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The study of host-microbe neuroendocrine crosstalk, termed microbial endocrinology,

suggests the impact of diet on host health and microbial viability is, in part, reliant

upon nutritional modulation of shared host-microbe neuroendocrine axes. In the 1990’s

it was first recognized that neuroendocrine pathways are major components of the

microbiota-gut-brain axis, and that diet-induced changes in the gut microbiota were

correlated with changes in host behavior and cognition. A causative link, however,

between nutritional-induced shifts in microbiota composition and change in host behavior

has yet to be fully elucidated. Substrates found in food which are utilized by bacteria

in the production of microbial-derived neurochemicals, which are structurally identical

to those made by the host, likely represent a microbial endocrinology-based route by

which the microbiota causally influence the host and microbial community dynamics

via diet. For example, food safety is strongly impacted by the microbial production

of biogenic amines. While microbial-produced tyramine found in cheese can elicit

hypertensive crises, microorganisms which are common inhabitants of the human

intestinal tract can convert L-histidine found in common foodstuffs to histamine and

thereby precipitate allergic reactions. Hence, there is substantial evidence suggesting

a microbial endocrinology-based role by which the gastrointestinal microbiota can utilize

host dietary components to produce neuroactivemolecules that causally impact the host.

Conversely, little is known regarding the reverse scenario whereby nutrition-mediated

changes in host neuroendocrine production affect microbial viability, composition, and/or

function. Mechanisms in the direction of brain-to-gut, such as how host production of

catecholamines drives diverse changes in microbial growth and functionality within the

gut, require greater examination considering well-known nutritional effects on host stress

physiology. As dietary intake mediates changes in host stress, such as the effects of

caffeine on the hypothalamic-pituitary-adrenal axis, it is likely that nutrition can impact

host neuroendocrine production to affect the microbiota. Likewise, the plasticity of the

microbiota to changes in host diet has been hypothesized to drive microbial regulation

of host food preference via a host-microbe feedback loop. This review will focus on food

as concerns microbial endocrinology with emphasis given to nutrition as a mediator of

host-microbe bi-directional neuroendocrine crosstalk and its impact on microbial viability

and host health.
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INTRODUCTION

Food composition underscores diet-induced changes in host
health and behavior as well as the viability, composition, and
functionality of the microbiome (1). Although the importance
of the macro- and micro-nutrient content of food in driving
such changes independently in host and microbiome is
widely-appreciated, significantly less is understood regarding
how food-induced changes in the microbiome mediated via
evolutionarily shared neurochemistry can causally impact the
host and vice-versa (2). Microbial endocrinology, which is
the evolutionary-based study of the neuroendocrine routes of
bi-directional communication between host and microbiome,
has been proposed as a testable framework within which
mechanistic pathways of the microbiota-gut-brain axis can be
identified (3). It is important to recognize that several species
of the microbiota share many of the same enzymatic pathways
used by the host in the production of neurotransmitters and
hormones. Food can contain, and is independently metabolized
by host and microbe into, neuroendocrine molecules many
of which (i.e., acetylcholine, serotonin (5-hydroxytryptamine;
5-HT), gamma-amino butyric acid (GABA), histamine and
others) are structurally identical regardless of host or microbial
origin. As both host and microbe express many of the
same receptors with which to recognize these molecules (4),
the neuroendocrine axes constitute an evolutionary-based, bi-
directional interkingdom language. Seminal experiments in
1992 were the first to demonstrate that microorganisms
directly respond to neuroendocrine hormones (5). Since that
time, microbial endocrinological-based mechanisms have been
hypothesized to play a critical role by which the microbiome
influences host food preference (6) and appetite (7). Indeed,
microbes produce key food intake-regulatory hormones, such as
somatostatin (8), as well as affect host ghrelin, leptin, insulin,
glucagon-like peptide (GLP)-1, and other neuroendocrine
molecules (9).

Although it is well-recognized that host diet causes alterations
in the microbiome (10), little attention has been given to
how food-induced changes in host physiology may affect the
microbiome. Specifically, as the microbiota-gut-brain axis
is bi-directional, microbial endocrinological-mechanisms
involve gut-to-brain as well as brain-to-gut pathways. Food
contains numerous non-nutritive substances that influence host
physiology and behavior. For example, caffeine, a psychoactive
found in coffee, tea, as well as some foods can elicit a response
by host neuroendocrine stress pathways (11) known to
interact with the microbiota. Multiple other feedback loops
exist between food-induced changes in host and microbe. In
addition to psychoactive substances, commonly consumed
food and beverages have been known for decades to contain
neurotransmitters of plant or microbial origin. Plant sources
of animal feed, such as silage, contain histamine and food for
human consumption, as an example, tea can contain GABA.
Histamine in silage (12) is also detectable in cattle feces (13),
which suggests microbiome exposure to neurotransmitters of
diet origin. Further, this evolutionary-based crosstalk based
on shared neurochemistry has also been observed in farm

production animals where it has been shown to affect ruminant
eating behavior (14). Likewise, in human volunteers, GABA
intake (15) has been demonstrated to reduce fatigue (16) and
psychological stress (17).

Such neurotransmitter crosstalk between host, food and
microbe also represents a means by which food-induced changes
in the microbiome can causally impact the host. Indeed, bacteria
that inhabit the gastrointestinal tract (18) are capable of utilizing
host dietary elements in the biosynthesis of neuroendocrine
molecules, such as dopamine (19, 20). Human fecal isolates of
several bacterial genera produce biogenic amines (21) which
affect host health. For example, Morganella morganii, which
produces histamine from amino acids and is found in the human
gastrointestinal tract, is one of several bacterial taxa responsible
for the production of histamine in spoiled fish, the consumption
of which can cause anaphylactic shock and death (22). Hence,
diet provides precursors useable by the microbiome in the
de novo production of signaling molecules that can affect host
neuroendocrine axes.

Many aspects of diet, including food composition,
consumption patterns, and cultural habits therefore have
the potential to affect host-microbe interaction via diverse
neuroendocrine routes involving the microbiota-gut-brain axis
(Box 1). Microbial endocrinology stands to provide a strong
conceptual framework for the design of testable hypotheses
in the pursuit of uncovering mechanisms by which diet and
nutrition mediate changes in the host or microbiome along the
shared evolutionary bridge of neuroendocrine communication.

OVERVIEW OF REVIEW STRUCTURE

In examining the role of diet on the bi-directional
neuroendocrine pathways that underscore host-microbe
crosstalk via the microbiota-gut-brain axis, it is necessary to
draw from diverse literatures such as food and agricultural
sciences, microbiology, endocrinology, clinical psychiatry and
neuroscience as well as others. This review will first address the
presence of neurochemicals and relevant precursors in food
and then progress to discussing how these can affect known
neuroendocrine axes of host-microbe interaction. From there,
food-induced changes in the microbiota-gut-brain axis will be
examined from bottom-up (i.e., microbiota-to-gut-to-brain)
and top-down (i.e., brain-to-gut-to-microbiota) perspectives
(Figure 1).

NEUROENDOCRINE MOLECULES AND
PRECURSORS FOUND IN FOOD

As neuroendocrine pathways play significant and diverse roles
in plant, mammalian, avian, aquatic life, insect, and reptilian
physiologies, it should not come as a surprise that diet is a source
of neuroendocrine molecules and their precursors (Table 1). It
should be emphasized that this is not exclusive to human diets
but includes many types of livestock animal feeds, as well as the
diets of wildlife. This section will serve to give a brief overview
of select neuroendocrine content of common food sources [for a
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BOX 1 | Current knowledge and future research directions.

What is known?

• Diet contains a wide range of neuroendocrine molecules and their precursors (2, 23).

• Many of the neuroendocrine constituents in foods survive the digestive process and are absorbed in the upper gastrointestinal tract or reach the gut lumen (24, 25).

• Oral intake of neuroendocrine molecules has been reported to affect cognitive and emotional outcomes in volunteers and animals (16, 26, 27).

• The ability of nutrition to alter the microbiota and influence the microbiota-gut-brain axis and thereby influence memory and learning has been shown (28).

• Several members of the microbiota in a variety of host species have been demonstrated to respond to, uptake, and synthesize neuroendocrine molecules which

are structurally-identical to those produced by the host (3).

• Certain products found in foods, such as caffeine, have direct effects on host stress neuroendocrine axes (29).

• Stress is well-recognized to influence eating behavior and food choice (30); and many foods, including chocolate (31), contain neuroactive components which can

affect host emotional and cognitive state.

What is unknown?

• Does the neuroendocrine content of food affect compositional, and more importantly, functional changes in the microbiome? Would such changes be meaningful

to the host? Could a diet be designed to specifically feed the microbiota with therapeutic implications for the host?

• Stress neuroendocrine axes are hubs of host-microbe crosstalk. How do foods that directly affect host stress physiology, such as caffeine and the hypothalamic-

pituitary-adrenal (HPA)-axis, alter host-microbe interaction?

• How do legal requirements and cultural preferences in food processing (e.g., pasteurized vs. unpasteurized dairy products), as well as geographical considerations

such as soil composition and crop cultivation, create population-specific exposure to neuroendocrine content in food?

• Does host-microbe neuroendocrine crosstalk influence host stress-induced feeding behavior, such as comfort eating, and disorders such as binge-eating?

• Although the ingestion of neuroendocrine-rich foods such as banana can increase postprandial plasma catecholamine concentrations, what, if any, are the

implications of such changes on the host? Moreover, as catecholamines in the bloodstream can reach the gut, what, if any, are the implications on the microbiota

and host-microbe interaction?

FIGURE 1 | Diet strongly influences bi-directional neuroendocrine crosstalk along the microbiota-gut-brain axis. (1) Diet is both a source of neuroactive and

neuroendocrine molecules as well precursors that can affect host neuroendocrine physiology (2). (2) Stress can influence food preference and consumption, (3) which

can affect host-microbe bi-directional communication. (4) Neuroendocrine constituents and precursors found in foods act locally on host intestinal cells as well as the

(5) microbiota to influence local interkingdom crosstalk. (6) Capillaries, lymphatic channels, as well as afferent and efferent nerves can extend into gut villi to provide

multiple routes of bi-directional communication along the microbiota-gut-brain axis. This figure was made using templates adapted from Servier Medical Art by Servier.

Original images are licensed under a Creative Commons Attribution 3.0 Unported License; https://smart.servier.com.
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TABLE 1 | A non-exhaustive summary of the neuroendocrine and

neuroendocrine-precursor content of common foods.

Food Neuroendocrine

molecule /precursor

Reference(s)

FRUIT

Banana Serotonin; Dopamine;

Norepinephrine

(32, 33)

Kiwi Serotonin (25)

Pineapple Serotonin (25)

Tomato Serotonin (25)

Avocado Dopamine (34)

Orange Dopamine (34)

VEGETABLE

Spinach Serotonin; GABA, (35, 36)

Potato GABA (37)

Green onion Serotonin (35)

Eggplant GABA; Acetylcholine (38)

Broccoli Dopamine (34)

LEGUME

Fermented

soybean products

Histamine, tyramine, other

biogenic amines

(39)

MEAT/FISH

Cured meats Histamine, tyramine, other

biogenic amines

(40)

Aged meats Altered amino acid profiles

compared to fresh meat

(41)

Beef Tyrosine, other amino acids (42)

Chicken Tyrosine, other amino acids (43)

Pork and ham Tyrosine, other amino acids (44)

Fish Histidine, tyrosine, other

amino acids

(45)

DAIRY

Cheeses Histamine, tyramine, other

biogenic amines

(46, 47)

Fermented milks Biogenic amines (48)

SEEDS/NUTS

Coffee bean Serotonin (49)

Cocoa bean Dopamine (34)

Hazelnut Serotonin (50)

Walnut Dopamine; Serotonin (51, 52)

Pecan Serotonin (53)

comprehensive overview, the reader is directed to a recent review
(23)] with associated outcomes related to their consumption. Due
to the many types of digestive systems ranging from humans
to wildlife to insects, it is not possible to generalize which
neuroendocrine components and precursors survive digestion.

Dietary amino acids tryptophan, tyrosine, and histidine to
name a few, are precursors to the neurotransmitters serotonin,
dopamine/norepinephrine/epinephrine, and histamine, res-
pectively. A wide range of protein sources serve as rich sources
of these amino acids including—but not limited to—fish, meat,
legumes, nuts, and cheeses. Tryptophan, an essential amino
acid in humans, is commonly employed in psychiatric-based
clinical and preclinical studies to assess the relationship between

serotonergic function and neuropsychiatric diseases such as
depression. Acute tryptophan depletion in animals and humans,
achieved through diet, has helped demonstrate the multifactorial
relationship between serotonergic function and neuropsychiatric
disease (54). Tyrosine, a non-essential amino acid in humans
which can be obtained through diet, has been shown to enhance
resilience to cognitive impairment during stress (55, 56), reduce
environmental stress (57), as well as elevate anger under stressful
conditions (58). Histidine, an essential amino acid in humans,
is found in significant quantities in fermented products such as
dried bonito flakes. Human consumption of dried bonito flakes
has been associated with improved mood and reduced fatigue
(59). Oral ingestion of histidine was demonstrated to improve
working memory and attentiveness in healthy volunteers (60)
and animals (61).

Like amino acids, neuroendocrine molecules and other
precursors found in foods can survive the digestive process
to reach the intestinal tract. Despite abundant evidence of
neuroendocrine communication between host and microbe,
surprisingly few microbiota-gut-brain axis-focused publications
have examined the consequence of consuming neuroendocrine-
rich foods. Indeed, the majority of investigations examining
the fate and effect of dietary-derived neuroendocrine molecules
have been published in the clinical and neuropsychiatric-based
literature.

GABA is a constituent of several edible plants including those
used in the preparation of tea (62). Investigations examining
the effects of oral administration of GABA have shown GABA
can be readily absorbed by the gastrointestinal tract, appearing
in the plasma 1–1.5 h postprandial (24). Ex vivo and in vitro
studies of animal (63) and human (64) intestinal tissues have
identified potential GABA transport mechanisms. It is important
to note that GABA receptors within the enteric nervous system
are widely distributed throughout the gastrointestinal tract (65)
and that GABA plays several physiological roles in a region-
dependent manner along the gastrointestinal tract. Additionally,
afferent ends of the vagal nerve, a pathway of gut-to-brain
communication (66), extend into villi of the small intestine
(67) and express GABA receptors (68, 69). Although GABA
supplementation has been reported as effective in mediating
favorable behavioral outcomes in animals and people, the
mechanisms by which this occurs remain largely unknown as it
is unclear whether, and under what conditions, GABA may cross
the blood brain barrier (BBB) (70). Hence, it is unknown whether
reports demonstrating that oral administration of GABA results
in a reduction of fatigue in animals (27) and human volunteers
(16), as well as antidepressant-like effects (26), improved task
completion (71), and anti-insomnia effects (72) (73), are due to
GABA acting locally on gastrointestinal receptors in a putative
gut-to-brain mechanism, are due to circulating GABA, or if some
GABA does indeed cross the BBB.

Serotonin is found in significant quantities in bananas, and
a potential clinical role for serotonin obtained through banana
consumption to treat constipation in human subjects was tested
decades ago (33). Although it is controversial whether serotonin
affects gastrointestinal motility and fecal transit (74), dietary-
derived serotonin does reach the intestinal tract, is absorbed
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and undergoes hepatic metabolism into 5-hydroxyindoleacetic
acid (5-HIAA) which can result in a postprandial elevation in
plasma 5-HIAA concentration (75) and excretion in the urine
(76). Other dietary sources of serotonin, such as nuts, pineapple,
tomato, and kiwi have been shown to cause unique changes in
human postprandial serum concentrations of 5-HIAA compared
to banana (25).

Bananas also contain abundant amounts of dopamine and
norepinephrine (32). Healthy volunteer plasma catecholamine
concentrations were elevated following banana consumption
(77). Likewise, urinary concentrations of homovanillic acid, a
major metabolite of dopamine, increased after having eaten
bananas (34). Banana, as well as other dietary sources of
catecholamines such as pineapple and walnuts, were also
reported to affect plasma concentrations in healthy volunteers of
multiple catecholamine metabolites, including normetanephrine
and 3-methoxytyramine which are breakdown products of
norepinephrine and dopamine, respectively (78).

Although the Cavendish banana, a major commercial cultivar
(79), has high concentrations of monoamines, a comparison
of monoamine levels of other cultivars of banana consumed
throughout world is needed. Cultural (i.e., governmental
regulations and food safety laws) as well as geographic (i.e.,
soil, climate, and other conditions that affect, for example, crop
growth) influences likely shape population-specific exposure,
and therefore health and economic implications, to unique
neuroendocrine profiles of common foods. For example,
biogenic amine concentrations are typically lower in pasteurized
compared to unpasteurized dairy products as pasteurization
reduces microbial load, including bacteria that produce biogenic
amines (46). The consumption of dietary-derived biogenic
amines can have direct effects on host physiology. For example,
consumption of tyramine-rich (tyramine etymology stems from
the words tyrosine and amine, “tyros” is Greek for “cheese”)
foods is contraindicated for patients prescribed monoamine
oxidase inhibitors (MAO-I) in the treatment of psychiatric illness
(80). Typically, dietary tyramine, which survives stomach acid, is
metabolized within the intestine by monoamine oxidase (MAO).
The use of MAO-I inhibits MAO which allows excess tyramine
to enter circulation. Once present in the circulatory system it can
then be converted to the catecholamine norepinephrine,
thereby resulting in the precipitation of a hypertensive
crisis.

Likewise, the geographical origin of food sources is well

recognized to affect the chemical compositions of livestock

feed ingredients (81, 82) which in turn can impact digestibility

(83). Biogenic amines in animal feeds appear to have species-
specific effects and are not strictly deleterious or beneficial
(84). For example, poultry broilers fed diets that included
high concentrations of putrescine, cadaverine, histamine, and/or
phenylethylamine did not exhibit reduced performance or
display histopathologic alterations (85). This literature review
did not reveal any study that profiled the neuroendocrine
content of different feeds sourced either domestically or
internationally.

INTERACTION OF NEUROENDOCRINE
AXES AND FOOD INTAKE—A MICROBIAL
ENDOCRINOLOGICAL PERSPECTIVE

Meal timing and feeding behavior are intimately linked to
neuroendocrine physiology. The sensitivity of circadian cellular
and physiological functions to chrono-patterns of feed intake has
been recognized for decades (86). However, such findings largely
have yet to integrate recent discoveries of bacterial regulation
of feeding behavior and influence on metabolically-important
host neuroendocrine profiles. For example, ghrelin, an orexigenic
hormone (87) that influences central dopamine (88) and
serotonin (89), is increased in rodent plasma before scheduled
meal times and changes in serum ghrelin concentrations have
been correlated with higher or lower counts of certain fecal
bacterial taxa (90). Likewise, germ-free mice exhibit reduced
hypothalamic ghrelin concentrations which are normalized
following colonization with a conventional microbiota (91).
Nevertheless, ghrelin knockout rodents exhibit normal appetite
and feed intake (92), suggesting compensatory mechanisms in
driving food consumption. As ghrelin’s orexigenic effects are
mediated through dopaminergic signaling (93), and dopamine
has been suggested to influence appetite (94), microbial
utilization of the dopamine precursor L-dopa (95) may suggest
a microbial endocrinological route of host appetite modulation.
Hence, in a study that utilized human subjects, reduced appetite
reported by Helicobacter pylori-infected patients (96) may be
linked not only to lowered ghrelin via H. pylori effects on gastric
endocrine cells, but to H. pylori utilization of L-dopa and the
resulting impact on central dopaminergic function.

Other chronobiological pathways that regulate feeding
behavior also are likely to include bi-directional microbial
endocrinological-based mechanisms. Changes in leptin, an
anorexigenic hormone, are subject to both circadian rhythm
and patterns of feed intake. Although leptin is derived from
gastric and adipose origin (97), gastric leptin is secreted into
both the gastric juice as well as into the bloodstream (98). In
addition to gastric leptin appearing in circulation, gastric leptin
also reaches the intestinal lumen (99). As intestinal epithelial
cells express leptin receptors on both the basolateral membrane
and on the apical microvilli, gastric leptin exerts diverse effects
on the intestinal epithelium (100). Little is known, however,
regarding how leptin affects the gastrointestinal microbiome.
Interestingly, it has been reported that, compared to conventional
mice, germ-free mice exhibit greater leptin sensitivity within the
central nervous system (CNS) (101). Although the authors did
not speculate on a microbial-based mechanism being responsible
for the relative leptin resistance observed in conventional mice,
clues may still be gleaned from other studies. For example,
leptin knockout mice display both hyperphagia and alterations in
gastrointestinal microbial diversity (102). Conversely, knockout
of murine intestinal epithelial leptin receptor, which was
identified in the submucosa of each region of the small intestine,
did not cause compositional changes in the fecal microbiome
(103).
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Thus, a key question not addressed in the literature, is whether
leptin itself has any direct effects on the microbiota (i.e., do
bacteria sense and uptake extracellular leptin?), especially given
that gastric leptin reaches the gut lumen and interacts with the
intestinal epithelium. Relatedly, ob/ob mice, which are obese
due to hyperphagia from being leptin-deficient, exhibit increased
intestinal bacterial translocation possibly related to dysregulated
glucose metabolism (104) compared to conventional mice (105).
When these ob/ob mice were administered leptin, intestinal
mucosal bacterial adherence and translocation were reduced.
Hence, leptin signaling may be a source of host-microbe
neuroendocrine bidirectional communication. As the evidence
indicates that leptin affects bacterial adherence and translocation
in the intestine, it can therefore be suggested that leptin
serves to eliminate unwanted microbial colonization of the
gastrointestinal tract. If a direct inhibitory effect of leptin on
certain members of the microbiota is found, perhaps bacterial
tolerance to leptin may represent an evolutionary niche by
which certain species are able to colonize different regions of
the upper gastrointestinal tract, such as the jejunum (106).
Indeed, it would be interesting to investigate whether leptin
signaling, via a microbial endocrinological-based mechanism,
unites the separate observations that obesity is associated with
leptin resistance (107) as well as the risk of small intestinal
bacterial overgrowth (108).

Whether host-microbe dialogue via neuroendocrine stress
pathways mediates the effects of stress on dietary consumption
patterns is a particularly relevant, yet little understood,
intersection of feeding behavior and the microbiota-gut-
brain axis. For example, stress is recognized to affect eating
behavior (109), and while significant attention has been given
to associations of the microbiota and changes in feeding
behavior (i.e., “correlation”), very little is understood in the
way of causation (110). The first evidence that neurohormones
constitute an interkingdom language between prokaryote and
eukaryote was reported in the early 1990s (5, 111, 112). Microbial
endocrinological-based investigations have since revealed the
mechanisms by which several stress-related neurohormones,
including serotonin and norepinephrine allow for bi-directional
communication between host and microbe. While the causation
underlying stress-induced eating disorders is multifactorial, the
involvement of central catecholaminergic pathways in feeding
behavior has been recognized for decades (113). Likewise,
vagotomy [i.e., severing of the vagus nerve, a major bi-directional
route of microbiota-gut-brain communication (114)] has been
reported to associate with decreased hunger, gustatory intensity,
and related sensations (115). Rodent studies have demonstrated
the microbiota to significantly alter host catecholaminergic
systems (116) and, for example, via the vagus nerve, affect
brain function (117) as well as anxiety- (118) and depressive-
like behaviors (119). It is important to note that several types of
vagal afferents are distributed throughout the mucosa of different
regions of the gastrointestinal tract (120), and that the receptors
found on vagal afferents are not homogenously distributed;
hence, functionality of vagal afferents cannot be generalized
across different gastrointestinal regions (121). Nevertheless, some
vagal afferents lie in close proximity to enteroendocrine cells

(EEC) (122). As the apical surface of EEC can reach the gut
lumen, EEC luminal sensing of microbial metabolites and dietary
components allows for paracrine activation of receptors found
on vagal afferents (123). Indeed, diet-induced changes in the
microbiota were recently associated with alterations in the vagal
afferent innervation of the rodent cecum (124). EECs express
several types of receptors, including adreno- and serotonin-
receptors. Application of norepinephrine to murine colonic
intestinal epithelium ex-vivowas shown to elicit sensory neuronal
response via an EEC-based mechanism (125). Likewise, in
rodents, in response to luminal stimuli, serotonin released from
intestinal EEC was demonstrated to activate the vagal afferent 5-
HT3 receptor (126). Interestingly, the proximal colon contains
vagal afferent endings which are mechanosensitive (127), and
proximal colon distension activated catecholaminergic neurons
in the brainstem (128). Since the brainstem plays a critical role
in receiving gut-derived signals in order to regulate food intake
(129), it is therefore reasonable to suggest that host-microbe
neuroendocrine signaling within the gastrointestinal tract may
signal via the vagus nerve to affect feeding-regulatory regions of
the CNS.

In addition to vagal afferent innervation, the intestinal tract
is innervated by vagal efferent nerves (130, 131). This is an
important consideration as it allows the host to rapidly respond
to signals, including those that are food-related, originating
from the gut via vagal afferent stimulation. One such vagal
afferent/efferent circuit is the cholinergic anti-inflammatory
pathway (CAP) (132). Indeed, the effect of a high fat diet
in reducing pro-inflammatory cytokine response in rats that
underwent hemorrhagic shock was shown to be mediated via
the CAP (133). Hence, enteric nutrition may hold therapeutic
potential in mediating inflammatory response to trauma via a
gut-to-brain vagal mechanism. It is important to note that it is
unknown how CAP activation may differ depending on intake of
different types of dietary fat, or whether other dietary-acquired
constituents such as 5-HT may act on vagal afferent receptors in
gut villi to initiate CAP.

MICROBIAL INFLUENCES ON HOST
FEEDING BEHAVIORS: FROM
MICROBIOTA-TO-GUT-TO-BRAIN

“I’m cuckoo for Cocoa Puffs! R©”—Sonny the Cuckoo Bird R©

Although it may never be known whether microbes influence
Sonny’s R© predilection for Cocoa Puffs R©, several lines of
evidence suggest the microbiome can interact with host feeding-
related physiology, food preference, as well as affect food-
seeking behavior and cognition. Indeed, recent studies have
described a role for the microbiome in influencing host intake
and chemo-sensing systems of carbohydrate (134), fat (135),
and protein (136). The first evidence linking diet-induced
changes in the microbiome to alterations in host behavior
and cognition was reported in 2009 (28). Compared to mice
maintained on a standard chow diet, mice fed a meat-based
diet exhibited both significantly greater fecal microbial diversity
which was positively correlated with improvements in working
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and referencememories, as well as comparatively less anxiety-like
behavior and a slower speed in seeking food. Little is understood,
however, of how such diet-induced shifts in the microbiota
mechanistically affect the host. From within the gastrointestinal
tract, microbes can utilize host dietary components in the de
novo synthesis of neuroendocrine molecules and precursors that
may affect host health and hedonistic behaviors via microbial
endocrinological-pathways of the gut-brain axis (2).

EEC-mediated mechanisms represent one such pathway
by which the microbiota can potentially affect the host
through diet via microbial endocrinological-based signaling.
EEC express a repertoire of luminal metabolite- and nutrient-
sampling receptors. Such receptors include sweet-taste receptors
which bind caloric sugars and non-nutritive sweeteners (137),
bitter-taste receptors, free-fatty acid receptors (FFARs) which
bind dietary fatty acids as well as microbial-generated short-
chain fatty acids (138), and amino acid receptors (139).
Compared to conventional rodents, germ-free rodents displayed
greater preference for drinking solutions that contained higher
concentrations of sucrose (134). Dietary sugars, such as
sucrose in drinking water, are absorbed in the upper small
intestine, including the duodenum and jejunum (140). Duodenal
EEC-induced release of serotonin in response to maltose, a
disaccharide of glucose, or glucose has also been shown to elicit
duodenal vagal afferent firing (126). Relatedly, the microbiome
composition was observed to diverge between mouse lines
selectively bred for low or high saccharin taste phenotype (6).
Low or high saccharin preference in rodents has been reported
to be associated with social behavior as well as reactivity to
stress (141). As the vagus nerve is important in mediating some
probiotic anxiolytic effects on the host (3), it may be hypothesized
that any microbial influence on host preference for the type
and quantity of sugar intake could drive behavioral effects via
an EEC-vagus-mediated mechanism of the microbiota-gut-brain
axis.

Also found in the distal ileum and the large intestine,
EEC can be exposed to products of bacterial metabolism of
metabolic host dietary constituents that escaped absorption in the
small intestine. Non-digestible carbohydrates, such as resistant
starch, can be fermented by the microbiota into short chain
fatty acids (SCFAs). Butyrate, one such microbial SCFA, can
act on human EEC FFARs to stimulate the release of peptide
YY (PYY) (142). In rodents, PYY, a satiety signal, has been
shown to bind to the Y2 receptor on neighboring gut vagal
afferents to activate hypothalamic neurons that help regulate food
intake (143). Likewise, butyrate can influence host catecholamine
synthesis (144) and, at certain concentrations, elicits activation
of the hypothalamic-pituitary-adrenal (HPA)-axis, a classical
neuroendocrine pathway of the stress response (145). As nerve
terminals that ramify into the intestinal mucosa synthesize
dopamine and norepinephrine (146), butyrate may act locally
in the gut to alter luminal catecholamine production. As HPA-
axis activation is associated with anxiety, it is important to
note that mice fed ad-libitum high amylose type-2 resistant
starch exhibited changes in the microbiota that associated with
host anxiety-like behavior (147). Colonic epithelial cells (148)
as well as endothelial cells of the BBB (149) both express

the SCFA transporter monocarboxylate transporter (MCT)-1.
Hence, butyrate and acetate may be transported from the
intestinal lumen into the circulation to cross the BBB and
thereby affect brain and behavior. For example, radio-labeled
acetate absorbed from the colon can cross the BBB and suppress
appetite in rodents (150). Multiple routes may therefore enable
microbial SCFAs, derived from host dietary components, to
potentially influence the host along neuroendocrine pathways of
the microbiota-gut-brain axis.

The microbiota also affects the amino acid profiles of
the gastrointestinal tract (151) and circulation. For example,
intestinal microbial-produced free lysine and threonine has
been detected in human plasma (152). Lysine was recently
shown to play an important function in avian neuroendocrine
regulation of food intake, however, a role for the microbiota
was not investigated (153). Amino acids are precursors to
several microbial-derived neuroendocrine molecules, including
the biogenic amines agmatine, derived from lysine; cadaverine,
derived from arginine; and putrescine, derived from ornithine
(154). Each of these biogenic amines have been demonstrated
to be related to diet. For example, the oral administration
of agmatine in rats was reported to affect host metabolism
accompanied by reductions in diet-associated weight gain (155).
Likewise, mice fed a high protein diet had elevated cadaverine in
colonic content compared to mice on a moderate protein intake
(156). Finally, hypertensive obese patients fed a hypocaloric
diet with cheese containing Lactobacillus plantarum, a probiotic
which synthesizes putrescine, exhibited reduced body mass index
(BMI) and arterial blood pressure compared to patients fed
cheese without the probiotic (157).

The microbiota can also utilize host dietary amino acids in the
synthesis of xenobiotic compounds, such as indoles, which affect
host health and behavior (158). Microbial-produced indoles,
which are derived from tryptophan, can affect host anxiety-like
behavior (159). Nevertheless, what may be gleaned from these
studies is that much remains to be understood regarding not only
the extent of microbial production of the amino acid-derived
neuroendocrine molecules in the gastrointestinal tract in vivo,
but whether the in vivo production, and effect on the host, of
these products mirrors what has been reported from their oral
ingestion.

As mentioned earlier in this review, bananas contain
significant concentrations of free catecholamines, which
following banana consumption, appear as sulfate-conjugated
catecholamines in the plasma of healthy volunteers (77). In
this study, the authors suggested that “sulfate conjugation of
free catecholamines in banana largely takes place in the gut.”
Specifically, conjugation of free catecholamines takes place
predominantly in the mesentery (160). The site of conjugation
is important as microbial β-glucuronidase in the gut lumen
was recently discovered as necessary for the deconjugation
of sulfate- and glucuronide-conjugated catecholamines (116)
as well as serotonin (161). Hence, within the gut lumen the
microbiota plays a critical role in the conversion of biologically-
inactive, conjugated monoamines to biologically-free, active
monoamines. As the microbiota responds to free catecholamines
with significant implications for host health (2) and, for example,
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uptake extracellular serotonin (4), it will be critically important to
understand how the ingestion of neurochemical-containing food
affects the microbiota to causally-impact the host. Moreover, as
the microbiota can convert dietary amino acids into biologically-
active monoamines in simulated in vivo conditions (20), it will
be essential to determine how host food intake and dietary
habits fuel microbial production of monoamines that can
then affect neuroendocrine host-microbe crosstalk along the
microbiota-gut-brain axis.

HOST FEEDING BEHAVIOR INFLUENCES
THE MICROBIOTA: FROM
BRAIN-TO-GUT-TO-MICROBIOTA

“They’re Gr-r-r-reat!”—Tony the Tiger R©

Tony the Tiger’s R© subjective opinion of Frosted Flakes R© might
or might not be shared with his microbiota. Indeed, food
selection is well-recognized to be influenced by conditions of
psychological and physical stress. Comfort eating, food choice
which lessens the feelings of stress (30), is engaged in by
both sexes as well as animals and has been shown to affect
physiological response (162–164) and emotional perception
(165) of stress. In light of recent findings in rodents that stress
and sex uniquely interact to influence the microbiota-gut-brain
axis (166), and that the microbiota can affect host food choice,
it is important to note that the effect of comfort eating in
reducing stress in female rodents is estrous-cycle dependent
(167). Likewise, chemical constituents of foods, such as caffeine,
can elicit HPA-axis activation. As food therefore can affect host
neuroendocrine systems, this gives rise to altered brain-to-gut
signaling which could affect the microbiota.

How foods influence host neuroendocrine physiology is
multifactorial. Chocolate is a principal example (168) as it
contains the psychoactive substances threonine and caffeine, a
combination of fat and sugar, a subjectively-appealing aroma,
in addition to other factors. Recent studies, however, have
highlighted a role for the fat and sugar, perhaps the latter more so
than the former, content of chocolate in being the main drivers
of chocolate’s psychoactive effects (31). Foods that contain high
sugar and fat were shown to alter rodent stress-induced eating
behavior (169). The effects of comfort eating on the HPA-axis
are well-described, with glucocorticoids playing a major role in
increasing the intake of palatable food (170). Glucocorticoids,
including corticosterone, are synthesized by intestinal epithelial
cells and released into the gut lumen (171). For example, fecal
corticosterone can be measured in rodents (172), canines (173),
and wildlife (174) as a non-invasive indicator of environmental
stress. As glucocorticoids are released into the gut lumen, it
is reasonable to assume the microbiota are exposed to host-
produced glucocorticoids. An effect on microbial viability,
growth, or function following exposure to corticosterone or other
major host-produced glucocorticoids is unknown. Gnotobiotic
animals, such as the defined 8-species microbiota of the Altered
Schaedler Flora (ASF) rodent, may allow for interrogation of
how host glucocorticoids or neuroendocrine molecules secreted
into the gut affect the microbiota in a brain-to-gut-to-microbiota

mechanism (175). Hence, deliberate host food choice under times
of stress to reduce the host’s own stress response may causally
impact the microbiota.

Caffeine, a psychoactive substance found in coffee, tea, and
other beverages and foods, is consumed in virtually all societies
(176). Although health regulatory bodies, such as the European
Food Safety Authority have set recommended daily caffeine
intake limits for children and adults as 3 mg/kg and 400mg
(total), respectively, animal (11) and human studies (177, 178)
have demonstrated caffeine as anxiogenic. Indeed, a single
caffeine dose of 250mg in healthy adult volunteers caused an
elevation in anxiety and diastolic blood pressure (29). That low
doses of caffeine alter the host HPA-axis is notable for several
reasons. First, HPA-axis responsivity is part of the bi-directional
microbiota-gut-brain axis (179). HPA-axis activation stimulates
the production of the stress catecholamines norepinephrine
and epinephrine that effect unique and direct responses in the
microbiome (180, 181). As norepinephrine and epinephrine
are found at several host-microbiome interfaces, including in
the gut lumen (116, 125) and lung alveolar fluid (182), it is
reasonable to suggest that changes in the host HPA-axis and its
responsiveness following food or beverage consumption likely
affect the microbiome.

Relatedly, in healthy subjects, consumption of a triple
espresso or 250mg of caffeine has been shown to stimulate
sympathetic nervous system (SNS) activity (183). SNS activation
can cause the release of catecholamines from the adrenal medulla,
which feed back onto the HPA-axis, sympathetic nerve fibers
also ramify throughout the intestinal tract. As sympathetic
nerve terminals express tyrosine hydroxylase and synthesize
norepinephrine, that they can be found in the intestinal mucosa
(184) provides yet another route of neuroendocrine host-microbe
crosstalk. Indeed, norepinephrine from sympathetic efferent
nerve terminals throughout the body can escape breakdown
to appear in the gut (185) as well as plasma (186). It is
currently unknown whether the intake of caffeine or other
substances in foods that activate the SNS may influence the
microbiome.

Like caffeine, alcohol consumption is a virtually global
occurrence (187). Alcohol affects the CNS as well as causes
physical changes in several areas along the gastrointestinal tract
(188). Protracted alcohol abuse can cause dramatic changes in
CNS neurochemistry and brain structure (189). It is largely
unknown how alcohol’s direct degenerative effects on the
CNS may bi-directionally impact the microbiota-gut-brain axis.
Nevertheless, alterations in neuronal architecture, one may
assume, would contribute to changes in the microbiota-gut-
brain axis in the direction of the brain-to-gut-to-microbiota. This
direction of the microbiota-gut-brain axis should be considered
in the context of alcohol use, as alcohol can be absorbed in the
stomach and upper small intestine (190), therefore not all alcohol
ingested may reach the intestinal tract and microbiota. It should
be noted that substantial attention has been given to alterations
in the gut microbiota following mild as well as chronic alcohol
consumption, and hypotheses have been proposed describing
alcohol’s influence on the microbiota-gut-brain axis in the
direction of the microbiota-to-gut-to-brain (191, 192).
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CONCLUSIONS AND FUTURE
DIRECTIONS

The relationships between diet, nutrition, and the microbiota-
gut-brain axis are incredibly complex, yet mechanistic pathways
which causally unite these categories remain to be fully
elucidated. We are truly at the beginning of our understanding
of these complex inter-relationships. The neuroendocrine system
is a major bi-directional set of pathways along the microbiota-
gut-brain axis that is both affected by food choice and at
the same time is a locus of host-microbe crosstalk. Microbial
endocrinology, the study of neuroendocrine host-microbe
interkingdom communication, represents an important lens, and
certainly not the only one, through which diet, nutrition, and
the microbiota-gut-brain axis may be mechanistically linked.
Indeed, foods and beverages contain diverse neuroendocrine
molecules and precursors that separately affect host physiology
as well as microbial viability and function. Moreover, microbial
utilization of host dietary components can result in the
production of neuroendocrine signaling molecules that can affect

host health, especially considering that several microbe-derived
molecules are structurally identical to those produced by the
host. Likewise, diet-induced changes in host neuroendocrine
physiology likely have direct consequences for the microbiota.
Microbial endocrinological-based mechanisms are a promising
avenue by which future nutrition-oriented microbiota-gut-brain
axis research may identify causal, mechanistic-driven pathways
of how diet affects the bi-directional nature of host-microbiota
interaction that ultimately may define host health and behavior.
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