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Abstract: The translation of mRNAs plays a critical role in the regulation of gene expression and
therefore, in the regulation of cell proliferation, differentiation and apoptosis. Unrestricted initiation of
translation causes malignant transformation and plays a key role in the maintenance and progression
of cancers. Translation initiation is regulated by the ternary complex and the eukaryotic initiation
factor 4F (eIF4F) complex. The p53 tumor suppressor protein is the most well studied mammalian
transcription factor that mediates a variety of anti-proliferative processes. Post-transcriptional
mechanisms of gene expression in general and those of translation in particular play a major role in
shaping the protein composition of the cell. The p53 protein regulates transcription and controls eIF4F,
the ternary complex and the synthesis of ribosomal components, including the down-regulation of
rRNA genes. In summary, the induction of p53 regulates protein synthesis and translational control
to inhibit cell growth.

Keywords: p53; eukaryotic initiation factor 4F complex; ternary complex; translation regulation; the
mammalian target of rapamycin; Casein Kinase 2

1. Introduction

Translation initiation plays a critical role in the regulation of cell proliferation, differentiation and
apoptosis (reviewed in [1]). Translation initiation is regulated by the assembly of ternary complex
and eIF4F complexes [2]. The eukaryotic Initiation factor 2 (eIF2) and the initiating methionyl-tRNA
(Met-tRNAi) form the ternary complex. The ternary complex recruits the 40S ribosomal subunit to
form the 43S pre-initiation complex. The 43S pre-initiation complex binds to the mRNA cap with
the participation of other translation initiation factors, such as the eIF4F complex. The pre-initiation
complex scans the 5′ untranslated region (5′ UTR) of the mRNA for the initiator AUG codon, which is
the location where the 60S ribosomal subunit joins to form the 80S ribosome. An important point of
translation initiation regulation is the guanosine diphosphate (GDP)/guanosine triphosphate (GTP)
exchange of eIF2, which is catalyzed by eIF2B in order to initiation a new round of translation. This
GDP–GTP exchange of eIF2 is inhibited when the alpha subunit of eIF2 (eIF2α) is phosphorylated on
S51 [3]. The eIF2α phosphorylation results in a reduction in the overall rate of translation initiation [4].
Phosphorylated eIF2α binds with high affinity to the guanine nucleotide exchange factor eIF2B and
thereby inhibits the exchange of the GDP for GTP in eIF2 (Figure 1) [5–7]. The inhibitory effects
of the ternary complex reduce the expression of oncogenic proteins and increases the expression of
tumor-suppressor and pro-apoptotic proteins [8,9].
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Figure 1. Scheme showing the eukaryotic translation initiation pathway.

Although most mRNAs are recruited to the ribosome via the recognition of their 5′ end cap
structure (m7GpppN, where N can be any nucleotide), a subset of mRNAs can be translated using
an internal ribosome entry site (IRES) [2]. As mentioned, the translation initiation is regulated by
the ternary complex and eIF4F assembly [10]. The eIF4F is a complex comprised of eIF4A (an RNA
helicase), eIF4E (the cap-binding subunit) and eIF4G (a large scaffolding protein for eIF4A, which is
called eIF4E). The eIF4F complex binds to the cap structure, unwinds the complex secondary structures
of the mRNA 5′ UTRs template and recruits the 43S pre-initiation complex. The eIF4F complex
stimulates the recruitment of ribosomes to the mRNA template. eIF4A stimulates translation of both
capped and uncapped mRNAs in vitro [10].

A key regulatory step of translation is the initiation stage, which involves the recruitment of
ribosomes to the 5′ UTR of the mRNA. The eIF4E-binding proteins (consists of three members: 4E-BP1,
4E-BP2 and 4E-BP3) are repressors of eIF4F. Hypo-phosphorylated 4E-BPs binds to eIF4E and prevents
recruitment of the translation machinery to mRNA. In contrast, 4E-BP hyper-phosphorylation causes
disruption of the 4E-BP:eIF4E complex and renders eIF4E available for eIF4F formation, which results
in an abrogation of eIF4E-binding activity (Figure 1) [11]. Similarly, the tumor suppressor protein
programmed cell death protein 4 regulates the protein translation by preventing eIF4A from interacting
with eIF4G, leading to translational suppression [12].

The p53 tumor suppressor protein is the most well studied mammalian transcription factor that
mediates a variety of anti-proliferative processes [13]. Elucidating the effect of p53 on translation
initiation in the context of cell cycle regulation is essential in understanding the role that mutations or
deregulation of p53 play in cancer biology. The post-transcriptional mechanisms of gene expression in
general, especially those of translation, play a major role in shaping the protein composition of the
cell [14]. The p53 protein regulates transcription and also controls ribosome biogenesis and eukaryotic
initiation factors. In this review article, we examine the role of p53 as a regulator of the ternary complex,
the eIF4F complex and translation ribosome biogenesis.
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2. p53 Restricts the Ribosome Biogenesis

Ribosomes are responsible for transferring the information contained in mRNAs to proteins.
Ribosome biogenesis takes place in the nucleolus [15,16]. The ribosomal DNA (rDNA) genes are
organized at the nucleolar organizer regions [17,18]. The human 60S ribosome subunit is a complex
molecule composed of three ribosomal RNA (5S, 5.8S and 28S rRNA) and 47 distinct ribosomal proteins
(RPs) [19]. This complex is responsible for peptide bond formation and quality control of nascent
peptides [20]. The human 40S ribosome subunit, which is responsible for unwinding and scanning
mRNAs, is also a complex molecule composed of one strand of 18S ribosomal RNA (rRNA) and 33
distinct RPs. Both experimental models and clinical studies indicate that disturbances in the ribosomal
biosynthesis and/or protein synthesis have been shown to play a major role in tumorigenesis [21–23].

It is well established that p53 restricts the ribosome biogenesis. Indeed, the regulation of RNA
polymerases (pol) by p53 has been extensively studied. RNA pol I synthesizes ribosomal RNAs
(except for 5S rRNA) [24]. RNA pol II synthesizes mRNA precursors as well as most small nuclear
RNA and microRNAs, while RNA pol III manufactures transfer RNA (tRNAs), the 5S rRNA as
well as other small RNAs involved in RNA processing and transport. The p53-mediated RNA
pol I transcriptional repression involves p53 interfering with a set of proteins required for the
assembly and initiation of transcriptional machinery on the rRNA promoter [25]. Interestingly,
Zhai et al. demonstrated that p53-mediated growth suppression occurred by repressing rRNA gene
transcription [26]. Specifically, p53 directly binds to the TATA (the Hogness box)-binding protein (TBP)
and TBP-associated factors, disrupting their interaction with upstream binding factors and thereby
repressing RNA pol I transcription. It has also been reported that p53 is able to activate the transcription
of RNA pol I and II through repression of c-Myc expression [27] (Figure 2). A novel, selective
RNA pol I transcription inhibitor, CX-5461 (Cylene Pharmaceuticals/Senhwa Biosciences), promotes
cancer-specific activation of p53 and apoptosis in malignant B cells [28], which is an interesting
development in the search for new anti-cancer therapies.

Figure 2. Key mechanism by which p53 inhibits RNA polymerases.

Furthermore, p53 inhibits RNA pol III activity, which generates tRNAs, the 5S rRNA as well
as other small RNAs involved in RNA processing and transport. Indeed, the wild-type p53 directly
interacts with the TBP-containing general factor (TFIIIB), which prevents the attachment of RNA pol
III onto DNA [29–31] (Figure 3).
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Figure 3. Schematic diagram outlining the regulation of eIF4F and Ternary Complex and the different
steps known to be modulated by p53.

3. p53 Regulates the Transcription of RP Genes

Newly synthesized ribosomal proteins (RPs) are imported into the nucleolus from the cytosol.
In response to nucleolar stress, several RPs (RPL5, RPL11, RPL23, RPS3, RPS7) as well as 5.8S and 5S
rRNA translocate from the nucleolus to the nucleoplasm. This subset of nucleolar elements binds to
and inhibits the activity of murine double minute 2 (MDM2), resulting in p53-mediated cell cycle arrest
and apoptosis [32]. Cancer cells that harbor mutant p53 (R248W) leads to an up-regulation of L37, P1
and S2 expression [33]. Interestingly, in response to DNA damage, the ribosomal protein RPL26 binds
to both 5′-UTR and 3′-UTR of p53 mRNA, enhancing p53 translation and leading to p53-dependent and
MDM2-independent cell cycle arrest [34,35]. Upon genotoxic stress, p53 directly induces the expression
of the ribosomal protein S27-like (RPS27L), thus positively regulating p21 protein expression. This
ultimately leads to p21-mediated cell cycle arrest [36,37].

p53 not only regulates rRNA transcription, but also controls the processing of pre-rRNAs.
Fibrillarin (FBL) is a nucleolar protein vital for methylation and processing of pre-rRNAs [38]. Marcel
et al. demonstrated that p53 inhibits FBL expression levels. The p53-dependent FBL inhibition leads to
a high translational fidelity (i.e., nonsense suppression or amino acid misincorporation) and increases
the initiation of internal ribosome entry site (IRES)-dependent translation [39]. Understanding the role
of p53 in pre-RNAs processing has the potential to identify future therapeutic targets on the ribosome
population with altered rRNA methylation patterns.

4. p53 Regulates Ternary Complex and eIF4F Assembly Regulation

It remains largely unknown how the two major regulatory branches that regulate translation,
ternary complex and eIF4F complex are coordinated. Interestingly, Gandin et al. demonstrated
a coordinated regulation of eIF2α and eIF4E via CK2 and mTORC1 [40]. The mTOR (a
phosphatidylinositol 3-kinase) forms functionally distinct complexes, including: mTOR complex
1 (mTORC1) and mTOR complex 2 (mTORC2). The mTORC1 regulates mRNA translation, protein
synthesis and cell growth, while mTORC2 regulates cellular metabolism, survival and the cytoskeletal
organization. Protein kinase casein kinase 2 (CK2) belongs to the serine/threonine protein kinase family
and consists of two catalytic (alpha and/or alpha’) subunits and two regulatory (beta) subunits [41,42].
CK2 regulates key cell growth and survival pathways, including translation regulation and DNA
damage response pathways [42].
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A 50% reduction of global protein synthesis was determined in vitro utilizing thermosensitive
murine erythroleukemic cells carrying wild-type p53 [43]. Specifically, it was demonstrated that the
inhibition of the ribosomal protein S6 kinase (p70S6k), which is the upstream kinase of 4E-BP1, by p53
strongly attenuated the global protein synthesis [43].

Recent data showed that TRIM22, a p53 target gene, inhibits the binding of eIF4E to eIF4G [44].
Furthermore, p53 activation causes dephosphorylation and cleavage of the initiation factor eIF4GI and
the eIF4E-binding protein 4E-BP1 [45,46]. Interestingly, Petroulakis et al. demonstrated that the p53
controls the 4E-BP-dependent senescence and transformation. Specifically, p53-deficient mice have
an increased risk of tumorigenesis in the absence of both 4E-BP1 and 4E-BP2. Conversely, primary
fibroblasts expressing p53, but missing 4E-BPs, undergo premature senescence and are resistant
to transformation. These findings indicate that the combined effect of absence of 4E-BPs and p53
loss synergistically enhanced cell proliferation and tumorigenesis, which provides new insights into
anticancer drug therapy [47]. p53 inhibits protein synthesis through directly inhibiting the expression
of eIF4E [48] and inhibiting the eIF4F complex assembly by enhancing the de-phosphorylation of
4E-BP1 [45]. Although p53 does not directly interact with components of the ternary complex, it
controls translation by interacting with several components of the eIF4F complex. Specifically, Rahman
and colleagues showed that p53 is not able to control the ternary complex pathway through PKR-eIF2α
activation [49]. Instead, the p53 inhibits mTOR signaling [50] and CK2 protein kinase activity (Figure 3).

The eukaryotic translation factor 5A (eIF5A) promotes the elongation of translation [51].
Posttranslational hypusine modification of eIF5A by deoxyhypusine synthase (DHS) and
deoxyhypusine hydroxylase (DOHH) regulates eIF5A activity [51]. Preukschas et al. demonstrated that
targeting eIF5A with a specific DHS-inhibitor has an antiproliferative effect in glioblastoma cell lines,
while sparing the normal human astrocytes. Furthermore, targeting eIF5A results in p53-mediated
premature senescence in glioblastoma cell lines [52].

As mentioned, CK2 and mTORC1 coordinate the activation of the ternary complex and elF4F
complex. The phosphorylation of elF2B by CK2 increases the ternary complex assembly, which
also up-regulates 4E-BP phosphorylation through mTORC1. It has been shown that there is
phosphorylation of p53 in a highly-conserved residue (S392) by CK2 [53,54]. Catrogiovanni and
colleagues showed that the phosphorylation at residue S392 regulates p53 mitochondrial translocation
and transcription-independent apoptosis after cell exposure to genotoxic agents. Furthermore, the
regulatory beta subunit of CK2 can interact with p53 and this interaction reduces the DNA binding
activity and the transactivation function of p53 [55,56]. Conversely, the wild-type p53 interacts with
and inhibits CK2 protein kinase activity [57]. As described above, the role of CK2 and mTORC1 are
major regulators of translation [40]. The exact mechanism by which the interaction between CK2,
mTOR and p53 regulates translation awaits further studies.

5. Genome-Wide Analysis

To investigate the effects of p53 on the genome-wide translational regulation, Zaccara et al. used
the polysome profiling technique [58]. The authors identified about 340 genes whose translation
is regulated by p53 [59]. Loayza-Puch et al. combined RNA sequencing and ribosomal profiling
analyses in order to methodically discover transcriptional and translational control in cells under the
following conditions: quiescence, senescence, normal proliferation and neoplastic transformation. The
authors demonstrated that the global repression of protein synthesis is mediated by p53 activation and
consequent mTOR inhibition. The authors conclude that transcriptional regulation mediates cell-cycle
arrest, while the global translation inhibition impacts cell growth [60].

6. Conclusions

p53 is associated with numerous signaling pathways, which are involved in the regulation of
cellular responses to stress. Its effect on growth arrest or programmed cell death is context-dependent:
both in terms of cellular type and of physiological state. It is therefore not surprising that translation
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regulation is critically affected by p53. A better understanding of these intricate pathways and the
complex interplay between p53 and various signaling pathways that regulate translation and ribosome
synthesis could open up novel strategies for cancer diagnosis, prevention and p53-based therapies.
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