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Abstract 22 

We used multi-agent simulations to estimate the testing capacity required to find and isolate a 23 

number of infections sufficient to break the chain of transmission of SARS-CoV-2. Depending on 24 

the mitigation policies in place, a daily capacity between 0.7 to 3.6 tests per thousand was required 25 

to contain the disease. However, if contact tracing and testing efficacy dropped below 60% (e.g. due 26 

to false negatives or reduced tracing capability), the number of infections kept growing 27 

exponentially, irrespective of any testing capacity. Under these conditions, the population’s 28 

geographical distribution and travel behaviour could inform sampling policies to aid a successful 29 

containment. 30 
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1. Introduction 35 

In December of 2019 a cluster of cases of pneumonia was recorded among people associated with 36 

the Huanan Seafood Wholesale Market in Wuhan, Hubei Province in China
1
. They were infected 37 

with a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In a few 38 

months, the virus spread rapidly around the world and with no vaccine or identified treatment it has 39 

forced a growing number of countries to implement robust non-pharmacological policies of social 40 

distancing, such as stay-at-home orders. As of early June 2020, the world health organization 41 

(WHO) has reported that these mitigation strategies have been successful in containing new daily 42 

infections, where applied 
1
. However, these measures have determined a high social and economic 43 

cost, leading policy makers to consider different follow-up strategies for mitigation and 44 

containment. The objective for the months to come has now shifted towards the need to allow as 45 

many people as possible to go back to work safely, in order to reduce the economic impact of the 46 

pandemic, while avoiding or at least mitigating a second wave of infections that could overwhelm 47 

the healthcare system 
2
. 48 

To this end, the WHO has suggested that enhanced capacity for contact tracing and testing is 49 

necessary to continuously monitor the intensity and geographical spread of the virus, detect new 50 

outbreaks at their onset, isolate (i.e. quarantine) new infections and prevent subclinical 51 

transmission. Contact tracing, testing and isolating potential vectors of the disease is the key public 52 

health process that has been used for decades to break the chain of transmission of a disease 
3-5

. 53 

This strategy aims at identifying those individuals who have come into contact with an infected 54 

person in order to prevent new pre-symptomatic viral shedding 
6
, promoting targeted isolation 55 

whenever necessary. The high transmissibility of SARS-CoV-2 
7
 and the understanding that the 56 

onset of viral shedding precedes the manifestation of symptoms 
8,9

 have already led policy makers 57 

to vastly increase testing and contact tracing capacity. At the same time, they are also tasked with 58 

striking a balance between the need to trace back the movements of anyone who tested positive for 59 

the virus (and those of her contacts) and the concern that legitimate health-related tracking policies 60 

may deteriorate into a form of mass surveillance. This trade-off comes in a time of crisis for 61 

democracies across the world with the associated disenfranchisement of many citizens and mistrust 62 

of government communication, a phenomenon that reduces voluntary compliance to tracking 63 

methods. Furthermore, despite the general consensus that “more is better”, it remains to be 64 

determined the order of magnitude of the resources required to appropriately identify, test and 65 

isolate a number of pre-symptomatic infections sufficient to reduce the SARS-CoV-2 transmission 66 

to a tolerable societal risk 
10

. It is also unclear how these estimates may dynamically change as a 67 

function of efficacy and reliability of testing and tracing 
11,12

, or depending on which non-68 
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pharmacological policies are implemented, leaving policy-makers to rely on heuristic approaches 69 

which may lead to severe and systematic errors. 70 

Here we used a series of multi-agent simulations 
13,14

 to highlight emergent dynamics in the 71 

interaction between agents, environment, viral transmission and testing policies. The simulations 72 

were aimed at estimating ecologically plausible capacities for contact tracing and testing that would 73 

allow to identify and isolate a number of infections sufficient to break the chain of transmission of 74 

the virus. In the first set of simulations, we used fifteen conditions in a 3 (disease incidence) x 5 75 

(contact tracing and testing efficacy) design. Three different levels of incidence values of the 76 

disease, e.g. due to different non-pharmacological mitigation policies in place, determined three 77 

growth rates in the number of daily infections. Five different rates of contact tracing and testing 78 

efficacy determined the number of infected subjects that were found or missed by the testing 79 

process, e.g. due false negatives or untraced contacts. These simulations highlighted a systemic 80 

failure with the process of contact tracing and testing, which arises when its efficacy drops below a 81 

threshold that varies as a function of the disease incidence. 82 

In the second set of simulations, we investigated whether different sampling strategies for testing 83 

could be used to aid of the contact tracing process, to find infected agents missed by this process 84 

and signal the presence of new outbreaks. For these simulations, we used the lowest value for 85 

contact tracing and testing efficacy (20%), jointly with the medium incidence setting (25% increase 86 

in daily infections), across three different conditions of population density, geographical 87 

distribution and simplified travel habits for the population. These simulations showed a possible 88 

solution to overcome the systemic failure reported for low efficacy contact tracing and testing that 89 

relies on population-level analysis of geographical distribution and travel behaviour, thus mitigating 90 

mass surveillance concerns. 91 

 92 

2. Results 93 

2.1 Estimating the optimal contact tracing capacity. 94 

Our first set of simulations covered 60 days across 50 scenarios (i.e. 50 random seeds) and 15 95 

environmental conditions, in a 3 (disease incidence) x 5 (contact tracing and testing efficacy) 96 

design. Each scenario assumed an initial number of ~50 infected agents
15

, uniformly distributed in a 97 

population of 100,000 simulated agents. Three tested levels of incidence determined a number of 98 

new infections equivalent to a daily incidence growth of 35%, 25% or 15% of the number all non-99 

isolated infected agents: i.e. in the absence of any containment strategy the number of infections 100 
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doubled approximately every 2.5, 3 or 6 days, mimicking different rates of exponential growth of 101 

infections reported across countries in early 2020 for COVID-19 
1
. To simulate the impact of 102 

missed contacts or false negative tests, five rates of contact tracing and testing efficacy were 103 

examined, controlling the percentage (100%, 80%, 60%, 40% or 20%) of infected agents that would 104 

be found positive, among those who had been in contact with and infected by any agent who tested 105 

positive. Finally, we assumed virus shedding started three days prior to showing symptoms 
9
. All 106 

symptomatic infected agents were assumed to be isolated (i.e. quarantined at home or in a hospital) 107 

and therefore could not further contribute to virus transmission after symptom onset. Based on 108 

preliminary reports, we estimated that 20% of infected agents would not show symptoms severe 109 

enough to induce self-isolation or hospitalization
16,17

. Therefore, in our simulations, these 110 

asymptomatic agents kept propagating the disease until fully recovered 
9
 or found positive in a 111 

targeted test (e.g. they were found with contact tracing), in which case they would then be 112 

considered isolated at home. 113 

For eight of the fifteen simulated conditions we found a parameterisation that resulted in the 114 

suppression of the virus transmission (effective reproduction < 1; Table 1, Figure 1). These 115 

conditions were characterised by high (≥60%) contact tracing and testing efficacy, and a testing 116 

capacity between 0.7 (low incidence) and 3.6 (high incidence) per thousand agents. Under four of 117 

the remaining conditions (Table 1), the simulations indicated a testing capacity varying between 0.7 118 

(low incidence) and 4.5 (high incidence) could contain the virus transmission, but the number of 119 

agents tested and isolated was not sufficient to reduce the daily number of new infections to zero. 120 

Instead, the daily number of infected agents remained stable or slightly decreased on average across 121 

the simulated scenarios (effective reproduction ≈ 1; Figure 1a,e). Similarly, for the remaining three 122 

conditions characterised by low contact tracing and testing efficacy (20% and 40%) and medium or 123 

high incidence (number of infection growth rate: 35% and 25%), the exponential growth of 124 

infections could not be contained, independent of the capacity available (effective reproduction > 1; 125 

Table 1, Figure 1c,e).  126 

These capacity values were found in a heuristic research (see methods) and they were set as the 127 

lowest sufficient to either stabilising or reducing the number of infected agents per day (Table 1). 128 

Importantly, for those conditions showing that the process of contact tracing, testing and isolation 129 

was insufficient to suppress or halt the virus transmission, the testing capacity was set above the 130 

daily number of tests actually performed. Thus, the failure in containing the spread of the disease in 131 

presence of low efficacy is systemic: it is not necessarily due to the availability of tests per se, as a 132 

further increase in daily capacity did not affect this result (Figure 1d,f). Instead, the high percentage 133 

of missed contacts enhanced a predator-prey dynamic (i.e. Lotka-Volterra non-linearity 
18

; Figure 134 
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2), where the predators (the tests) lost track of too many preys (the infections), and remained idle 135 

(part of the daily test capacity remained unused). As a consequence, the disease spread undetected, 136 

thus leading to a minimally mitigated “wave” of infections. 137 

2.2 Solutions for the low efficacy contact tracing and testing systemic failure. 138 

The straightforward solution to this failure is to increase the efficacy of contact tracing, for instance 139 

by enhancing various forms of movement surveillance. Our findings indicated that 60% of contact 140 

tracing and testing efficacy allowed for tracing, testing and isolating a sufficient number of 141 

infections to contain or suppress the virus transmission, irrespective of the simulated incidence. 142 

However, we decided to assess also alternative routes for mitigating the virus transmission, 143 

considering that the idle daily testing capacity could be used to find “preys” missed by the contact 144 

tracing “predators”, thus providing new traces to follow. To this end, we simulated and compared 145 

the effects of multiple testing policies in support of contact tracing (see Methods for details), in a 3 146 

(geographical distribution) x 2 (distributions of  travel behaviours) design. We simulated the effects 147 

of using these mixed policies in three geographical maps of population density (New York 148 

metropolitan area, Southeast Italy, and the Midlands in UK, Figure 2), combined with different 149 

distributions of travelling behaviours for the agents. We devised three cohorts of travel behaviour 150 

(Figure 2a): one marked agents moving in a small size sector (e.g. within one city or one borough), 151 

a second for a medium size sector (e.g. comprising two boroughs or two separate towns, depending 152 

on the map) and a third of agents freely moving in the entire map. We tested two distributions of 153 

agents among the three cohorts: a “quasi uniform” distribution where the three cohorts consisted of 154 

40%, 30% and 30% of the simulated agents; a “skewed” distribution, where the small size sector 155 

cohort comprised 80% of the population, while 10% of the agents were included in the remaining 156 

two. Each member of any of the three cohorts had the potential to shed the virus anywhere in the 157 

simulated environment within the limits of their travel range. For these simulations, we kept 158 

constant both the incidence (25% daily growth in the number of non-isolated infections) and the 159 

contact tracing efficacy (20%), as a proof of concept. This second simulation set covered 60 days, 160 

across the same 50 scenarios controlled by random seeds used for the first set. 161 

First, the simulations showed the policy of contact tracing, testing and isolation mitigated virus 162 

transmission in similar ways across geographical and travel behaviour distribution (Figure 3). The 163 

mean number of infected agents recorded at day 60 across the 50 simulated scenarios was 164 

104.74±32.04 and 104.94±31.97, respectively, for the New York metropolitan area, with the quasi 165 

uniform (NY1) and skewed travel distribution (NY2). Similarly, for southeast Italy, we found 166 

100.18±31.76 and 101.46±34.81 infected agents in association with the same two distributions of 167 
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travel behaviours (seIT1 and seIT2, respectively). Finally, for the map of Midlands, UK, we found 168 

109.32±30.36 and 101.4±34.44 infected agents (Mid1 and Mid2, respectively). A 3x2 within 169 

scenario repeated measures ANOVA revealed no significant effect for the geographical distribution 170 

(Sphericity assumed, F(2,98)=.87, p=.42), distribution of travel behaviours (F(1,49)=.62, p=.43) or 171 

interaction effect (F(2,98)=.86, p=.42). 172 

Second, we found that the unused capacity available for contact tracing and testing could be 173 

employed in further testing policies, marking an improvement in terms of the isolation of infections 174 

and thus reducing virus transmission. For instance, contact tracing coupled with random sampling 175 

from the entire map significantly reduced the number of infections recorded by the last day of 176 

simulation across all scenarios (NY1: 86.62±32.04, NY2: 79.08±31.97, seIT1: 80.6±31.76, seIT2: 177 

88±34.81, Mid1: 86.36±28.83, Mid2: 79.74±28.33 for the 3x2 conditions), when compared with the 178 

same scenarios under the use of contact tracing, testing and isolation, alone. A 2x3x2 within 179 

scenarios repeated measures ANOVA reported a significant effect for the testing policy (Sphericity 180 

assumed, F(1,49)=115.59, p<.0001) and no significant effect for any other factor (geography: 181 

F(2,98)=.19, p=.83, travel behaviour: F(1,49)=1.65, p=.2) or interaction of factors 182 

(policy*geography: F(2,98)=1.04, p=.36, policy*travel behaviour: F(1,49)=.0, p=.97, 183 

geography*travel behaviour: F(2,98)=2.58, p=.08, policy*geography*travel behaviour: 184 

F(2,98)=1.03, p=.36; Figure 3). 185 

Finally, we found geography- and behaviour-specific policies that further improved the containment 186 

of the disease beyond the added benefit of random sample testing. In particular, we tested different 187 

sampling methods where we limited the targeted area for the sampling to either a small or a medium 188 

size cell (equivalent to the small and medium size travel range sectors, Figure 2a) and we sampled 189 

the population giving different probability weights to different travel cohorts. We found that travel-190 

weighted sampling of the population localised in a small cell around the most recent outbreaks, 191 

determined on a day-by-day basis, would successfully aid contact tracing and testing (Figure 3). We 192 

found that the optimal weights of these outbreak-centred sampling policies varied as a function of 193 

the population distribution on the maps and the distribution of travel behaviours. In t-test 194 

comparisons between these mixed policies and the joint use of contact tracing and random sampling 195 

over the entire population, the mixed policies were found to significantly reduce the number of 196 

infected agents by day 60 of the simulation, for NY1 (73.3±26.69: t(49)=3.29, p=.002; Figure 3a), 197 

NY2 (60.34±29.29: t(49)=4.12, p=.0001; Figure 3b), seIT2 (69.78±30.51: t(49)=4.31, p<.0001; 198 

Figure 3d), Mid1 (72.52±27.94: t(49)=2.86, p<.006; Figure 3e) and Mid2 (48.68±27.8: t(49)= 8.49, 199 

p<.0001 Figure 3e). We did not find a geography- and behaviour-specific policy -among those 200 

tested- that led to significant improvements in comparison with the combined contact tracing and 201 
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map-wide random sampling for seIT1 (the best option led to a mean of 76.62±31.48: t(49)= .7, 202 

p=.48; Figure 3c). For the seIT1, we also did not find a mixed policy that would result in halting or 203 

marking a decline in the number of infections by the end of the simulations. Intuitively, where 204 

mixed testing policies are in place, an increase in testing capacity does result in an increase in the 205 

number of infected agents found and isolated, due to the increased sampling. Our simulations 206 

confirmed this expectation as we increased the testing capacity for the condition seIT1, from 3 to 4 207 

per thousand agents, determining a successful containment of the disease (supplementary Figure 1). 208 

 209 

3. Discussion 210 

The sweeping stay-at-home orders that have been put in place across the world to contain the 211 

transmission of the novel coronavirus SARS-CoV-2 were urgently needed to avoid overwhelming 212 

the healthcare systems, but they have also had a high social and economic negative impact. As 213 

multiple countries are planning to re-open or are in the process of re-opening industries and 214 

services, policy-makers are developing strategies that are meant to prevent a second wave of 215 

infections 
2
. Here, we estimated the testing capacity required to identify and isolate a sufficient 216 

number of infected subjects to break the chains of transmission of SARS-CoV-2, therefore allowing 217 

to contain the impact of the disease and avoid the most severe containment measures. For these 218 

estimations, we used multi-agent simulations in a soft artificial life approach 
13

, in place of well-219 

known statistic and mechanistic models 
2,10,19,20

, so to highlight emergent properties and dynamics 220 

resulting from the interaction between simulated agents, environment and containment policies. 221 

We found that several variables affect the estimations of the testing capacity. Some of these 222 

variables are related to the disease and are yet to be fully understood, e.g. the percentage of 223 

asymptomatic or paucisymptomatic among the infected 
16,17,21,22

, or the timing for the viral shedding 224 

8,9
. Other variables pertain to external factors and should be considered when planning for testing 225 

policy development. To account for this uncertainty, we simulated different levels of disease 226 

incidence, resulting in different rates of growth of the number of infections, putatively simulating 227 

the effects of different mitigation policies in place (social-distancing, face masks, etc.). Second, we 228 

simulated fifty different starting conditions in terms of the number of imported infections and 229 

location of infected agents at day 1 (i.e. at the start of the new policy implementation). Finally, we 230 

simulated the efficacy of contact tracing and testing to account for the reliability of the tests 
11,12

 and 231 

the ability of a country or region to trace movements and contacts of new found infections. Despite 232 

these substantial simplifications, our simulations indicated a few key insights that can guide policy 233 

development. 234 
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First, we found that at low levels of efficacy (i.e. low reliability of tests and/or low ability to trace 235 

contacts), a high capacity of testing dedicated only to contact tracing, testing and isolation remains 236 

partially unused, despite a growing number of infections. This is a striking result considering that in 237 

most countries indeed failed in uncovering the real dimension of the disease prevalence, as clearly 238 

demonstrated by the wide differences among case fatality rates across countries (4.7% in Germany, 239 

5.9% in USA, 14% in UK or 14.3% in Italy), including those that were successful in containing the 240 

disease (e.g. 0.5% in Iceland, 1.9% in New Zealand, 2.3% South Korea) 
1
. This result may also 241 

explain why several countries prepared for a significant amount of tests per day and a diffused 242 

network for contact tracing could not use their available capacity and failed to contain COVID-19, 243 

eventually reporting a first wave of infections (e.g. as indicated for Germany 
23

). The virus 244 

transmission may be intrinsically associated with reduced contact tracing efficacy, for instance due 245 

to the relevance of indirect forms of propagation (e.g. droplets left on a handle in public transport 246 

caught by a passenger hours or even days later 
24,25

). In this case, our simulations suggest that 247 

improvements in contact tracing and testing efficacy, e.g. due to increased reliability of tests or in 248 

implementing tracking methods for the population, are required to exceed a threshold of 60%. 249 

Beyond this value, jointly with the safe isolation of all symptomatic subjects and those who tested 250 

positive, we found a steady decline in the number of infections across all simulated levels of 251 

incidence. Importantly, this result is consistent with an estimation recently provided in a 252 

mechanistic model 
10

, demonstrating robustness of the finding across theoretical constructs. 253 

Second, our data suggest that improvements in the containment of the disease can be achieved with 254 

mixed testing policies. These policies combined contact tracing with independent testing of selected 255 

samples of people, so aiding the monitoring of new outbreaks and feeding missed contacts to the 256 

main process of contact tracing. Importantly, these mixed policies were designed to use the entire 257 

testing capacity that remained after exhausting the needs of the process of contact tracing and 258 

testing. Therefore, an increase in capacity in presence of these mixed policies improved the 259 

containment of the virus transmission, due to the increased ability to find and isolate new infected 260 

agents independent of existing traces. Finally, while the process of contact tracing and testing is 261 

agnostic to both the geographic distribution and the population-level behaviours, the simulations 262 

showed that optimal aiding policies are shaped by the features of the environment and cohort-level 263 

behaviour 
26

. Thus, the use of these mixed policy would reduce the necessity for mass surveillance, 264 

relying instead on anonymized, population-level, information.  265 

The current study has a few limitations due to the simplifications that have been incorporated in the 266 

simulations. Some of these simplifications have been motivated by the fact that the virus itself is 267 

still very well under investigation and is therefore associated with multiple open questions. Further 268 
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refining of our knowledge of the transmission mechanisms, the viral shedding or the 269 

symptomatology can affect the estimations of the testing capacities. Conversely, the described 270 

systemic failure under conditions of low contact tracing and testing efficacy is driven by the well-271 

established presence of asymptomatic carriers, jointly with pre-symptomatic viral shedding. Other 272 

simplifications, concerning for instance the behaviour of the agents, are motivated by the need to 273 

execute a broad investigation across multiple conditions in a reasonably short time. Policy makers 274 

could use our findings as a proof of concept while focussing on a single map to include more 275 

realistic population-level behaviour (e.g. commuters might move long distances on a map, but 276 

follow predictable paths every day). This would allow to simulate context specific effects of 277 

tailored policies to aid contact tracing and testing, increasing the predictive power of the findings. 278 

 279 

4. Methods 280 

4.1 Key parameters for the simulated scenarios 281 

All simulations started with a healthy population of 100,000 agents, distributed on a map depending 282 

on the population density of the area analysed (Figure 2). For day 1 only, each agent had a .05% 283 

probability of becoming infected, resulting in a randomly generated number of infected agents 284 

(49.3±7.3 across scenarios) and random geographical distributions of these agents at the beginning 285 

of each simulation. These differences in the initial conditions led to diverging scenarios in terms of 286 

the number of infected people, active outbreaks and the difficulty of containment, approximately 287 

replicating the estimated numbers two weeks to ten days prior to establishing the lockdown 288 

measures in France, in March 
15

. Before the start of the simulation, each agent was pre-assigned to 289 

one of five symptomatology categories, used only if the agent became infected. The five categories 290 

included: asymptomatic (20%), symptomatic but not requiring hospitalization (65%), symptomatic 291 

and requiring hospitalization (10%), symptomatic and requiring intensive care (4%) and 292 

symptomatic and requiring intensive care, but will not survive (1%; Figure 4a)
16,17,27

. Studies and 293 

reports do not yet agree on the relative percentages of these categories, due to the differences 294 

among regions and countries in the methods for testing and monitoring the infections in the 295 

populations and requirements for hospitalization. Thus, to contain the effects that changes in the 296 

distribution of symptomatic agents would have on the estimations concerning testing capacities and 297 

aiding testing policies, we assumed that all agents were isolated as soon as they showed symptoms. 298 

This simplification made the percentage of asymptomatic individuals in the simulation of particular 299 

importance for the final estimations. The value of 20% was determined using a weighted mean 300 

between two key studies reporting the percentage of asymptomatic infected subjects in the Town of 301 
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Vo’ 
17

 and in the cruise ship Diamond Princess 
16

. The number of days required to develop 302 

symptoms, if any (Figure 4b), the number of days to reach full recovery, with a bimodal distribution 303 

due to the shorter time of recovery for the asymptomatic 
9
 (Figure 4c), and the time spent in 304 

intensive care units (Figure 4d) were also predetermined 
28,29

. Finally each agent was assigned to 305 

one of three possible “travel cohorts”, defining the range of movement (and range of virus 306 

transmission) of each agent: the entire map, a medium size sector or a small size sector (Figure 2a). 307 

We simulated two conditions in terms of cohort distribution for the large, medium and small sector 308 

travel behaviour, as follows: 5%-5%-90% (skewed distribution) or 30%-30%-40% (quasi uniform 309 

distribution). These have been chosen to test the effects the different policies have under 310 

significantly different population-wise behaviours. For all conditions, we simulated 50 different 311 

scenarios. These were controlled using numbered random seeds, to allow for within-scenario 312 

comparisons. 313 

4.2 Simulation of disease transmission and contact tracing 314 

To avoid overwhelmingly demanding computational resources, we did not simulate an ecological 315 

behaviour for the artificial agents, as the artificial agents did not create contacts while navigating 316 

the space or creating crowds (e.g. in the limited space of simulated mass transportation or building). 317 

Instead, we developed a semi-static transmission mechanism that was aimed at prioritising the 318 

simulation of growth in the number of infections. To this end, the transmission of the virus is 319 

simulated by extracting a percentage of infected agents daily (15%, 25% or 35%, depending on the 320 

simulated condition of incidence) who have not been isolated and starting from 3 days before 321 

showing symptoms 
9
. Each of these agents could then propagate the infection to one contact per 322 

day, randomly selected among those in the range of travel. If the randomly selected contact was 323 

healthy, it was immediately infected, starting the countdown for symptom manifestation (if any). 324 

Conversely, if the contacted agent had been already infected at any point in the past, the 325 

propagation of the infection was null. Despite its simplicity, this mechanism replicates the dynamic 326 

of growth of number of infections until reaching herd immunity, in keeping with current estimations 327 

for the reproduction number R0 of COVID-19 
7
. 328 

To simulate contact tracing, we established a day-to-day pool of all agents displaying symptoms or 329 

found positive that had not been already used for contact tracing at an earlier point in time. These 330 

were randomly selected, removing them from future pools and adding one positive test to the count 331 

of the day. Then, the agent under examination was used to trace the agent (if any) that had been the 332 

origin of its infection and the agents (if any) that it had infected at any time during the simulation. 333 

Each of these contacts could be either “found” or “missed”, depending on the probability assigned 334 
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for contact tracing efficacy. This mechanism was meant to simulate the fact that a contact may be 335 

missed because it is not tested at all (missed trace) or due to a false negative. For instance, a contact 336 

tracing and testing efficacy of 20% may be due to a combined ability to trace 25% of contacts, with 337 

80% test reliability. 338 

The simulations allowed for perfect record keeping of the actual contacts of each infections, so we 339 

implemented a system that could simulate the number of negative tests per each positive one. This 340 

was performed dynamically to represent the different challenges in finding positive contacts, 341 

depending on the percentage of infected in the entire population. For each positive contact, the 342 

simulation automatically added a number of negative tests (that contributed to reach the daily 343 

maximum capacity) equivalent to the ratio of untested infected over healthy agents for the entire 344 

population, up to a maximum of 20 negative tests per each positive one.  345 

Finally, to determine the optimal testing capacity for the process of contact tracing and testing, we 346 

followed a simple heuristic. We initiated the simulations of the fifty scenarios with a value of 0.1 347 

tests for thousand agents, across all conditions. If any of the fifty scenarios resulted in a number of 348 

pre-symptomatic or asymptomatic infections above zero by day 60, the capacity was increased by 349 

0.1 for that condition, restarting the process. For the conditions showing the number of pre-350 

symptomatic or asymptomatic infections could not converge to zero, irrespective of the testing 351 

capacity, we increased this value so that the daily number of tests performed remained below 352 

capacity for at least 50 days of simulated time, across all scenarios. 353 

4.4 Simulation of testing policies 354 

We tested several policies to aid contact tracing: two of these were used as controls and were 355 

characterised by either contact tracing and testing, alone, or by the same process aided by random 356 

sampling in the entire map. The remaining policies consisted in variations of weighted sampling 357 

within a small or medium cell, replicating the dimension of the small and medium sector for the 358 

travel behaviour. The cells were centred on the coordinates of highest concentration of new 359 

infections, as recorded the day prior to the sampling. For instance, the optimal policy found for the 360 

condition NY2 consisted in sampling, within a small sector centred on the latest outbreak, with 361 

weights of 60%-20%-20% for the three cohorts of travel behaviour (short, medium, long travel 362 

range), whereas the optimal weights found for seIT2 or Mid1 were 20%-40%-40% and 80%-10%-363 

10%, respectively (Figure 3). Agents were extracted one by one as long as the capacity left unused 364 

by contact tracing and testing allowed it. The agents found positive would then be isolated (i.e. they 365 

could not contribute to the future transmission of the virus) and would be included in the pool of 366 

agents to be traced, starting from the subsequent simulated day. 367 
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4.5 Code specifics and availability 368 

The code was optimised for MATLAB r2019b (MathWorks, Natick, MA) , and it allows loading 369 

any black and white dot-map of population density to test the effects of the different policies under 370 

realistic conditions of population density and geographic distribution. The maps used in the 371 

described case studies have been acquired using screenshots from the dot-maps provided by the 372 

Cooper Center of the University of Virginia 373 

(https://demographics.virginia.edu/DotMap/index.html), for the metropolitan area of New York, 374 

and by Urban Data Visualisation by Duncan Smith, CASA UCL 375 

(https://luminocity3d.org/WorldPopDen) for the south-east of Italy and the Midlands in UK. These 376 

regions have been chosen to illustrate differences in testing policies can emerge when comparing 377 

significantly different population distributions and geographical features. The maps were manually 378 

converted (with the free software Gimp, v2.8) into grey scale JPEG -1000x1000 pixel, 300dpi- so to 379 

have brightest part of the picture representing the highest population density. The resulting images 380 

were automatically converted in the script into a matrix of probabilities that matched the grey 381 

scale/distribution in the source dot-map: at the beginning of the simulation agents were randomly 382 

assigned a position in the map according to these probabilities. This system allows to freely change 383 

the map or the number of agents in the simulation, as the script automatically adjusts the 384 

distribution to the new parameters. The entire codebase for these simulations is freely available 385 

here: [LINK to be provided upon acceptance]. Ideally, we hope it can be used as a starting point for 386 

more realistic simulations that would increase the ecological validity of the described estimations. 387 
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Table 1. Simulated testing capacities expressing the availability of tests per thousand 

agents. Background colour of an individual cell indicates reported conditions of disease 

containment: a white background indicates suppression of the transmission (R effective 

< 0), a light grey background indicates containment but not suppression (R effective ≈ 

1), and dark grey background indicates exponential growth (R effective > 1). 

 Growth rate: 15% Growth rate: 25%  Growth rate: 35% 

100% contacts traced 0.7 1.7 3.6 

80% contacts traced 0.7 1.7 3.6  

60% contacts traced 0.7 1.7 4.5 

40% contacts traced 0.7 2 15 

20% contacts traced 0.7 3 30 
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 508 

Figure 1. Disease prevalence, agents tested and capacity. Error bands (mean and standard 509 

deviation) represent the prevalence of COVID-19 in the population over 60 days of simulated time 510 

(a, c, e), and the associated number of daily tested agents in relation with the respective testing 511 

capacities (solid and dotted lines respectively in b, d, f). The 3x5 design was used to simulate three 512 

conditions of simulated disease incidence, e.g. due to different mitigation strategies in place, which 513 

regulated the growth in the number of infections (a-b: 15%, c-d: 25% and e-f: 35%), and five 514 

conditions of contact tracing and testing efficacy (100%, 80%, 60%, 40% and 20%).  515 
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 516 

Figure 2. Simulated evolution of the virus transmission over three regions. Illustration of three 517 

different simulations for the scenario 1 (random seed 1) for the maps of New York metropolitan 518 

area (a), southeast Italy (b) and the Midlands in UK (c). All simulations display the (failed) 519 

containment of the disease transmission relying only on contact tracing, testing and isolation, under 520 

the conditions of medium incidence (25% daily increase in the number of infections), 20% contact 521 

tracing and testing efficacy and a distribution of travel cohorts of 40%, 30% and 30% for the short, 522 

medium and long travel range (respectively illustrated as black, blue and yellow squares in panel a).  523 
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 524 

Figure 3. Effects of test and isolation policies on the virus effective reproduction. Mean number 525 

of infections per day, associated with different conditions and testing policies. Legends and error 526 

bars (standard errors) are depicted for the policies of contact tracing and testing (CT), alone (black 527 

triangles), contact tracing and testing jointly with random sampling across the entire map (grey 528 

circles) and the combination of contact tracing and testing jointly with the best performing sampling 529 

policies. Note that these optimal policies change depending on the simulated conditions of 530 

geographical distribution and travel behaviour of the population. Under all conditions, the optimal 531 

sampling policy to aid contact tracing focuses on small cells (equivalent to a small sector for the 532 

travel behaviour) centred on the coordinates of the most severe outbreak recorded in the previous 533 

day of simulated time. For two conditions, the optimal sampling is random within this cell (a, f). 534 

For the remaining conditions, the sampling is weighted: 60%-20%-20% (b), 10%-45%-45% (c), 535 

20%-40%-40% (d), 80%-10%-10% (e), for short, medium and long distance travel cohort.  536 
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 537 

Figure 4. Simulation settings. The histograms represent the distribution of symptoms (a), days 538 

required for the symptoms onset (b), days required for recovery after symptoms onset (c) and days 539 

required in intensive care units (d). Note that the bimodal distribution of the days to recovery is due 540 

to the presence of asymptomatic subjects who are characterised by a shorter recovery time (marking 541 

the end of viral shedding). The days spent in the intensive care units are considered as part of the 542 

time required to recovery, when recovery is possible.  543 
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 544 

Supplementary figure 1. Increased testing capacity and testing policies. These simulations 545 

illustrate the effects of an increase of testing capacity from 3 to 4 tests per thousand agents, jointly 546 

with 20% contact tracing and testing (CT) efficacy. The contact tracing and testing process, when 547 

considered alone (filled triangles for high capacity and empty triangles for high capacity), does not 548 

exhaust the initial testing capacity due to low efficacy, so that an increase in capacity is ineffective 549 

as it simply increases the number of unused tests per day. Instead, improved containment of the 550 

disease transmission is found both for contact tracing and testing jointly with random sampling over 551 

the entire population (filled circles for high capacity and empty squares for low capacity), as well as 552 

for contact tracing and testing jointly with random sampling over a small sector centred on the most 553 

recent outbreak (filled squares for high capacity and empty squares for low capacity). The latter 554 

mixed policy succeeds in keeping the number of daily infections constant (R effective ≈ 1), once the 555 

capacity is increased. 556 
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