the UGE [45,49]. By 15 weeks gestation in humans, luminal prostate
epithelial cells begin to produce the prostate-specific antigen (PSA) [25]. By week 16, the
AR can be detected only in the luminal epithelial cells of the prostate and stromal cells,
with expression decreasing significantly in the stroma postnatally [50]. In rodents, cytodif-
ferentiation occurs after birth and is complete around puberty. Androgen expression in
mice peaks immediately before birth (E20) and sharply decreases at birth [51]. It is not until
immediately prior to puberty that the androgen levels increase again. Thus, bud initiation
correlates with a period when androgen levels are high, while elongation, branching, and
lumenisation occur during a period of low androgen levels.

In the human foetus, five distinct prostatic ducts or lobes have previously been
described: the middle lobe, two lateral lobes, the posterior lobe, and the ventral lobe [29].
As the prostate develops, these lobes fuse and are indistinguishable. At birth, prostate
growth will become quiescent until puberty, at which point the prostate will completely
mature and result in a more complex ductal gland [20,25,52]. The adult prostate comprises
four zones: the transition, peripheral, and central glandular zones, which are surrounded
by the fibromuscular stromal zone [53]. In rodents, the prostate buds elongate, branch,
canalise, and differentiate for the first 2–3 weeks after birth; the prostate will be fully mature
after about two months from birth [27,52]. The rodent prostate lobes remain unfused and
designated as the ventral, dorsal, lateral, and anterior lobes.

3. Key Molecular Drivers of Prostate Development

The process of prostate development, beginning from the urogenital sinus to the
formation of mature adult prostatic glands, is a complex process involving numerous genes
and cellular pathways [54]. The complete process has yet to be uncovered; however, some of
the major pathways have been elucidated, and the continual advancement in technologies
periodically lead to new insights. Most of the knowledge on prostate development has
derived from rodent models, with expression of some of the genes verified in human foetal
prostate tissue.

3.1. Androgen Receptor

The most well-known and studied pathway is the AR signalling pathway, which initi-
ates prostate development of the UGS and is active during all stages of prostate organogen-
esis. The AR is the target of steroid hormones produced by the testis, such as testosterone,
which is metabolised by 5α-reductase to a more potent form, 5α-dihydrotestosterone
(DHT) [55]. Upon DHT binding, a cascade of events occurs initiated by the expression
of paracrine factors secreted from the UGM, known as andromedins, such as fibroblast
growth factors (FGFs). These andromedins bind to receptors expressed by the UGE and
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initiate specific differentiation programs, leading to prostate development [11]. Not all
factors associated with prostate development are andromedins; some paracrine factors
are secreted from the UGM even in the absence of androgen signalling and are necessary
for the development of the prostate. For example, FGF7 is secreted from the UGM and
is necessary for prostate development, but there is no evidence for its expression being
regulated by AR signalling [36]. However, in the absence of androgen signalling, male
embryos will develop female genitalia without prostates [52,56]. In contrast, exposure of
the human or rodent female UGS to androgens, either in vivo or in vitro, leads to prostate
development [44,57,58]. AR signalling is most important in the UGM during the early
stages of prostate development, as revealed by testicular feminised (Tfm) mice, which are
insensitive to androgens due to a frame-shift mutation in the AR gene [59,60]. Recombi-
nation of Tfm UGM with wild-type UGE followed by grafting under the renal capsule
results in female genital development without prostate. In contrast, wild-type UGM re-
combined with Tfm UGE resulted in prostate tissue development [61]. However, the Tfm
UGE and wild-type UGM recombinants do not result in complete prostate differentiation,
as they lack expression of prostate secretory proteins and differentiation of the UGM to
smooth muscle [28,62,63]. This indicates that the UGE eventually requires functional AR
for complete prostate differentiation. Thus, in the initial stages of prostate development,
androgen-initiated developmental cues are relayed to the UGE via the UGM. The smooth
muscle model also suggests that AR signalling before prostate induction prevents a layer of
smooth muscle from forming between the UGE and UGM, which, if present, would block
inductive signals from reaching the UGE and consequently prevent budding [64].

3.2. Homeobox Protein NKX3.1

NKX3.1 is one of the earliest expressed prostate developmental factors in response
to AR signalling. This homeodomain transcription factor is expressed in the epithelium
throughout prostate development and in adult prostate luminal cells, with expression
first detected in the UGE during bud initiation [26,27]. NKX3.1 null mutant mice develop
prostatic lobes but have abnormal cytodifferentiation, decreased prostate secretory pro-
tein production, epithelial hyperplasia, and defects in branching and lumenisation [28].
Thus, aside from bud initiation, this gene is involved in almost every aspect of prostate
development. Expression of NKX3.1 is regulated by Wnt signalling, with Wnt inhibition
in UGS explant cultures leading to downregulation of NKX3.1 expression and luminal
differentiation [65]. The importance of Nkx3.1 is exemplified by knock-out/knock-in ex-
periments performed by Dutta and colleagues [66] NKX3.1 null mutant murine prostate
resulted in downregulation of prostate developmental genes and upregulation of seminal
vesicle genes. Furthermore, expressing exogenous NKX3.1 in mature adult SVE resulted in
prostate development when recombined with UGM and subsequently renal grafted. The
SVE expressing exogenous NKX3.1 displayed prostate-ductal morphology with expression
of prostate markers and an expression profiling analysis indicated the tissue was enriched
more for a prostate signature rather than seminal vesicle.

3.3. Fibroblast Growth Factors

FGF7 and FGF10 were two of the first described andromedins and are involved in the
budding and branching of the developing prostate [67,68]. However, only the expression
of FGF10 has been correlated with AR signalling [34]. Both factors are secreted by the UGM
whereas the UGE expresses the associated FGF receptors, signalling through the MAPK and
PI3K pathways [33,69]. Expression of recombinant FGF7 in ventral prostate explant cultures
results in growth and branching morphogenesis, while the absence of FGF7 signalling
reduced budding and growth [36]. In the absence of testosterone in the explant cultures,
the addition of FGF7 induced branching morphogenesis, but at a lower rate. Similarly,
FGF10 expression in ventral prostate explant cultures led to prostate development and
branching morphogenesis [33]. A null mutation of FGF10 in mice leads to reduced budding
and branching of the prostate [31].
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3.4. Wingless-Related Integration Sites

Another likely set of andromedins are Wnt agonists, including WNT11, WNT16,
and R-spondin3, all found to be expressed at higher levels in male UGM than female
UGM during prostate budding [70]. The sexually dimorphic expression of these factors
could be a product of AR signalling in males, at least for WNT16, which is upregulated in
prostate fibroblasts in response to androgen treatment [71]. Furthermore, the importance
of Wnt during prostate development was demonstrated by inhibition of Wnt signalling
in UGS explant cultures, which reduced budding and inhibited NKX3.1 expression, an
essential regulator of prostate differentiation [65]. Currently, there is no direct evidence
implicating Wnt ligands temporally and spatially responding to androgen expression
within the UGM [20].

Some signalling factors, such as WNT5A, could act as negative andromedins as its
expression in the UGM is inhibited by androgens, preventing signalling to the UGE [37,39].
WNT5A null mutant mouse UGS explant cultures have shown that downregulation of
WNT5A did not affect budding but did affect bud positioning [37]. A WNT5A inhibitory
antibody applied to a normal UGS also demonstrated that the number of buds formed
did not differ [38]. Conversely, treating the UGS with recombinant WNT5A to increase
expression resulted in reduced budding, epithelial cell proliferation, elongation, and branch-
ing [37,38]. Thus, androgens downregulate WNT5A expression in the mesenchyme to
allow for epithelial prostate development to proceed.

3.5. Homeobox Genes

Several genes from the Hox family of homeobox transcription factors, including
HOXA10, HOXA13, HOXB13, and HOXD13, have also been associated with prostate
development [20]. Loss of HOXA10, HOXA13, or HOXD13 function results in decreased
branching and size of the prostate [72–74]. These three genes may confer an additive effect
on branching morphogenesis with a partial functional redundancy [75]. However, the
expression of each gene varies between mouse prostate lobes, and disruption to a specific
Hox gene will affect a particular lobe. Moreover, mice with a null HOXB13 mutation have
normal ductal growth but have defects in luminal cell differentiation specifically within the
ventral lobe [76]. In vitro lentiviral expression of HOXB13 in a rat basal prostate cell line
(NRP-152) induced luminal cell differentiation [77]. Expression of NKX3.1 is not affected
by the mutation, indicating that Hoxb13 likely works downstream of NKX3.1 or through
an independent pathway for luminal cell differentiation. Other studies have associated
FOXA1 as a positive regulator of HOXB13 and HOXB13 as a co-regulator of AR [78,79].
The expression of Hox genes in response to androgens varies, with androgens having a
positive effect in the developing ventral prostate but no effect in the lateral lobe [77]. This
could be in part due to differences in the timing of prostate development between lobes.

3.6. Bone Morphogenetic Proteins (BMP)

The TGF-β superfamily bone morphogenetic proteins, BMP4 and BMP7, are also
involved in regulating branching morphogenesis and are secreted from the prostate mes-
enchyme, targeting epithelial receptors. Male and female embryos express BMP4 at equal
levels in the UGS, though BMP7 expression is significantly higher in males [34]. Expres-
sion of BMP4 decreases in response to DHT, while androgen treatment increases BMP7
expression. Explant cultures of UGS indicated that elevated BMP4 levels through treatment
with exogenous BMP4 inhibited epithelial proliferation during development and reduced
branching morphogenesis [40]. Additionally, BMP4+/− mice developed prostates with
more branching compared to wild-type mice. Likewise, BMP7 null mutant mice had
prostates with significantly more branches [41]. In explant cultures, the addition of recom-
binant BMP7 reduced budding and branching morphogenesis. Though BMP4 and BMP7
are expressed throughout the UGM, it is evident that they regulate branching morphogen-
esis in different regions—BMP4 affects branching points in the ventral prostate more so
compared to anterior and dorsal prostate lobes, while BMP7 regulation is more evident in
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the anterior prostate lobe [40,41]. This difference is likely controlled by downstream factors.
For example, an inhibitor of BMPs, Noggin, has a higher affinity for BMP4 than BMP7, and
Noggin null mice have a specific loss in ventral prostate development [80]. Additionally,
FGF10 has been shown to downregulate BMP4 and upregulate BMP7 [32,39]. Though con-
flicting results have indicated that FGF10 does not directly affect BMP7, FGF10 promotes
branching by affecting factors downstream of BMP7 through an independent pathway [41].
These conflicting results illustrate the complexity of prostate developmental signalling and
the requirement for a more thorough analysis of pathways at precise developmental time
points and lobe-specific studies.

3.7. Sonic Hedgehog (SHH) Signalling

SHH is a commonly expressed developmental pathway in a number of embryonic
tissues, regulating patterning, proliferation, and differentiation [43]. SHH is expressed at
E16.5 in the mouse basal UGE and acts as a paracrine factor, binding to the Patched receptor,
which is primarily expressed in the UGM along with downstream transcription factors GLI1
and GLI2 [44,81]. A decline in expression is observed from P1 onwards [81]. Conflicting
studies have reported that androgens upregulate, downregulate, or do not affect SHH
expression [42,82,83]. However, a direct comparison of female and male mouse E18 UGS
RNA expression indicated that SHH, GLI1, and GLI2 are all significantly upregulated in
males, most likely due to androgens [34]. Earlier SHH inhibition studies using cyclopamine,
a downstream inhibitor of Hedgehog (HH) signalling [84], suggested SHH expression
was required for bud initiation [81]; however, more robust SHH null mouse models later
showed that SHH is not essential for budding but is needed for branching morphogenesis
in a temporal manner [42–44].

3.8. Forkhead Box A (FOXA)

The FOXA family of transcription factors have been associated with prostate develop-
ment, with FOXA1 expressed throughout mouse prostate development in the epithelium
and FOXA2 expression being restricted to the early stages of budding, specifically at the
epithelial-mesenchyme interface [85]. FOXA1 expression has also been confirmed in human
prostate epithelium. Physical interaction between FOXA1 and AR has been demonstrated,
and it has also been shown that FOXA1 can bind to the regulatory enhancer regions of
AR-regulated genes, such as PSA [86]. Although it is not evident from the literature
whether the expression of FOXA1 is sexually dimorphic in rodents or if the expression
is androgen dependent, FOXA1 is expressed in the UGE of both males and females of
Tammar wallabies throughout development [87]. The expression levels of FOXA1 between
male and female wallabies do not differ until branching morphogenesis and lumenisation,
at which point expression drastically rises in males while remaining unchanged in females,
indicating a sexual dimorphic expression change, although in LNCaP cells, FOXA1 can
bind to the enhancer regions of AR-regulated genes in the absence of androgens [88].
However, studies in adult rat prostate indicated that FOXA1 expression is significantly
decreased in the absence of androgens [89]. Thus, it is not clear what mechanism might
be regulating the expression of FOXA1 in male embryos. Loss of FOXA1 activity in mice
results in incomplete lumenisation, basal cell hyperplasia, and a reduction in luminal
secretory cells [90]. These phenotypes match the temporal expression profile of FOXA1
from the Tammar wallaby—the expression of FOXA1 is not significantly upregulated until
branching morphogenesis and lumenisation. The effects of FOXA2 deficiency on prostate
development are yet to be characterised. Mice lacking FOXA2 die by E11 due to the absence
of the notochord; therefore, the UGS is not present for rescue experiments [91].

Many other key factors and pathways have been associated with prostate development,
yet further analyses are still necessary in order to fully elucidate the full array of regulators
and their temporal and spatial expression.
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3.9. Other Factors

Other factors involved in prostate development and disease include AKT [92],
BMP1RA [93], CTNNB1 [94,95], E-Cadherin [96], EFNB1 [97], GLI1 [98], GLI2 [99],
HSP27 [100], HSPE [101], IL-6 [102], IL1R1 [103], LGR4 [104], MMP2 [105], MYC [106],
ODC1 [107], PAX2 [108], p53 [109], P63 [110], PTN [111], PTEN [112], R-spondin3 [113],
SFRP1 [114], SOX9 [115], SULF1 [116], TGFB [117], TMPRSS2 [118], VEGF [119] and
WIF1 [120].

4. Prostate Development and Disease

First proposed by McNeal as a possible aetiology of BPH, the theory of embryonic
reawakening hypothesizes that androgen-dependent pathways that are primarily active
during prostate development become reactivated in adulthood [12]. More specifically, it
was hypothesized that the prostatic stroma regains its embryonic inductive capabilities,
leading to epithelial hyperplasia. The theory has since been adapted to help to explain
some possible mechanisms of PCa progression as well. Underlying the embryonic rea-
wakening theory are the notions that reactivated stroma is inductive and that the adult
prostate is responsive to these signals. These two concepts are supported by various stud-
ies. For example, Barclay et al. showed that recombining stromal cells from either BPH
or PCa specimens with a prostate epithelial cell line (BPH-1) followed by renal capsule
grafting generated proliferating tissue, while normal prostate stroma did not promote
growth of the cell line [121]. Interestingly, the tissue generated using BPH stroma was well
organized and relatively small compared to the tissue generated using PCa stroma, which
was highly disorganized and overgrown, invading into renal tissue. The second notion
was supported by Cunha and colleagues, who demonstrated that the growth-quiescent
mature adult rodent prostate epithelium is responsive to cues from the UGM and SVM,
leading to significant growth of the tissue [13]. Growth and branching morphogenesis of
human BPH epithelium has also been reported when recombined with rat UGM [49].

Subsequent research has enabled the identification of common molecular pathways
enriched in the developing prostate and BPH or PCa tissue. For instance, microarray
analyses of human pubertal and adult prostate tissues revealed that pubertal tissues had a
subset of genes that were similarly expressed in BPH tissue [122]. Human foetal prostate
stroma has also been profiled and compared to cancer associated fibroblasts (CAFs) in
order to identify genes enriched in the two tissue types but not in normal adult prostate
stroma [123,124]. Microarray analyses on rodent prostate at various stages of develop-
ment have produced developmental signatures that are also enriched in various grades
of PCa [125,126]. Embryonic stem cell gene signatures have also been detected in and
asso-ciated with PCa progression [127–129]. In some cases, specific genes have been linked
to both prostate development and prostate diseases. For example, E-cadherin, a gene
re-quired to be downregulated during prostate development, is also improperly downregu-
lated in PCa, leading to cancer invasiveness [130]. Additionally, interleukin-1α is required
for prostate development, but in the mature prostate, upregulation of the gene results in
epithelial hyperplasia due to an inflammatory response [131]. Table 1 lists some of the key
developmental genes that have also been associated to prostate diseases.
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Table 1. Key molecular drivers of prostate development and their association with prostate disease. Other important factors
are listed on Section 4.

Molecules of Interest Development Refs Cancer Refs

AR

Essential for prostate
development at all stages; no

prostate development in
androgen/AR absence

[57,61,62]
Expressed throughout the course

of the disease, except in
neuroendocrine tumours

[132–135]

FGF7

Upregulation in rat P0 VP
explant cultures resulted in

increased budding and
branching; Inhibition resulted

in decreased branching and
epithelial growth

[35,36]

Has been associated with
prostate cancer progression;

Highly expressed in fibroblasts
from localised tumours

[136,137]

FGF10

Upregulation in rat P0 VP
explant cultures resulted in

epithelial proliferation,
branching, and differentiation;

Null mutation resulted in
reduced budding, branching,

and differentiation in UGS
explant cultures

[31–34]
Enhanced mesenchymal

expression of FGF10 leads to the
formation of prostate cancer

[138]

FOXA1

Null mutation in mice resulted
in incomplete lumenization

with reduced basal cell
hyperplasia and luminal

secretory cells

[87,89,90]

Some mutations in FOXA1 in
early prostate cancer resulted in

enhanced chromatin mobility
and activation of a luminal

androgen receptor (AR) program
of prostate oncogenesis; Other
FOXA1 mutations acquired in

metastatic prostate cancers;
Resulted in dominant chromatin

binding by increasing DNA
affinity, promoting

WNT-pathway driven
metastasis; Duplications and
translocations in metastatic
prostate cancers, within the

FOXA1 locus, resulted in
overexpression of FOXA1 or

other oncogenes

[139,140]

HOXA10
Null mouse mutation resulted

in decreased AP size
and branching

[74,77]

Evidence of tumor suppressive
roles for HOXA10 in the context

of prostate cancer;
Downregulation of HOXA10

gene expression resulted in PCa
cell growth and tumor

progression to
castrate-resistant stage

[141,142]

HOXA13

Null mouse mutation resulted
in decreased DLP and VP size

and branching;Double null
mutations of Hoxd13 and

Hoxa13 resulted in absence of
AP and reduced

epithelial proliferation

[74,77,143]

HOXA13 is an oncogene for
prostate cancer and its

overexpression resulted in
prostate carcinoma tissues

[144]
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Table 1. Cont.

HOXB13
Null mouse mutation resulted
in loss of VP secretory proteins
and abnormal VP luminal cells

[76,77]

Mutations in HOXB13 resulted
in significantly increased risk of

hereditary prostate cancer;
HOXB13 overexpression

resulted in during malignant
progression of the prostatic
tissue and is suspected to

contribute to the pathogenesis of
the prostate gland

[145,146]

NKX3.1

Null mutant mice had
decreased branching,

lumenization and prostate
secretory product production,

and defects in
cytodifferentiation with
epithelial hyperplasia

[28,34]

Loss of function of NKX3.1
accelerated inflammation-driven

prostate cancer initiation
potentially via aberrant cellular

plasticity and impairment of
cellular differentiation

[147]

BMP4

Upregulation in mouse UGS
explant cultures reduced

epithelial proliferation and
branching; Deficiency

(Bmp4+/−) in mice led to
increased branching

[34,40]
Involved in prostate tumour

growth in bone and
bone metastasis

[148,149]

BMP7

Upregulation in mouse UGS
reduced budding and

branching; Null mouse
mutation resulted in
increased branching

[34,41] Acted as inhibitor of prostate
cancer bone metastasis [41]

WNT2 (canonical)

Upregulation in rat P0 VP
explant cultures resulted in
decreased size; Null mouse

mutant UGS renal grafts led to
defective luminal
cell differentiation

[150] Overexpressed in prostate cancer [151]

WNT5A
(non-canonical)

Null mouse mutation led to
defects in bud positioning in

UGS explant cultures, but
development proceeded;

Upregulation in mouse UGS
explant cultures led to reduced

budding, ductal elongation,
epithelial proliferation,

and branching

[37–39]

WNT5A was overexpressed in
locally invasive and metastatic

prostate cancer; WNT5A may be
a key gene that induces CRPC in

the bone niche

[152,153]

WNT10B (canonical)
Upregulation in rat VP (P0) led
to decreased ductal elongation

and branching
[70,154]

Decreased WNT10B levels in
localized cancer let to a

hyperproliferative state, whereas
increased levels in advanced

disease conferred a stemness and
malignant propensity due to

activation of epithelial to
mesenchymal transition genes

[154]

RSPO2 and RSPO3

Inhibition in mouse UGS
explant cultures led to reduced
and mis-positioned budding
with the complete absence of

budding in the VP

[70,155,156]
Lower RSPO3 expression

resulted in greater metastatic
capacity and invasiveness

[113]
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In a recent epigenetics study, Pomerantz, Qiu [2] have shown that PCa cells during
the transition to metastatic disease reactivate dormant regulatory programs that are active
during prostate organogenesis. They observed during metastatic CRPC, AR sites were not
created de novo, but AR was programmed to bind dormant sites reactivating embryonic
transcriptional programs. Corroborating this evidence, genetically engineered mouse
models at metastatic enhancers activated transcriptional programs of embryonic foregut
endoderm [157]. However, it is still not clear if embryonic transcriptional programs are
reactivated only in stem-like cells present in the prostate, initiating PCa, or in other cell
types within the prostate.

While there is a discernible association between prostate development and disease,
it is not clear how embryonic pathways are reawakened in adulthood. One hypothesis
suggests that inflammatory responses or metabolic abnormalities may be involved [52].
A variant of McNeal’s theory of embryonic reawakening proposes that BPH is caused by
the specific stimulation of stem cells by the stroma [11]. The TPZ zone may be particularly
susceptible to inflammation and BPH progression due to its continual exposure to urinary
components and autoantigens, and this inflammatory microenvironment would recruit
bone-marrow-derived mesenchymal stem cells (MSCs), inducing paracrine interactions
within the stroma and reinitiating the growth of BPH nodules. In turn, MSCs can infiltrate
the prostate and stimulate epithelial stem cell growth [158].

Taking into account the evidence from the literature, we undertook a bioinformatics
approach to look at developmental genes in BPH and cancer raw RNA-seq datasets pub-
licly available in the literature. Similarities and differences between BPH and cancer are
vital because of some components of the embryonic reawakening process involved in
be-nign growth can also lead to a malignant process.

We used three public bulk RNA-seq datasets in the bioinformatics analysis. The first
dataset contains bulk RNA-seq data of the normal prostate. This dataset has 16 normal
prostate samples (data accessible at NCBI GEO database [159], accession GSE117271).
The second dataset contains bulk RNA-seq data of BPH (8 samples) and primary PCa
(16 samples), (data accessible at NCBI GEO database [160], accession GSE80609). The third
dataset contains bulk RNA-seq data of prostate cancer and normal prostate tissue. This
dataset contains 15 tumour samples and 15 normal prostate samples. In addition to the
three datasets above, we used bulk RNA-seq data of prostate derived-iPSCs [129], which
we refer as embryonic prostate.

We compared Normal prostate vs embryonic prostate, BPH vs normal prostate, PCa
vs normal prostate, PCa vs BPH, and normal prostate vs iPSC (Figure 2). For quality
con-trol and FASTQ data pre-processing, we used FASTQC (version 0.11.9) [161] and fastp
(version 0.20.1) [162]. For read quantification, we used Salmon (version 1.4.0) [163] and for
differential expression analysis, we used DESeq2 (version 1.30.0) [164].

From the heatmap analysis we can observe the upregulation of key prostate devel-
opment genes in both BPH and PCa, such as BMP4, HOXB13, FOXA1, and NKX3.1 In A
we see increased expression of GLI1 and GLI2. GLI1 and GLI2 are known transcriptional
activators of the SHH developmental pathway [165]. Therefore, their increased ex-pression
in BPH provides evidence for embryonic reawakening. In addition, RSPO2 is upregulated.
RSPO2 is involved in the activation of the Wnt pathway during development [166], again
providing evidence of embryonic reawakening. These markers are also upregulated in
iPSCs compared to normal prostate (Figure 2D).

B and C show similarities in their expression patterns. For example, MYC, ODC1 and
FOXA1 and are upregulated in both B and C. This suggests that there are key drivers that
are specific to PCa progression that are not involved in progression from normal prostate
tissue to BPH. In addition, there are some key differences between B and C. For example, in
C, IL-6 is upregulated and SHH is downregulated. In B IL-6 is downregulated and SHH is
upregulated. This could mean that IL-6 and SHH have a specific role in BPH development.

We also looked at the iPSC gene expression signature as a broader characterisation of
the embryonic reawakening transcriptome. We undertook a comparison of the embryonic
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signature vs. normal prostate, BPH vs. normal prostate, and BPH vs. cancer, in order to
identify exclusive and mutually exclusive gene expressions (Figure 3).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 11 of 22 
 

 

suggests that inflammatory responses or metabolic abnormalities may be involved [52]. A 
variant of McNeal’s theory of embryonic reawakening proposes that BPH is caused by the 
specific stimulation of stem cells by the stroma [11]. The TPZ zone may be particularly 
susceptible to inflammation and BPH progression due to its continual exposure to urinary 
components and autoantigens, and this inflammatory microenvironment would recruit 
bone-marrow-derived mesenchymal stem cells (MSCs), inducing paracrine interactions 
within the stroma and reinitiating the growth of BPH nodules. In turn, MSCs can infiltrate 
the prostate and stimulate epithelial stem cell growth [158]. 

Taking into account the evidence from the literature, we undertook a bioinformatics 
approach to look at developmental genes in BPH and cancer raw RNA-seq datasets pub-
licly available in the literature. Similarities and differences between BPH and cancer are 
vital because of some components of the embryonic reawakening process involved in be-
nign growth can also lead to a malignant process. 

We used three public bulk RNA-seq datasets in the bioinformatics analysis. The first 
dataset contains bulk RNA-seq data of the normal prostate. This dataset has 16 normal 
prostate samples (data accessible at NCBI GEO database [159], accession GSE117271). The 
second dataset contains bulk RNA-seq data of BPH (8 samples) and primary PCa (16 
samples), (data accessible at NCBI GEO database [160], accession GSE80609). The third 
dataset contains bulk RNA-seq data of prostate cancer and normal prostate tissue. This 
dataset contains 15 tumour samples and 15 normal prostate samples. In addition to the 
three datasets above, we used bulk RNA-seq data of prostate derived-iPSCs [129], which 
we refer as embryonic prostate. 

We compared Normal prostate vs embryonic prostate, BPH vs normal prostate, PCa 
vs normal prostate, PCa vs BPH, and normal prostate vs iPSC (Figure 2). For quality con-
trol and FASTQ data pre-processing, we used FASTQC (version 0.11.9) [161] and fastp 
(version 0.20.1) [162]. For read quantification, we used Salmon (version 1.4.0) [163] and 
for differential expression analysis, we used DESeq2 (version 1.30.0) [164]. 

 
Figure 2. Expression levels of key developmental genes. (A) BPH vs. normal prostate; (B) cancer vs. normal prostate; (C) 
cancer vs. BPH; (D) normal prostate vs. iPSC. Red: upregulated; green: downregulated. 

Figure 2. Expression levels of key developmental genes. (A) BPH vs. normal prostate; (B) cancer vs. normal prostate;
(C) cancer vs. BPH; (D) normal prostate vs. iPSC. Red: upregulated; green: downregulated.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 12 of 22 
 

 

From the heatmap analysis we can observe the upregulation of key prostate devel-
opment genes in both BPH and PCa, such as BMP4, HOXB13, FOXA1, and NKX3.1 In A 
we see increased expression of GLI1 and GLI2. GLI1 and GLI2 are known transcriptional 
activators of the SHH developmental pathway [165]. Therefore, their increased ex-
pression in BPH provides evidence for embryonic reawakening. In addition, RSPO2 is 
upregulated. RSPO2 is involved in the activation of the Wnt pathway during development 
[166], again providing evidence of embryonic reawakening. These markers are also 
upregulated in iPSCs compared to normal prostate (Figure 2D). 

B and C show similarities in their expression patterns. For example, MYC, ODC1 and 
FOXA1 and are upregulated in both B and C. This suggests that there are key drivers that 
are specific to PCa progression that are not involved in progression from normal prostate 
tissue to BPH. In addition, there are some key differences between B and C. For example, 
in C, IL-6 is upregulated and SHH is downregulated. In B IL-6 is downregulated and SHH 
is upregulated. This could mean that IL-6 and SHH have a specific role in BPH develop-
ment. 

We also looked at the iPSC gene expression signature as a broader characterisation 
of the embryonic reawakening transcriptome. We undertook a comparison of the 
embryonic signature vs. normal prostate, BPH vs. normal prostate, and BPH vs. cancer, 
in order to identify exclusive and mutually exclusive gene expressions (Figure 3). 

 
Figure 3. Gene signatures common in embryonic, cancer, and BPH datasets. (A) Exclusive to cancer; (B) exclusive to BPH; 
(C) common to all; related to stem cells reawakening and cancer or BPH. 

The comparison shows that there is a unique embryonic signature in BPH and PCa, 
as shown in the common intersections with iPSC/embryonic data. Interestingly, there is a 
much larger embryonic signature in BPH (2514 genes) than there is in PCa (239 genes). 
This is not entirely unexpected because BPH is closer to the embryonic prostate in 
developmental terms than PCa is. With the apparent link between prostate development 
and disease, a better understanding of human prostate development is imperative. Specif-

Figure 3. Gene signatures common in embryonic, cancer, and BPH datasets. (A) Exclusive to cancer; (B) exclusive to BPH;
(C) common to all; related to stem cells reawakening and cancer or BPH.



Int. J. Mol. Sci. 2021, 22, 13097 13 of 21

The comparison shows that there is a unique embryonic signature in BPH and PCa, as
shown in the common intersections with iPSC/embryonic data. Interestingly, there is a
much larger embryonic signature in BPH (2514 genes) than there is in PCa (239 genes). This
is not entirely unexpected because BPH is closer to the embryonic prostate in developmental
terms than PCa is. With the apparent link between prostate development and disease,
a better understanding of human prostate development is imperative. Specif-ically, an
understanding of how and why developmental programs become reactivated in adulthood
could help combat PCa and/or BPH.

Although the analyses above can provide insights into embryonic reawakening in
BPH and prostate cancer, there are some limitations. A major limitation of those analyses
is that most of RNA-seq available data in platforms such as NCBI, is bulk RNA-seq data.
Bulk RNA sequencing involves sequencing all cell types and averaging the expression
levels of all the cell types together [167]. Therefore, it is impossible to tell what cell type the
developmental markers are derived from and what cell type the developmental markers are
affecting (e.g., stromal, epithelial). In addition, during the development of prostate cancer, a
defective glandular structure is formed, and this causes the loss of the basal cell layer [168].
Therefore, prostate cancer has a different cell type composition to other stages of prostate
development. This means that the average levels of gene expression (i.e., bulk RNA-seq
expression levels) in prostate cancer will differ from those of the normal prostate because of
the differences in cell type composition. Another limitation is that differences in RNA-seq
protocols used in different datasets (i.e., differences in RNA-seq library preparation and
sequencing equipment used) could cause changes to gene expression patterns. These
restrictions highlight the severe lack of high-quality prostate cancer development-related
RNA-seq data, and the need for single cell RNA-seq (scRNA-seq) data related to prostate
cancer and development studies.

Recently, iPSC-derived organoid models have arisen as alternatives for studying
the development of various human tissue in place of foetal material, which are often a
limiting factor.

5. PSC-Derived Prostate Tissue for Developmental and Disease Research

Currently, a large gap in human prostate development exists due to the rarity of
foetal prostate tissue as well as ethical issues. The iPSC-derived prostate tissue could
be used to overcome this issue by conducting in-depth profiling at various stages of
differentiation, beginning with the iPSCs, and ending with the mature prostate tissue [169].
This would allow us to observe expression changes during human prostate development,
which is believed to differ when compared to rodent development due to dissimilarities
of the mature prostate between the two species. Using single-cell RNA-seq, Tran et al.
showed that developing pluripotent stem cell (PSC)-derived podocyte organoids had a
similar transcriptional profile to in vivo developing podocytes [170]. Similarly, Kanton
and colleagues were able to produce a temporal cell atlas of human and chimpanzee
forebrain development by single-cell profiling PSC-derived cerebral organoids at various
time points of development [171]. Comparing the two developmental profiles uncovered
key gene regulatory difference between the two species. Thus, these studies indicated that
PSC-derived tissue can be a suitable alternative to study human development.

Currently, the most robust method for generating prostate tissue from PSCs is through
the recombination of PSCs with known inductive mesenchymal tissues [93,172,173]. Early
recombination and engraftment studies indicated that both UGM and neonatal seminal
vesicle mesenchyme (SVM) could induce prostate differentiation. Cunha and colleagues
showed that recombining UGM or SVM with UGE, followed by grafting the re-combination
under the renal capsule of rodents for in vivo growth, led to the normal development of the
prostate [94]. About two decades later, these principles were applied to stem cells in order to
generate prostate tissue. Taylor et al. recombined rodent embryonic UGM or neonatal SVM
with human embryonic stem cells (hESCs) to establish reciprocal mesenchymal-epithelial
cell interactions and generate human prostate tissue [95]. The recombinant tissues were
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grafted under the renal capsule of mice and two to four weeks after engraftment, early
glandular structures were observed with luminal cells expressing CK8, CK18, NKX3.1,
and basal cells expressing p63. Anti-human Lamin B1 confirmed that epithelial cells were
derived from hESCs. The epithelium was surrounded by UGM or SVM-derived stromal
cells, expressing α-SMA. AR expression was observed in luminal, basal, and stromal
cells, a characteristic of early prostate tissue. After 8–12 weeks, glandular tissue was
evident with PSA expression. Neuroendocrine cells were also identified after 8–12 weeks
of growth. Thus, this model led to the full differentiation of hESCs to functional glandular
prostate tissue.

More recently, the generation of in vitro iPSC-derived prostate organoids using an
inductive co-culture method with rodent UGM was described [172]. The iPSCs used in
this study were generated by reprogramming prostate tissue with the Yamanaka OSKM
factors [174]. The co-cultures of iPSC-derived definitive endoderm with UGM cells, in
Matrigel droplets, resulted in structures that histologically mimicked the developing pros-
tate at various time points and culminated in glandular structures that recapitulated
ma-ture prostate histology and gene expression. For example, epithelial cells in early organ-
oids predominately displayed a basal cell phenotype with small lumen. As differentiation
continued, luminal cells were more frequent and larger lumen formed. The early organ-
oids were also surround by mesenchymal cells that only expressed vimentin, but as
time progressed, smooth muscle cells were detected. Thus, this system provides a high
throughput model to study human prostate development through multi-omics analyses.
PSC-derived prostate models can be further employed to study prostate diseases. Through
gene editing of the iPSCs, organoids can be used to reconstruct PCa patients’ genotype
through the incorporation of different combinations of patient-specific driver mutations to
generate avatars for drug testing that can be correlated to patient tissue biopsies. To further
improve the model, which is known to be impure, the authors are now seeking to establish
defined prescribed factors to replace the inducing UGM cells.

In the context of developmental reawakening, known developmental genes can be
upregulated in the mature prostate organoids to determine if they lead to disease pheno-
types and which other pathways may be affected. Furthermore, mesenchymal-epithelial
interactions can be specifically studied. For example, pure populations of both iPSC-
derived definitive endodermal and mesodermal cells could be used in this system, with the
mesodermal cells being genetically manipulated to up- or downregulate a gene of interest.
The endodermal cells would form the epithelial component of the organoids while the
mesodermal cells would theoretically form the mesenchymal/stromal layers. Expression of
the gene in the mesenchymal cells could then be manipulated in the devel-oping prostate
organoids to determine its effect on development, or in the mature prostate organoids
to determine the effects on prostate disease. Lastly, the in vitro nature of iPSC-derived
organoid model allows for the addition of other cell types, such as immune cells or MSCs,
both of which have been associated with the initiation of PCa and BPH. These studies in
turn could potentially highlight novel approaches for future therapies. In this way, iPSCs
and prostate organoid models, combined with foetal development studies, can help us
elucidate more of the processes and pathways that cause age-related diseases in men, such
as prostate cancer and BPH.

6. Summary

We highlight in this review main key factors involved in prostate organogenesis and
their association with age-related prostate diseases. Many other key factors and pathways
are likely to be involved in prostate organogenesis, prostate cancer and BPH. The use
of iPSC-derived prostate organoids offers an alternative to studying such developmen-
tal processes and their key factors, which could be targeted to block access to specific
developmental pathways that lead to prostate disease.
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