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Abstract
Developing biosynthesis of silver nanoparticles (Ag‐NPs) using plant extract is an
environmentally friendly method to reduce the use of harmful chemical substances. The
green synthesis of Ag‐NPs by Lawsonia inermis extract and its cellular toxicity and the
antimicrobial effect was studied. The physical and chemical properties of synthesised Ag‐
NPs were investigated using UV‐visible spectroscopy, infrared spectroscopy, X‐ray
diffraction (XRD), scanning, and transmission electron microscopy. The average size of
Ag‐NPs was 40 nm. The XRD result shows peaks at 2θ = 38.07°, 44.26°, 64.43°, and
77.35° are related to the FCC structure of Ag‐NPs. Cytotoxicity of synthesised nano-
particles was evaluated by MTT toxicity test on breast cancer MCF7 cell line. Observa-
tions showed that the effect of cytotoxicity of nanoparticles on the studied cell line
depended on concentration and time. The obtained IC50 was considered for cells at a
dose of 250 μg/ml. Growth and survival rates decreased exponentially with the dose.
Antimicrobial properties of Ag‐NPs synthesised with extract were investigated against
Escherichia coli, Salmonella typhimurium, Bacillus cereus, and Staphylococcus aureus to
calculate the minimum inhibitory concentration and the minimum bactericidal concen-
tration of (MBC). The results showed that the synthesised Ag‐NPs and the plant extract
have antimicrobial properties. The lowest concentration of Ag‐NPs that can inhibit the
growth of bacterial strains was 25 μg/ml.
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1 | INTRODUCTION

Nano comes from an ancient Greek word, and in the metric
system, the term ‘nanometre’ means one‐billionth of a metre
[1]. Nano‐sized particles are called nanoparticles [2]. Nano-
technology is an interdisciplinary knowledge of various disci-
plines [3, 4], including physics [5, 6], materials [7–9],
engineering [10–12], mechanical engineering [13–16], agricul-
ture [17], energy [18–20] and biology [21–25]. Recently,
nanoparticles have been successfully used for sustained drug
release [26], photo‐catalytic [27–29], degradation [30–34],
detection [35–39], treatment of infections [40], and in the food
industry as potent anti‐oxidant [41, 42], larvicidal [43], anti-
fungal [44] and antibacterial agents [45, 46]. Various methods
for producing nanoparticles are classified into three general
methods: physical, chemical, and biological [47, 48]. Produc-
tion is carried out by a simple chemical method, but there is a
possibility that toxic substances resulting from the reaction will
remain on the produced nanoparticles. There are standard
chemical methods for preparing and manufacturing nano-
materials, such as sol‐gel [49]. Due to the use of hazardous
chemical substances, the nanoparticles resulting from these
methods carry out reactions under particular conditions
(temperature and pressure), which are expensive and time‐
consuming and create potential environmental risks. The
physical method of nanoparticles has low toxicity, but it is most
time consuming, dependent on expensive equipment, and has
high energy consumption [50]. Due to these disadvantages and
problems of using physical and chemical methods, the bio-
logical production method using plant extract is of interest
today [48, 51, 52]. Plant extracts are considered to be the most
pressing sources of biomolecules [53–56] such as proteins,
nucleic acids [57], oils [58–61] and carbohydrates [62, 63]. Plant
biomolecules have been identified to play an active role in the
formation of nanostructures [64]. Biological methods are easy
and cheap and have less toxicity [65] and production of toxic
byproducts than common chemical and physical methods [66].
This method of producing nanoparticles is called the green
method [67]. The energy consumption in this method is
much less than chemical methods, and due to the compatibility
with the environment, it is necessary to develop green methods
[68]. New developments in science [69–75] and technology
[76] have significant impact on human health [77–81] and
life [82, 83].

Green methods [84] produced various silver [85], gold [86],
copper [87], zinc [88], yttrium oxide [89], chromium (III) oxide
[90], iron [91, 92], gallium nitride [93], boron nitride [94],
aluminum nitride [95], calcium [96], zirconium/zirconium di-
oxide [97–99], palladium [100, 101], and tin oxide [102]
nanoparticles. Gold and Ag‐NPs have many applications in
producing antimicrobial substances and diagnostic kits. Silver
and gold have been used since ancient times because they have
strong antibacterial [103], antifungal and antiviral properties
[104]. Ag‐NPs are helpful in different research fields such as
medicine research [105] and nanoelectronics. Also, they can
destroy cancer cells [106]. These particles can bind to cancer
cells through a molecular coating and destroy the cancer cells.

Also, new technologies have recently been developed to treat
infection [83, 107–111] and cancerous tumours [112–114].

Ag‐NPs are a suitable option for preparing a new gener-
ation of anticancer and antimicrobial agents due to their
intense biocidal activity and specific mechanism of action [115,
116]. Ag‐NPs also disrupt biofilm formation. Although silver
has been used as an antibacterial agent for centuries, recently,
scientists have paid much attention to this element to solve the
problem of drug resistance due to the improper use of anti-
biotics [117–119]. Studies show that by binding to the bacterial
cell wall, Ag‐NPs disrupt the cell wall's permeability and
damage the cell. Ag‐NPs also penetrate the cell and form a
complex with thiol groups in the amino acid cysteine, thereby
inactivating the vital enzymes of cell growth. Also, nano-
particles cause the formation of toxic free radicals such as
superoxide, hydrogen peroxide, and hydroxyl ions and affect
cellular respiration [120].

They were considering that the study on the toxicity of
biogenic Ag‐NPs produced by a green method using Lawsonia
inermis has not been reported so far. Therefore, the present
study aims to produce Ag‐NPs by plant extract and investigate
their antimicrobial and cytotoxic effects on Breast cancer cell
lines.

2 | MATERIAL AND METHOD

2.1 | Synthesis of Ag‐NPs

Lawsonia inermis leaves were collected from a local market in
Kerman, Iran. To remove any dust contents from leaves, the
surface was washed with water, then washed twice with sterile
distilled water and dried at 25°C.

The method reported by Khatami et al. [121] was used for
the green synthesis of Ag‐NPs. Briefly, silver nitrate stock was
prepared with a concentration of 500 mg in 50 ml of deionised
water. Five grams of L. inermis dry leaf powder was added to
100 ml of deionised water and heated at 75°C for 15 min. After
filtering through Whatman No. 40 filter paper, the filtered
extract was used to synthesise Ag‐NPs.

For the synthesis of Ag‐NPs, leaf extract and AgNO3 were
mixed. In order to determine the optimal ratios, the extract and
silver nitrate solution was used in ratios of 1:1, 2:1, and 3:1,
respectively, and the optimal ratio at which the synthesis of Ag‐
NPs occurred was determined. In order to determine the
optimal ratios, the visual colour change was the first visible sign
of Ag‐NPs synthesis with the naked eye. Concentrations in
which no colour change was observed were determined as non‐
optimal ratios and were excluded from further study. Finally, the
optimal concentration of the extract and AgNO3 solution was
used for the synthesis and determination of the properties of
the synthesised Ag‐NPs. The synthesis of Ag‐NPs was inves-
tigated by UV‐vis spectral analysis after observing the colour
change of the reaction mixture to dark brown. Nanoparticles
synthesised with plant extract were first centrifuged at
12,000 rpm for 10 min and settled. They have dissolved again in
deionised water. Then, centrifugation was performed at
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13,000 rpm to separate the synthesised nanoparticles. It was
repeated two times between the operations. Then the syn-
thesised Ag‐NPs were dried and used to determine other
physicochemical properties.

2.2 | Determination of physicochemical
properties

To determine the size, structural properties, and morphology of
Ag‐NPs synthesised from plant extract, spectrophotometer
devices (Biotek, US), X‐ray diffraction (XRD) devices, field
emission scanning electron microscope (FESEM), and trans-
mission electron microscope (TEM) were analysed. The XRD
pattern was used to determine the crystalline phases of syn-
thesised Ag‐NPs, measure the crystal constants of Ag‐NPs and
calculate the crystal size. To prepare the XRD pattern, a Philips
X'pert Pro device made in the Netherlands was used with a
Cu Kα copper anode lamp source with a wavelength of
λ = 1.5406 Å. To determine the size and dispersion distribution
of Ag‐NPs synthesised from plant extract, an LEO‐912AB
TEM with an applied voltage of 120 kV was used to emit
electron beams [122]. The morphology of Ag‐NPs synthesised
from the extract was investigated by FESEM. To prepare the
sample for imaging, the nanoparticle powder is covered with a
skinny layer of gold to make the surface conductive so that it
does not change the path of the returning electron beams. Also,
the Ag‐NP powder should be spread on a surface that is more
conductive than aluminum. The FTIR spectroscopic test was
performed to identify active groups and reducing groups of
silver ions in the range of 500–3500 cm−1 [123, 124].

2.3 | Investigation of cytotoxicity

In the MTTmethod, the viability or non‐viability of cells in the
mitochondrial respiratory cycle was investigated. For this
purpose, the MCF7 cell line was obtained from the Pasteur
Institute of Iran and cultured in an RPMI1640 culture medium
enriched with 10% FBS serum. Then, they were kept in a cell
culture flask at 37°C in a humid atmosphere with a concen-
tration of 5% CO2. The cells were collected from the flask, and
after adding the culture medium, the cell suspension was
transferred to each well of the 96‐well plate with a volume of
100 ml of the cell suspension and the amount of 10,000 cells.
Then it was incubated under culture conditions. After 24 h, the
culture medium was drained, and Ag‐NPs with concentrations
of 1–500 μg/ml were added to each well. In the control group
in this test, wells containing untreated cells were considered.
After incubation, 10 μL of MTT dye (tetrazolium salt) with a
concentration of 5 mg/ml were added to each well in the dark,
and the incubation was done for 4 h. Then, 100 ml of
Dimethyl Sulfoxide (DMSO) were added to each well. The
optical absorbance of the samples was read with an ELISA
device, and the results of the absorbance value were recorded
at a wavelength of 570 nm. The results were calculated in terms
of the percentage of living cells treated compared to untreated

from the following equation: 100* (optical absorbance of un-
treated cells/optical absorbance of cells treated with nano-
particles) = % living cells.

2.4 | Cell viability percentage using cell
proliferation kit

After the culture cells covered more than 85% of the culture
flasks, they were re‐suspended by trypsinisation. Cell viability
was determined with trypan blue solution; after 24 h of incu-
bation, the cells were exposed to different concentrations of Ag‐
NPs. They were incubated for 24 h. Cell viability was determined
at the end of the period using a cell proliferation kit. The
absorbance values of the cells in each well were checked at
450 nm. Cell viability percentage values were calculated.

2.5 | Investigating the antioxidant effect

Cell extracts were first prepared to investigate the effect of Ag‐
NPs on the activity of antioxidant enzymes in the tested cells.
After cultivation and treatment, the cells were separated using
EDTA trypsin. After centrifugation, they were washed twice
with cold PBS. Then 300 ml of lysate buffer were added to the
sediment of the cells, and after 20 min of centrifugation at 4°C
With 10,000 RPM, the resulting supernatant was used to
perform the test. The measurement of the total protein of the
samples was done using the Bradford method. Also, the su-
peroxide dismutase enzyme was measured based on the inhi-
bition of nitroblue tetrazolium reduction by the enzyme

F I GURE 1 Colour change from pale yellow (plant extract) to dark
brown (Ag‐NPs)
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present in the sample. The measurement of catalase was also
based on the reduction of hydrogen peroxide per unit of time
due to the enzyme activity in the sample.

2.6 | Investigation of antimicrobial effect

Bacterial pathogens of Escherichia coli, Salmonella typhimu-
rium, Bacillus cereus, and Staphylococcus aureus were obtained

from the Centre of Biological and Genetic Resources of Iran.
The antimicrobial activity of the Ag‐NPs was measured by
measuring the halo of non‐growth and diffusion method from
the well on the agar surface. In this method, after preparing a
microbial suspension with turbidity equal to half McFarland
(CFU/ml 108), cultivation was done using a sterile glass rod on
the surface of the Mueller Hinton agar culture medium. After
drying the surface of the culture medium plates, with the help
of a sterile Pasteur pipette, three wells with a diameter of 5 mm

F I GURE 2 UV‐visible spectrum of Ag‐NPs synthesised with different ratios (0:1, 1:1, 2:1, and 3:1) of extract and silver nitrate solution
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were created at a suitable distance from each other. Then,
50 ml of the Ag‐NPs were poured into the created wells after
being dispersed in sterile deionised water using an ultrasonic
bath. The plates were incubated for 24 h at 37°C. Double
distilled water on a blank disk was used as a negative control.
Finally, the sensitivity of bacteria was measured by measuring
the diameter of the non‐growth halo with the help of callipers.
This experiment was repeated three times for each bacterium,
and the arithmetic mean of the area diameter (mm) was
reported.

2.7 | Statistical analysis

Data were recorded as mean with standard deviation. One‐way
analysis of variance (ANOVA) was used to identify significant
differences between the tested groups. All data analyses were
evaluated based on significance at the 0.05 level.

3 | RESULTS

Ag‐NPs were synthesised by aqueous extract. The colour
change from pale yellow to dark brown indicates the produc-
tion of Ag‐NPs (Figure 1).

The results of the spectrophotometric analysis with ultra-
violet light in the control sample (extract alone) and after the
synthesis of Ag‐NPs are shown in Figure 2. The increase in
absorbance in the range of 450–500 nm indicates the synthesis
of Ag‐NPs. The UV‐Vis spectrum shows a surface plasmon
resonance (SPR) of Ag‐NPs at about 420 nm [125, 126].

The results of FTIR spectroscopic analysis before and after
the reaction with silver nitrate are shown in Figure 3. The
comparison of two spectroscopic graphs shows the aqueous
extract's biological power in reducing silver ions. There are

peaks related to vibrations at wavelengths of 599, 674, 1151,
2357, and 3446, which are, respectively, related to alkyl, alkene,
carbonyl (CO), CO2, and hydroxyl (OH) groups [127, 128].

Figure 4 shows electron microscope images (TEM) of Ag‐
NPs synthesised with plant extract. As it is clear from the
images, the Ag‐NPs in the image have a spherical shape and
have a proper distribution, and around the nanoparticles, a
bright background can be seen, which is related to the extract
because the density of the extract is different from the light
passing through the density. Ag‐NPs are few, so Ag‐NPs are
darker in the image, and the solvent is brighter. According to
the TEM image, the size of nanoparticles has a diameter
ranging from 20 to 70 nm; with a normal distribution, the
average diameter is around 40 nm.

Figure 5a shows FESEM images of Ag‐NPs synthesised
with plant extract. The FESEM image shows the silver particles'
nm dimensions and an almost spherical shape in all magnifica-
tions. Determining the size of Ag‐NPs through FESEM is not
accurate because the resolving power of FESEM is lower than
that of TEM, so TEM analysis was used to report the average
size. According to FESEM images, the cumulative size of
nanoparticles is below 100 nm. In the EDX analysis, the peak
related to silver metal was seen, indicating that the Ag‐NPs
observed in the SEM images are made of silver (Figure 5b).
Observing the optical absorption band at 3 Kev indicates the
presence of silver metal nanoparticles. Of course, the presence
of peaks of elements C and O in the EDX spectrum is related to
the residues caused by the substances in the supernatant of the
extract, such as enzyme or protein residues.

Figure 6 shows the XRD pattern of plant extract alone
(Figure 6a) and Ag‐NPs (Figure 6b). As can be seen, the peaks
at 2θ = 38.07°, 44.26°, 64.43°, and 77.35° corresponding to
(111), (200), (220), and (311) are related to the FCC structure
of Ag‐NPs, which is in perfect agreement with the standard
XRD pattern of silver. The crystal size of Ag‐NPs is obtained

F I GURE 3 FTIR spectrum before (a) and after (b) the synthesis of Ag‐NPs
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from Scherrer equation: L = Kλ/β. Cosθ. In this equation,
k = 0.9 is the shape factor and λ is the wavelength of the X‐ray
and is equal to 1.5406 Å. ß is the full width at half the
maximum of the diffraction peak, and θ is the angle corre-
sponding to the diffraction peak. From the calculation of
Scherrer's relation, the crystal size of nanoparticles is 40 nm,
which is consistent with TEM images.

MTT test was performed to investigate the effect of Ag‐NPs
on cell viability for 24 h and with concentrations of 1–500 μg/
ml. The statistical results showed that the viability of the cells
after exposure to these doses of Ag‐NPs decreased significantly
compared to the control sample (Figure 7). The obtained IC50

was considered for cells at a dose of 250 μg/ml. Growth and
survival rates decreased exponentially with the dose.

In cell treatment groups, the IC50 concentration of Ag‐NPs
overtime on days 1%, 2% and 5% of cell survival decreased.
The trypan blue staining method was also used to confirm the
results of the MTT assay. Cells after treatment with IC50

concentration of Ag‐NPs treatment on days 1, 2 and 5 with
trypan blue dye were counted using a neobar slide. This
method confirmed the results of the MTT assay. On the fifth
day after the treatment, all the cells of the treatment group
were separated from the bottom of the well and placed in cell
count under the neobar slide was not seen.

After treatment with IC50 concentration of Ag‐NPs, cancer
cells were observed and examined with a microscope.
Compared to the control group, changes were observed in the
cell morphology of the treatment groups, including cell

F I GURE 4 TEM images of synthesised Ag‐NPs

F I GURE 5 FESEM image (a) and EDX spectrum (b) of resulting green synthesised Ag‐NPs

F I GURE 6 XRD pattern of plant extract (a) and resulting synthesised
Ag‐NPs (b)
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spheroidisation and shrivelling. Over time, these changes were
observed in a more significant number of treatment cells so that
after 2 days, the cells of the treatment group were suspended
and dead. In order to more closely examine the morphological
changes after the treatment of the cells, they were stained with
Giemsa dye and observed by an optical microscope. The
morphology of the cells in the control sample was utterly or-
dinary, so the cells were with healthy membranes and some were
seen dividing. However, the treated cells showed changes such
as a reduction in cell volume, cell granulation, chromatin
condensation inside the nucleus, and the production of
apoptotic bodies.

To determine the type of cell death induced by nano-
particles on the cell line, the acridine orange/ethidium bromide
staining method was used. In this staining, living cells are seen
in green, while cells in the apoptosis stage are seen in orange.
In the groups treated with Ag‐NPs, the number of cells with
orange colour increased significantly compared to the control
group.

The Bradford method was used to measure the protein
concentration in all samples (treatment and control), and its
standard diagram was first drawn. Then, using the standard
graph and its line equation, the protein concentration was
measured. Protein concentration was measured to express the
amount of enzyme activity in milligrams of protein. After
calculating the amount of superoxide dismutase and catalase
enzymes in the control group, the treated group with IC50

concentration of Ag‐NPs and statistical analysis, a diagram was
drawn. The results showed that the activity of the superoxide
dismutase enzyme in the Ag‐NP treatment group was signifi-
cantly increased compared to the control (P < 0.001). The
results showed that the catalase enzyme activity increased
significantly in the Ag‐NP treatment group compared to the
control group (P < 0.05).

In short, the most common mechanism for the antibac-
terial effect of Ag‐NPs is that Ag‐NPs release ionic silver and
deactivate the thiol groups in the enzymes, which cause the
inactivation of bacterial enzymes. The released silver ions
inhibit bacterial DNA replication, damage the cell cytoplasm,
decrease the level of adenosine triphosphate (ATP) and ulti-
mately lead to the death of the bacterial cell. Increasing the
ratio of the surface area to the volume of nanoparticles in-
creases the level of attachment of nanoparticles to bacterial
cells and increases the release of silver ions to bacteria, thus
improving the antibacterial effect of silver [129].

DPPH radical was used to evaluate natural antioxidants'
free radical scavenging activity [130]. The results showed that
Ag‐NPs synthesised with leaf extract showed free radical in-
hibition activity. The antioxidant activity or, in other words, the
free radical scavenging activity of Ag‐NPs synthesised by the
leaf extract increased dose‐dependent (Figure 8).

F I GURE 7 The cell viability of MCF‐7 cells treated with Ag‐NPs

F I GURE 8 DPPH radical Ag‐NPs
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4 | CONCLUSION

In this research, the possibility of producing Ag‐NPs by L.
inermis extract and its antimicrobial and anticancer effects
were studied. Based on the results, Ag‐NPs produced by
aqueous extract had a size of less than 100 and showed
effective antimicrobial and anticancer activity. These particles
caused the non‐growth of tested bacteria, and gram‐negative
bacteria are more sensitive than gram‐positive bacteria. The
synthesis of Ag‐NPs can be produced on an industrial scale
without needing expensive raw materials. Considering the
antimicrobial property of these particles on the tested strains,
they can be used as an effective disinfectant for sterilising the
hospital environment and disinfecting hospital waste. Ag‐NPs
reduce the survival of cancer cells in a dose‐dependent manner.
Ag‐NPs synthesised from L. inermis extract can be used in
breast cancer treatment.
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