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ABSTRACT Genes encoding proteins that carry out essential informational tasks
in the cell, in particular where multiple interaction partners are involved, are less
likely to be transferable to a foreign organism. Here, we investigated the con-
straints on transfer of a gene encoding a highly conserved informational protein,
translation elongation factor Tu (EF-Tu), by systematically replacing the endoge-
nous tufA gene in the Escherichia coli genome with its extant and ancestral ho-
mologs. The extant homologs represented tuf variants from both near and distant
homologous organisms. The ancestral homologs represented phylogenetically res-
urrected tuf sequences dating from 0.7 to 3.6 billion years ago (bya). Our results
demonstrate that all of the foreign tuf genes are transferable to the E. coli ge-
nome, provided that an additional copy of the EF-Tu gene, tufB, remains present
in the E. coli genome. However, when the tufB gene was removed, only the vari-
ants obtained from the gammaproteobacterial family (extant and ancestral) sup-
ported growth which demonstrates the limited functional interchangeability of
E. coli tuf with its homologs. Relative bacterial fitness correlated with the evolu-
tionary distance of the extant tuf homologs inserted into the E. coli genome.
This reduced fitness was associated with reduced levels of EF-Tu and reduced
rates of protein synthesis. Increasing the expression of tuf partially ameliorated
these fitness costs. In summary, our analysis suggests that the functional conser-
vation of protein activity, the amount of protein expressed, and its network con-
nectivity act to constrain the successful transfer of this essential gene into for-
eign bacteria.

IMPORTANCE Horizontal gene transfer (HGT) is a fundamental driving force in bac-
terial evolution. However, whether essential genes can be acquired by HGT and
whether they can be acquired from distant organisms are very poorly understood.
By systematically replacing tuf with ancestral homologs and homologs from distantly
related organisms, we investigated the constraints on HGT of a highly conserved
gene with multiple interaction partners. The ancestral homologs represented phylo-
genetically resurrected tuf sequences dating from 0.7 to 3.6 bya. Only variants ob-
tained from the gammaproteobacterial family (extant and ancestral) supported
growth, demonstrating the limited functional interchangeability of E. coli tuf with its
homologs. Our analysis suggests that the functional conservation of protein activity,
the amount of protein expressed, and its network connectivity act to constrain the
successful transfer of this essential gene into foreign bacteria.
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The complexity hypothesis assigns the function and the network interactivity of a
gene product as two primary factors determining a gene’s capacity to successfully

transfer and adapt in another genome (1–5). Consequently, genes involved in central
informational tasks (i.e., replication, transcription, and translation) are expected to be
less transferable to a foreign genome than genes involved in other activities (1, 6, 7).

Genomic replacement of an essential gene with another homolog may potentially
disturb the gene product’s function depending on the degree of functional equivalence
or compatibility between the two genes (8–11). Alterations in gene dosage resulting
from the acquisition of a foreign gene may also perturb cellular homeostasis, resulting
in a lower transcription rate or an altered global pattern of gene expression, network
function, and organismal survivability (11–18).

Genes involved in the translation of mRNA into protein perform one of the most
crucial informational tasks in the cell, and based on phylogenomic analysis, they are
expected to be highly resistant to gene transfer (1, 19). There are examples demon-
strating that some ribosomal protein genes can be integrated into foreign genomes
under certain conditions (20–23). However, no study has systematically tested whether
there is a direct correlation between organism fitness and the evolutionary distance
between an essential endogenous gene and its substituted (ancestral or extant)
homolog.

Here, we focus on the bacterial elongation factor Tu (EF-Tu) protein, encoded by tuf,
one of the most ancient and highly conserved proteins. EF-Tu has an essential function
in the translation machinery by delivering aminoacylated tRNA (aa-tRNA) molecules
into the A site of the ribosome (24). EF-Tu is encoded by two genes in Escherichia coli,
tufA and tufB, generated by an ancient duplication event thought to be specific to the
proteobacterial lineage preceding the Cambrian period (25, 26). Expression of EF-Tu is
primarily driven by tufA, with 66% of cellular EF-Tu expressed from the tufA gene (27).
EF-Tu protein levels in the cell are correlated with cellular fitness and intrinsically
regulated in order to maintain growth rate (28–30). EF-Tu belongs to the ancient
protein repertoire of the cell, evolves slowly, and serves as a functional fossil by
participating in ancient and conserved functions (31). It remains unclear whether tuf
genes are replaceable by their ancient counterparts or homologs obtained from an
extant organism. Answering this question would allow us to explore the limits of
interchangeability for the E. coli tuf gene and to ascertain a pattern within and between
bacterial lineages across time and divergence. We sought guidance from a methodol-
ogy referred to as ancestral sequence reconstruction (32–37) and accessed recon-
structed ancestral tuf variants (35) as well as modern tuf gene sequences in order to
observe the patterns of interchangeability among multiple nodes along the EF-Tu
phylogenetic tree. We utilized a set of foreign genes representing E. coli EF-Tu ho-
mologs from closely and distantly related bacteria, as well as phylogenetically inferred
ancestral EF-Tu proteins dating from 0.7 to 3.6 billion years ago (bya), thus accessing
interspecies (modern) and ancestral (paleogenetic) axes. We determined the fitness
effects of the introduction of a foreign tuf gene into each strain by replacing the native
E. coli tufA gene with foreign variants and asked whether these foreign genes could
support cell viability when the tufB gene was removed from the chromosome. We
examined the impact of the tuf gene replacements on growth rate and protein levels,
as well as on protein function-structure, and assessed the extent of lateral and ancestral
phylogenetic distances between the alien gene and host genome that yielded viable
organisms.

RESULTS
Replacement of the tufA gene in E. coli reduces relative fitness. Using genetic

recombineering, we generated a set of E. coli strains in which the tufA gene coding
sequence was precisely replaced by the coding sequence of its ancestral and modern
homologs (Fig. 1; see also Fig. S1 in the supplemental material). The 16 tuf homologs
cover bacterial species from a wide span of taxa (Yersinia enterocolitica, Vibrio cholerae,
Pseudomonas aeruginosa, Legionella pneumophila, Bartonella henselae, Streptococcus
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FIG 1 Phylogenetic tree indicating the node and taxa of the ancestral and modern tuf (EF-Tu) homologs. Pink circles represent the ancestral EF-Tu nodes. E. coli was
genetically engineered to carry ancestral or modern homologs of tuf, encoding translation elongation factor EF-Tu, replacing the native E. coli tufA gene. A shaded box
indicates the area of viability of EF-Tu gene exchange. The scale bar expresses units of amino acid substitutions per site. The tree was created with data from references
35 and 38.
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pyogenes, Bacillus subtilis, Thermus thermophilus, Mycobacterium smegmatis, and Ther-
motoga maritima) as well as six ancestral sequences that extend deep into the bacterial
phylogenetic tree (Fig. 1). These six sequences represent ancestral nodes dating from
approximately 0.7 bya back to the last common ancestor of bacterial tuf, dated to
approximately 3.6 bya (35, 38). These homologs of tuf encode EF-Tu variants that range
in amino acid identity from 93.9% (Y. enterocolitica) to 69.4% (T. maritima) relative to
E. coli EF-Tu (Fig. S2). Nucleotide sequences of the ancestral tuf genes are shown in
Table S1.

To construct a set of isogenic strains, the endogenous E. coli tufA gene was replaced
with each of the tuf variants while the second endogenous tuf gene, tufB, remained
intact in the genome. All engineered strains in which tufA was replaced with a foreign
tuf gene retained viability (Fig. 2). The effects on relative fitness of the foreign tuf genes
were determined by measuring the exponential growth rates in LB and relating them
to that of the isogenic wild type (carrying native tufA and tufB), where relative fitness
was set to 1.0. The relative fitness of each of the engineered constructs varied from 0.96
down to 0.77 (Fig. 2). The relative fitness of E. coli in which tufA was deleted from the
chromosome was 0.7. The similarity in relative fitness between E. coli lacking tufA and
some of the strains carrying foreign tuf genes raised the question of whether all of the
foreign genes would be capable of supporting viability in the absence of a functioning
tufB gene.

Because the tufB gene is located between the rRNA operons rrnB and rrnE, in a
region that is subject to frequent amplification (39), we asked whether tufB was
amplified in any of the strains carrying a foreign tuf allele. Our expectation was that a
less effective, or completely inactive, foreign tuf gene might select for genomes in
which tufB was amplified as a fitness-compensatory mechanism. Using real-time quan-
titative PCR (RT-qPCR), we found that the tufB region was duplicated or triplicated in 5
of the 16 engineered strains (Fig. 2). The 5 strains in which the tufB region was amplified
are those that carry the most distant tuf homologs, compatible with selection for
improved fitness.

FIG 2 Correlation between relative fitness and evolutionary distance for bacterial strains carrying a
foreign tuf gene. Relative fitness is shown as a function of evolutionary divergence (see Materials and
Methods) of EF-Tu homologs from E. coli (1 indicates greatest difference from E. coli). Each E. coli strain
carried a foreign tuf gene at the tufA location and an intact native tufB gene. Fitness was measured as
exponential growth rate, relative to the E. coli wild type carrying tufA and tufB. Species names and
ancestor notations (AnEF, ancestral EF-Tu) refer to the source of the foreign tuf gene sequence in each
strain. Strains shown in green carry a foreign tuf gene that can support viability even when the E. coli tufB
gene has been deleted. Strains shown in black carry foreign tuf genes that do not support viability in the
absence of the E. coli tufB gene. Empty symbols represent strains where the tufB region was amplified.
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A subset of foreign tuf genes supports viability. We next asked whether any of
the foreign tuf genes could support viability in the absence of E. coli tufB, by attempting
to remove the endogenous tufB gene from the chromosome of each of the 16 strains
carrying a foreign tuf gene, as outlined in Fig. S1. In the absence of tufB, the only foreign
tuf sequences that supported viability were those from Y. enterocolitica, V. cholerae, and
P. aeruginosa and AnEF1, the youngest of the ancestral tuf genes at ca. 0.7 bya (Fig. 2),
whereas the phylogenetically more distant tuf genes did not. We were interested to
know how strains carrying the different viable tuf homologs were affected in each
phase of the growth cycle. To do this, we measured length of lag phase, doubling time
(DT) in exponential growth phase, and final optical density (OD) achieved in stationary
phase. The parameters differed significantly between LB and DM25 (Davis minimal
medium with 25 mg/liter glucose), with shorter lag times, shorter doubling times, and
higher final ODs associated with growth in LB for each of the homologs (Table 1). The
ranking of the parameters differed somewhat between LB and DM25. In rich medium,
where growth rates are highest, the translation system, including EF-Tu, represents a
major fraction of the bacterial mass, arguing that under these conditions any malad-
aptations will be more likely to reduce physiological fitness. In agreement, the strain
carrying the native E. coli tuf gene had the shortest doubling time, shortest lag time,
and maximum final OD in LB relative to strains carrying any of the other tuf homologs
(Table 1). In the remainder of the text, we use doubling time in LB as a proxy for relative
fitness. One striking indication that foreign tuf homologs can be maladapted is seen for
tuf from V. cholerae, where the lag time in LB is 30- to 40-fold longer than that
associated with any of the other tuf genes.

Fitness correlates with EF-Tu protein levels and rate of protein synthesis. A key
question is why the viable EF-Tu gene replacements reduce fitness. Two possibilities
(which are not mutually exclusive) are that the foreign genes are suboptimally ex-
pressed (i.e., a concentration problem) and that they are suboptimal in their function
and interaction with the protein synthesis machinery and cellular network (i.e., an
activity or toxicity problem). To evaluate the possibility that the foreign genes were
suboptimally expressed, we measured EF-Tu abundance by liquid chromatography-
tandem mass spectrometry (LC-MS/MS) in each of the viable strains (Fig. 3A). This
analysis demonstrated that the level of EF-Tu relative to total protein varied signifi-
cantly between engineered strains carrying different foreign tuf genes (Fig. 3A). With
the exception of the ancestral gene, AnEF1, there is a good correlation between relative
fitness of the extant species’ genes and the concentration of EF-Tu (R2 value, 0.938). The
mechanism resulting in these concentration differences is not known, but neither
fitness nor concentration correlates with differences in codon usage between the tuf
genes (Fig. S3). The proteomics data suggest that in most cases at least some of the
reduction in relative fitness associated with foreign tuf genes is because bacteria do not
produce an adequate level of EF-Tu to support fast growth. In the case of AnEF1, the
reduced fitness may be more closely associated with reduced specific activity and/or
toxicity.

As an additional assay of the suboptimal functionality of foreign tuf genes as a
possible reason for reduced fitness, we asked whether they supported a similar rate of

TABLE 1 Growth characteristics of strains harboring only one tuf gene

tuf gene

Growth in medium, mean � SDa

LB DM25

Lag time (min) Doubling time (min) Max OD600 Lag time (min) Doubling time (min) Max OD600

Escherichia coli 6.8 � 0.8 25.0 � 0.3 1.39 � 0.02 124.0 � 3.0 81.7 � 3.3 0.60 � 0.01
Yersinia enterocolitica 8.2 � 1.2 26.3 � 0.4 1.39 � 0.02 133.0 � 8.6 80.0 � 1.4 0.61 � 0.01
Vibrio cholerae 300.2 � 11.5 41.5 � 2.2 1.38 � 0.02 745.4 � 36.1 134.5 � 15.3 0.58 � 0.05
AnEF1 10.8 � 1.5 48.4 � 0.9 1.23 � 0.02 73.1 � 4.1 88.9 � 3.2 0.53 � 0.01
Pseudomonas aeruginosa 7.3 � 5.5 66.9 � 2.6 1.24 � 0.02 87.7 � 6.7 134.1 � 3.0 0.63 � 0.02
aLB, Luria-Bertani broth; DM25, Davis minimal medium (25 mg/liter glucose). Each value represents the mean from 3 biological replicates.
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protein synthesis as E. coli tufA. We constructed a set of isogenic strains suitable for
measuring protein synthesis step time, using �-galactosidase as a model protein. Step
time varied between the 5 different tuf genes, with the highest rate associated with tuf
from E. coli and the lowest rate associated with tuf from P. aeruginosa (Fig. 3B). The data
showed a very good correlation between protein synthesis step time and relative
fitness (R2 value, 0.994).

Given the observed correlation between EF-Tu amount and relative fitness, we asked
whether increasing the amount of EF-Tu would ameliorate the fitness costs. To test this,
we engineered strains carrying these five tuf genes, placing an additional copy of each
gene into the chromosome under the control of either of two different constitutive
promoters, J23105 and J23100 (where J23100 is the stronger promoter [see Materials
and Methods]). This created a set of isogenic strains putatively expressing each of the
five tuf genes at three different levels. The exponential growth rate in LB was measured
for each strain (Fig. 3C). For the three tuf genes associated with significantly reduced
fitness relative to E. coli tufA (V. cholerae, AnEF1, and P. aeruginosa), overexpression was
associated with a significant reduction in doubling time (higher growth rate) and in the
case of V. cholerae reached a growth rate almost as high as that supported by the single
copy of tufA in E. coli. In contrast, overexpression of Y. enterocolitica tuf, where a single
copy already supported a growth rate close to that of E. coli tufA, did not further
increase the growth rate (Fig. 3C). These data support the conclusion that an effectively
low level of EF-Tu is one cause of the reduced fitness associated with foreign tuf genes.

FIG 3 Fitness characteristics of strains carrying single tuf genes. (A) Relative fitness of strains carrying a single tuf gene, at the tufA locus, as a
function of EF-Tu protein produced. EF-Tu concentration was normalized to the total protein concentration. Species names indicate the species
origin of the only tuf gene present (linear regression involves only extant sequences; R2 � 0.938). (B) Relative protein synthesis rate (amino
acids/second) of the ribosome in each constructed bacterial strain (R2 � 0.994), determined by the time that it takes to produce �-galactosidase
activity. Relative fitness of strains carrying a single tuf gene at the tufA locus correlates with the rate of protein synthesis. Results are means for
three biological replicates with error bars representing standard deviation values. (C) Relative fitness of strains expressing each of the five tuf
genes at three different levels: no additional tuf (light blue), additional tuf expression under promoter J23105 (medium blue), and additional tuf
expression under promoter J23100 (dark blue). Promoter J23105 expresses the gene at a medium level (represented by �), whereas promoter
J23100 expresses the gene at a higher level (represented by ��). Results are means for three biological replicates with error bars representing
standard deviation values.
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Overall, these experiments show that the differences in relative fitness cost associ-
ated with different foreign tuf genes in E. coli correlate both with the amount of EF-Tu
protein (measured by MS and overproduced from additional genes) and with the
relative rate of protein synthesis supported by each tuf gene.

Conservation of EF-Tu residues correlates with viability in E. coli. The estab-
lished function of EF-Tu is to deliver aminoacylated tRNAs into the A site on mRNA-
programmed ribosomes in order to drive rapid and accurate protein synthesis. This
function requires that EF-Tu must have a sequence and structure that can efficiently
interact with GTP, EF-Ts, each of the elongator tRNAs, and the ribosome. EF-Tu has a
highly conserved structure which must be capable of undergoing major structural
rearrangements during its functional cycle (40, 41). All 17 EF-Tu sequences were aligned
with the EF-Tu sequence from E. coli (Fig. 4) to aid visualization of amino acid
differences between EF-Tus associated with viability and those associated with nonvi-
ability. The four viable foreign EF-Tus (green in Fig. 4) show a bias toward a higher
conservation of amino acid identity (84% to 94%), relative to E. coli EF-Tu, than the 12
nonviable EF-Tus (82% to 69%). It is interesting that there is only a small difference in
total percent identity between several of the nonviable EF-Tus (AnEF2, AnEF3, AnEF4,

FIG 4 Alignment of EF-Tu protein sequences encoded by foreign tuf variants. EF-Tu sequences were aligned using Clustal Omega. Sequences labeled in green
indicate that the foreign tuf gene supports viability as the only tuf gene in the genome. Sequences labeled in black indicate that the strain requires E. coli tufB
for viability.
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AnEF6, and B. henselae, 80 to 82% similarity) and the most distantly related viable EF-Tu
(P. aeruginosa, 84% similarity), suggesting that the loss of viability in these cases might
be associated with changes in a few important residues of EF-Tu.

Connectivity analysis of EF-Tu reveals an extensive interaction network. Several
studies suggest that protein connectivity in a given network might modulate its activity
in the cell (42–44). To examine this, we retrieved an E. coli interactome from the
HitPredict database (45) and measured the connectivity of EF-Tu in this network. The
connectivity of EF-Tu was quantified by measuring its so-called “degree centrality.”
Degree centrality is defined as the number of interactions that a given node has in its
network. The average degree centrality of all proteins in the E. coli interactome is 12,
whereas the degree centrality of EF-Tu is much higher at 172. Relative to all proteins in
the interactome, EF-Tu ranks among the top 10 most connected proteins in E. coli
(Table S2). Interestingly, the set of its first interaction partners is enriched in essential
proteins (P � 3.66 � 10�21) (Fig. S4). Accordingly, this analysis suggests the possibility
that, in addition to affecting the specific activity of EF-Tu in protein synthesis, additional
deleterious effects on fitness might be due to the foreign tuf homologs disturbing the
extensive interaction network of EF-Tu.

DISCUSSION

We generated E. coli strains in which the E. coli tufA gene was replaced by ancestral
and modern homologs of tuf, from a broad spectrum of species and ancestral nodes.
The origins of the ancestral EF-Tu sequences ranged in age from the Precambrian era,
approximately 0.7 bya, back to the last universal common bacterial EF-Tu ancestor,
approximately 3.6 bya (Fig. 1). We showed that homologs of EF-Tu encoded by tuf
genes from within the gammaproteobacteria, including one of the reconstructed
ancestral node sequences, AnEF1, are functionally active in E. coli and support viability
when present as the only tuf gene in the chromosome (shown in green in Fig. 2). In
contrast, more distantly related homologs and ancestral sequences were unable to
support viability as the sole tuf gene. Among the four viable homologs, there was a
good correlation (R2 � 0.9371, P � 0.032) between phylogenetic distance from E. coli
EF-Tu and the magnitude of reduced growth fitness for the three homologs from extant
species (Fig. 2). The exception was the reconstructed ancestral node sequence, AnEF1,
where the decrease in relative fitness was much greater than that predicted by
phylogenetic distance (Fig. 2). It could be argued that our definition of viability (ability
to construct strains carrying the foreign tuf gene and in which the native tufB gene
was removed) risks excluding some foreign genes because of technical difficulties in
constructing the strains. However, the correlation that we observed between reduced
relative fitness and reduced amounts of EF-Tu for the viable foreign genes is consistent
with the hypothesis that even more distantly related foreign genes might be inviable
because they produce an even smaller amount of EF-Tu to support growth. In addition,
the observation that many of the “inviable” tuf genes were associated with duplication
of the E. coli tufB region suggests that such strains were under significant selective
pressure to compensate for low levels of EF-Tu, consistent with an inadequate level of
active EF-Tu associated with the foreign tuf gene.

The correlation between phylogenetic distance from E. coli and relative growth
fitness for the viable homologs raises the question of whether the underlying cause of
the reduced fitness is a reduction in the specific activity of the foreign EF-Tus and/or a
reduction in the amount of EF-Tu produced. By measuring EF-Tu protein concentration
as a function of total protein concentration for each viable strain, including E. coli
carrying only tufA, we observed a strong correlation between relative growth fitness
and EF-Tu concentration for each of the four EF-Tus from extant species (Fig. 3). The
slope of the correlation suggests that most of the reduced fitness associated with the
EF-Tu homologs from the extant species could be attributed to a reduced level of EF-Tu
rather than a reduced activity. Consistent with this, previous experiments have shown
that reductions in growth rate are associated with reductions in cellular EF-Tu concen-
trations (46). Once again, the exception to this correlation is found for the reconstructed
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ancestral AnEF1, where a very high concentration of EF-Tu was associated with a low
relative fitness (Fig. 3A), consistent with AnEF1 having a low specific activity. This
conclusion is supported by the results of in vitro translation, where in a system
containing only T. thermophilus components (tRNAs, EF-Ts, and ribosomes) AnEF1
supported protein synthesis but with only 30% of the activity of native E. coli EF-Tu,
demonstrating that AnEF1 can participate in peptide synthesis, albeit in a diminished
fashion relative to its modern counterpart EF-Tu (47). To address the significance of the
correlation between protein amount and relative fitness, we also overexpressed each of
the five viable tuf genes (Fig. 3C). We found, in each case where a foreign tuf gene was
associated with reduced fitness, that the growth rate could be significantly increased by
overexpressing the gene. We also found that the step time of protein synthesis varied
between the different tuf genes and correlated with the relative fitness of each strain.
Taken together, these data support the hypothesis that suboptimal expression is a
significant cause of the reduced growth fitness associated with the foreign tuf genes.
However, the data do not rule out the possibility that at least some of the effects are
associated with a poor integration of the foreign EF-Tu into the network of interactions
that support optimal growth. In principle, reduced fitness associated with a change in
specific activity (for example, a weakened interaction) could also be reversed by an
increase in the intracellular concentration of EF-Tu. To tease apart the relative contri-
butions to fitness of intracellular EF-Tu concentration from the specific activity of each
foreign EF-Tu will require extensive biochemical analysis and is beyond the scope of
this paper.

The overexpression of EF-Tu, by recombineering an additional copy at a second
chromosomal location, helped answer a question concerning the significance of tufB
region amplification in many of the strains carrying “inviable” foreign tuf genes (Fig. 2).
The strains with tufB amplified have relatively high fitness values, but their foreign tuf
genes were subsequently found to be inviable. The question is whether the amplifi-
cation (which probably includes all genes in a 40-kb region between rrnB and rrnE) is
selected because it increases the copy number of tuf genes in the cell or because it
increases the copy number of some other gene in the amplified region that increases
relative fitness. By constructing strains in which the expression of low-fitness foreign tuf
genes was individually increased, without increasing the copy number of any other
genes, and finding that relative fitness increased as a result, we could conclude that at
least in these cases an increase in tuf expression was sufficient to increase fitness. It
seems reasonable to conclude that the amplification of the region containing tufB was
most probably also selected because it increased the intracellular concentration of
EF-Tu, thus improving fitness.

Why, given that the tuf gene regulatory regions are identical in all strains, do the
foreign tuf coding sequences cause a reduction in the level of EF-Tu produced? Possible
explanations include that the nucleotide sequence introduced with the foreign genes
affects tuf mRNA half-life as previously shown for a mutant of tuf (48) or that the altered
nucleotide sequence reduces translation efficiency, possibly by effects mediated
through altered codon usage or by affecting transcription-translation coupling, as
recently shown for tufB (30, 49). No correlation was found between differences in the
codon usage of the foreign tuf genes and the amounts of EF-Tu produced (see Fig. S3
in the supplemental material).

An important question is why some of the not-too-distant foreign homologs are
unable to support viability. At the level of total amino acid similarity, there is very little
separating viable from nonviable EF-Tu sequences, with the boundary falling at ap-
proximately 84% similarity to E. coli EF-Tu (Fig. S2). Given the very high level of
conservation of EF-Tu, it is possible that the nonviability of some foreign EF-Tus might
be related to the alteration of just one or a few critically important residues. Indeed,
many single-amino-acid substitutions in EF-Tu have been shown to generate protein
variants that do not support viability (50), including one single-amino-acid substitution
in EF-Tu that permits ternary complex formation but abolishes translation activity by
preventing ternary complex interaction with the ribosome (46). To facilitate an assess-
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ment of the amino acid differences between viable and nonviable EF-Tus, their amino
acid sequences were aligned (Fig. 4). Of the 393 residues in E. coli EF-Tu, there were 116
residues that were identical in all of the viable EF-Tu homologs but differed in at least
one of the 12 nonviable homologs. Variation at one or more of these residues might
explain the difference between EF-Tu viability and nonviability in E. coli. The 116
residues were distributed between each of the three structural domains of EF-Tu, with
48 in the G domain, 38 in domain 2, and 30 in the C-terminal domain 3 (Fig. 4 and S5).
Several of the 116 variant residues lie within functionally important regions of EF-Tu,
including those involved in coordinating GTP hydrolysis, interaction with EF-Ts, and
interaction with the ribosome (51–53). For example, in each of the nonviable EF-Tus
there were from 3 to 8 variant residues in regions of the G domain that are known to
be functionally important for coordinating the hydrolysis of GTP on EF-Tu during
protein synthesis (Fig. S5). These variant residues are located in the conserved regions
I and II, the effector region, and the switch I and switch II loops of the G domain of EF-Tu
(Fig. S5). The altered residues potentially affecting GTP hydrolysis are at V20, G41, A43,
R44, F46, N51, N63, T64, C81, and V88 (Fig. 4). In addition, there are alterations in the
P loop, the switch II region, and parts of domain 3 that are involved in interactions with
EF-Ts and in helix D of EF-Tu (residues 144 to 156), which is involved in interactions with
EF-Ts and protein L7/L12 on the ribosome (52, 53). We can only speculate on the exact
reason for the nonviability of these EF-Tu homologs. It seems unlikely that it is directly
related to defects in binding or hydrolyzing GTP, given that this process involves highly
conserved residues and structures and that the EF-Tus from extant organisms must be
capable of supporting viability, including GTP binding and hydrolysis, in their natural
system. Similarly, each of the ancestral homologs can support in vitro translation, albeit
at a low efficiency, arguing that they also can bind and hydrolyze GTP. A similar line of
reasoning could also rule out interactions with aa-tRNAs as the cause of nonviability.
Perhaps the most plausible reason for nonviability is defective interactions with EF-Ts
and/or the ribosome. It seems reasonable to suggest that EF-Tu has coevolved with
EF-Ts and the ribosome to modulate the efficiency of these interactions in each species.
We suggest accordingly that the cause of nonviability for distantly related EF-Tus is
not that they cannot function as enzymes capable of forming a ternary complex and
hydrolyzing GTP but rather that they are defective in one or more of the other
important interactions made by EF-Tu, namely, with EF-Ts, with the mRNA-programmed
ribosome, and possibly even interactions outside protein synthesis involving one or
more members of EF-Tu’s extensive protein interaction network (Fig. S4). Coevolution
of EF-Tu with its interaction partners would create a barrier to transfer for EF-Tus
beyond a certain threshold.

We previously hypothesized that evolutionary novelties are more likely to be shared
between a descendant and its ancient homolog than between two currently existing
protein homologs (54). Accordingly, replacing an existing gene with its ancient ho-
molog may have a smaller negative fitness impact on the organism relative to ex-
changing the native gene with a currently existing homolog. However, functional
divergence occurring through time could result in ancestral sequences being so
maladapted to the new host cell that a functional organism is all but precluded (55).
This limitation does not apply only to ancestral genes, and it has been suggested that
as the number of edges connecting a protein within its protein-protein interaction
network increases, the probability that a protein could be successfully replaced with a
homolog will decrease even if there is a functional equivalence between the endoge-
nous gene and the homolog (2). While a careful assessment of candidate ancestral
protein properties prior to integration is helpful, in most cases, studying gene-triggered
genomic perturbations experimentally through the integration of ancestral genes offers
a valuable and complementary alternative to existing methodologies that use extant
homologous proteins (56–59).

How can we identify the specific historical constraints on replacement? We observe
that only the ancient EF-Tu representing an ancestor within the gammaproteobacteria,
AnEF1 (0.7 bya), and the modern EF-Tu homologs from extant gammaproteobacteria
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are viable. In contrast, the last common ancestor of the alpha-, beta-, and gammapro-
teobacteria, AnEF6 (1.3 bya), is nonviable. Accordingly, we speculate that mutational
substitutions in EF-Tu occurring between 1.6 bya and 0.7 bya influenced the replace-
ability of tuf genes. These mutations may constrain tuf replaceability by disturbing
EF-Tu’s functional interaction with other cellular components, ultimately impacting its
participation in protein synthesis. Thus, extensive mutational remodeling of interaction
partners may be necessary in order to engineer even older ancient tuf genes inside the
bacteria.

Conclusions. We show that foreign tuf genes encoding EF-Tu proteins exhibit
suboptimal functionality and reduced fitness when introduced into another host. The
suboptimality of the foreign tuf genes most likely results from disturbances in interac-
tions directly important for protein synthesis, but suboptimal EF-Tu protein levels and
disturbance of other potentially important interactions in the network of EF-Tu might
also play a role. The observation that the only tuf homologs that supported viability
belong to the gammaproteobacterial taxon, or an associated ancestral node within the
gammaproteobacteria, suggests that there is a relatively stringent “transferability cut-
off,” i.e., a point in the phylogeny beyond which functional divergence is too great for
replacement. For EF-Tu protein, this transferability zone is within the ancestral and
modern gammaproteobacterial taxon, unlike some ribosomal proteins where con-
straints on replaceability are less stringent (22, 60).

Future efforts may involve identifying protein sites that interfere with organismal-
level function and epistatically inhibit an ancient protein’s function in a descendant
organism. Our experiments suggest that a protein like EF-Tu, which is highly conserved
and involved in multiple highly conserved interactions, is so highly optimized and finely
tuned in the host organism that it is essentially irreplaceable by distantly related foreign
genes. The degree to which epistatic interactions constrain EF-Tu replaceability and
functionality in the cell needs to be studied more to deepen our understanding of the
design principles of complex biological systems and to allow us to introduce alterations
in modern organisms by genetic engineering and gene replacements.

MATERIALS AND METHODS
Media and growth conditions. In general, liquid and solid media used were Luria-Bertani (LB)

medium (per liter, 10 g NaCl [5 g in the case of low-salt LB], 5 g yeast extract, and 10 g tryptone) and
LA (LB with 1.5% agar) plates. Where indicated, growth in minimal medium was made in Davis minimal
(DM) medium [per liter, 7 g K2HPO4, 2 g KH2PO4, 1 g (NH4)2SO4, 0.5 g sodium citrate]. For sacB
counterselections, the LB and LA media used had no NaCl, and LA medium was also supplemented with
5% sucrose. All incubations were made at 37°C (unless stated otherwise), and liquid cultures were shaken
at 200 rpm for aeration. The antibiotics used (Sigma-Aldrich, Sweden) had the following final concen-
trations: 50 mg/liter kanamycin and 15 mg/liter tetracycline.

Growth parameter measurements. To measure doubling time, lag time, and maximum OD at 600
nm (OD600) of the strains in LB and DM25 (DM with 25 g/liter glucose), 3 independent cultures of each
strain were grown overnight in LB. For each culture, 2 aliquots of 400 �l were washed with NaCl2 to
remove any traces of the medium and then resuspended in 400 �l of LB or DM25, respectively.
Subsequently, 280 �l of a 100-fold dilution of every aliquot was added to 3 wells of the microtiter
honeycomb plate, as technical replicates. Control wells were filled with 280 �l of only LB or DM25.
Bacterial growth was monitored by measuring the rate of increase in optical density at OD600 using a
Bioscreen C machine (Oy Growth Curves Ab Ltd., Finland) and growing the cultures in the honeycomb
microtiter plate. Plates were incubated for 24 h at 37°C with continuous shaking, and readings of OD600

were taken at 5-min intervals. All data points were corrected by subtracting the OD600 of the corre-
sponding control wells (medium only) at every time point and then converted to log values. The
doubling time (DT) of each strain during exponential growth was calculated over an interval of 50 min
(10 time points) in the linear region of the curve by calculating the slope of the interval using the
following equation:

DT �
ln�2�
slope

(1)

Lag times were estimated over the same time interval using the following equation:

lag time �
initial OD � y intercept

slope
(2)

Maximum OD600 was defined as the maximum optical density over 24 h of monitored growth.
Relative fitness, defined in terms of doubling time in LB, was calculated by comparing each
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independent doubling time measurement to the average of doubling time measurements of the
strain carrying E. coli tufA.

Bacterial strains. All strains used in this study are derived from sequenced wild-type E. coli K-12
strain MG1655 (61), unless stated otherwise. A list of the strains used in these experiments is shown in
Table S3 in the supplemental material.

Strain construction. The genetic marker (TP22-amilCP_opt-kan-sacB-T0) was inserted into the
chromosome to replace either tufA or tufB by double-stranded DNA lambda-red recombineering (62, 63).
The lambda-red genes were induced in each strain from the temperature-sensitive pSIM5-tet plasmid by
incubation of an overday culture (OD600 of 0.3) at 43°C for 15 min. After cooling for 10 min in ice, the cells
were made electrocompetent by washing in ice-cold water three times. Electroporation of TP22-
amilCP_opt-kan-sacB-T0 PCR product was done with a Gene Pulser (Bio-Rad, USA) by mixing 50 �l of
electrocompetent cells and 100 ng of the cassette, with settings of 1.8 kV, 25 �F, and 200 �. Cells were
recovered in 1 ml of low-salt LB at 30°C overnight with agitation, and after recovery, 100 �l of the culture
was spread in LA plates containing kanamycin for selection of recombinants.

Genetic markers were moved between strains by phage-mediated (P1 virA) transduction. Lysates of
the strains carrying the marker were made by mixing 1 ml of overnight culture containing 5 mM CaCl2
with 100 �l of the P1 virA lysate previously made on E. coli MG1655. The bacterium-phage mix was
incubated for 10 min, and then 4 ml of soft agar (LB medium plus 0.8% agar plus 5 mM CaCl2) was added;
this mixture was spread over an LA plate and incubated overnight. To release the bacteriophages, the
soft agar was mixed with 4 ml and vortexed. The resultant slurry was centrifuged for 15 min at 5,000 rpm,
and the supernatant was filtered through an 0.2-�m filter. Markers were transduced into the desired
recipient strain by mixing 100 �l of the lysate with 500 �l of an overnight culture containing 5 mM CaCl2.
After 10 min of incubation, 100 �l of the mixture was spread onto a selective plate.

Insertions of alien tuf genes were made by double-stranded DNA lambda-red recombineering to
replace the previously inserted counterselectable TP22-amilCP_opt-kan-sacB-T0 marker. The accession
numbers and/or references for the foreign tuf genes are given in Table S4 in the supplemental material.
To make clean deletions, markers were deleted by single-stranded lambda-red recombineering with
counterselection for sucrose resistance (64), following the same steps as described above for the
double-stranded DNA lambda-red recombineering.

To construct the strains expressing an extra copy of the tuf, gene, two promoters of different
strengths (J23105 and J23100) (iGEM Registry of Standard Biological Parts, Cambridge, MA; http://
partsregistry.org) transcriptionally fused to a cat-sacB cassette at the galK locus were transduced into
strains carrying the relevant single tuf gene. Coding sequences for the tuf genes were amplified from
each of the strains carrying a single tuf gene and engineered by recombineering behind each of the two
promoters replacing the cat-sacB cassette. Constructs were confirmed by PCR and DNA sequencing
(Macrogen Europe Laboratory, Amsterdam, The Netherlands).

Ancestral gene reconstruction. Ancestral sequences used in this study originated from the study
performed by Gaucher et al. (35). Briefly, the EF-Tu sequences were retrieved from GenBank database,
and the phylogenetic tree was constructed with MrBayes (65). Ancestral sequences were calculated with
PAML (66).

PCR and oligonucleotides. PCR was performed on an S1000 Thermal Cycler (Bio-Rad, USA).
Oligonucleotides were designed with the software CLC Main workbench 7 (CLC bio, Denmark) using the
genome of E. coli MG1655 as reference. For generation of the TP22-amilCP_opt-kan-sacB-T0 cassette, PCR
was performed using Phusion High-Fidelity PCR master mix with HF buffer (New England Biolabs, USA)
and with the following cycling conditions: 98°C for 30 s and 30 cycles of 98°C for 10 s, 55°C for 30 s, 72°C
for 4 min, and 72°C for 7 min. For routine diagnostic PCR, Fermentas PCR master mix (Thermo Scientific,
USA) was used with the following cycling conditions: 95°C for 5 min and 30 cycles of 95°C for 30 s,
annealing temperature (TA) for 30 s, 72°C for elongation time (ET), and 72°C for 5 min. TA varied depending
on the pair of primers used, and ET was based on the length of the expected product (30 s per kilobase).
Oligonucleotides for construction of strains, PCR, and sequencing are shown in Table S5.

Preparation of genomic DNA and real-time quantitative PCR. Genomic DNA prepared using the
MasterPure DNA purification kit (Epicentre Biotechnologies, USA) was used to run real-time quantitative
PCR. One microliter genomic DNA (gDNA) (diluted 1:10, 1:100, 1:1,000, and 1:10,000), 10 �l PerfeCTa SYBR
green FastMix (Quanta Biosciences), 0.6 �l of 10 �M forward and reverse primers, and double-distilled
water (ddH2O) were added to a final reaction volume of 20 �l. The Eco real-time PCR system (Illumina)
was used for running the PCR. Oligonucleotides amplifying the rpoB and purD genes were used to
quantify the amplification status of the rrnB-rrnE region. The cysG and indT genes were used as controls.
The oligonucleotide sequences used as RT-qPCR primers are listed in Table S5.

Whole-genome sequencing and analysis. Genomic DNA was prepared using the MasterPure DNA
purification kit (Epicentre Biotechnologies, USA). To create libraries of paired-end fragments, the Nextera
XT sample preparation kit (Illumina, USA) was used according to the instructions from the manufacturer.
Sequencing was performed on the Illumina MiSeq instrument, generating 250-bp paired-end reads.
Whole-genome sequencing data were analyzed using the CLC Genomic Workbench software (CLC bio,
Denmark).

Local DNA sequencing. Local sequencing of PCR-amplified products was performed at the Macro-
gen Europe sequencing facilities (Amsterdam, The Netherlands), and data were analyzed using the CLC
Main Workbench 7 software (CLC bio, Denmark).

Protein synthesis rate measurements (step time). Liquid cultures were initiated from overnight
cultures grown in LB to mid-log phase at 37°C with shaking by diluting 1:100 in 20 ml DM, with 0.2%
glycerol. Before induction, a time zero sample (200 �l) was taken and added to 300 �l ice-cold
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chloramphenicol (0.5 mg/ml in 1:1 H2O-ethanol). Expression of lacZ from the F=23 plasmid was induced
by the addition of 200 ml IPTG (isopropyl-�-D-thiogalactopyranoside; 0.1 M; final concentration, 1 mM).
Samples (200 �l) were taken every 20 s after induction for 300 s and added to 300 �l chloram-
phenicol solution. Cells were pelleted by centrifugation (3 min, 12,000 � g) and resuspended in
300 �l Z buffer (0.06 M Na2HPO4·2H2O, 0.04 M NaH2PO4·H2O, 0.1 M KCl, 0.001 M MgSO4·7H2O, 0.05 M
�-mercaptoethanol). To each sample, 100 �l chloroform and 50 �l 0.1% SDS were added. The tubes were
vortexed and left on ice for 20 min to allow the chloroform to sink before 200 �l of each sample was added
to a honeycomb plate with 40 �l o-nitrophenyl-�-D-thiogalactopyranoside (ONPG; 4 mg/ml) added per well.
The plate was incubated with shaking in a Bioscreen C machine (Oy Growth Curves AB Ltd.), and absorbance
at 420 nm and 540 nm was measured. Background absorbance (ONPG in Z buffer without cells) and
absorbance at time zero were subtracted, and the data were plotted with �[(OD420) � (1.75 � OD540)] as a
function of time. The intercept with the x axis of the induced curve is the step time, the time that it takes to
produce the first �-galactosidase activity. To calculate the protein synthesis rate in amino acids/second, the
length of the �-galactosidase (1,024 amino acids) is divided by the step time of each strain. The relative
protein synthesis rate was determined in each case by comparing the protein synthesis rate to the average
of all measurements of the strain carrying E. coli tuf.

Statistical analysis. All statistical analyses were performed using GraphPad Prism v6.0c (GraphPad
Software, Inc., USA). The significance of differences between fitness costs was calculated using an
unpaired two-tailed t test.

Proteomics: cell lysis, digestion, and labeling procedures. All cells were placed into Covaris
microTUBE-15 (Woburn, MA) microtubes with Covaris TPP buffer. Samples were lysed in a Covaris S220
focused ultrasonicator instrument with 125-W power over 180 s with 10% maximum peak power. Lysed
cells were digested via filter-aided sample preparation (FASP) digest according to the FASP protocol
for trypsin digestion, followed by high-pressure liquid chromatography (HPLC) purification. We used
Promega sequencing-grade trypsin-LysC (V5073; Madison, WI) overnight at 38°C. Each sample was
submitted for a single LC-MS/MS experiment that was performed on an LTQ Orbitrap Elite (Thermo
Fisher) equipped with a Waters (Milford, MA) NanoAcquity HPLC pump or Orbitrap Lumos (Thermo
Fisher, San Jose, CA) equipped with EasyLC1000 (Thermo Fisher, San Jose, CA). Peptides were separated
onto a 100-�m-inner-diameter microcapillary trapping column packed first with approximately 5 cm of
C18 Reprosil resin (5 �m, 100 Å; Dr. Maisch GmbH, Germany), followed by an analytical column with
~20 cm of Reprosil resin (1.8 �m, 200 Å; Dr. Maisch GmbH, Germany). Separation was achieved by
applying a gradient from 5 to 27% acetonitrile (ACN) in 0.1% formic acid over 90 min at 200 nl min�1.
Electrospray ionization was enabled by applying a voltage of 1.8 kV using a homemade electrode
junction at the end of the microcapillary column and spraying from fused silica pico tips (New Objective,
MA). The LTQ Orbitrap Elite/Lumos was operated in data-dependent mode for the mass spectrometry
methods. The mass spectrometry survey scan was performed in the Orbitrap in the range of 395 to
1,800 m/z at a resolution of 6 � 104, followed by the selection of the 20 most intense ions (TOP20) for
collision-induced dissociation (CID)–MS2 fragmentation in the ion trap using a precursor isolation width
window of 2 m/z, an AGC (automatic gain control) setting of 10,000, and a maximum ion accumulation
of 200 ms. Singly charged ion species were not subjected to CID fragmentation. Normalized collision
energy was set to 35 V and an activation time of 10 ms. Ions in a 10-ppm m/z window around ions
selected for MS2 were excluded from further selection for fragmentation for 60 s. The same TOP20 ions
were subjected to an HCD (Higher-energy collisional dissociation) MS2 event in the Orbitrap part of the
instrument. The fragment ion isolation width was set to 0.7 m/z, the AGC was set to 50,000, the maximum
ion time was 200 ms, normalized collision energy was set to 27 V, and an activation time of 1 ms for each
HCD MS2 scan was used.

Mass spectrometry analysis. Raw data were submitted for analysis in Proteome Discoverer 2.1.0.81
(Thermo Scientific) software. Assignment of MS/MS spectra was performed using the Sequest HT
algorithm by searching the data against a protein sequence database including all entries from the user
database and our E. coli K-12 database as well as other known contaminants such as human keratins and
common lab contaminants. Sequest HT searches were performed using a 20-ppm precursor ion tolerance
and requiring each peptide’s N/C termini to adhere with trypsin protease specificity, while allowing up
to two missed cleavages. Six-plex tandem mass tags (TMTs) on peptide N termini and lysine residues
(�229.162932 Da) were set as static modifications, while methionine oxidation (�15.99492 Da) was set
as a variable modification. An MS2 spectrum assignment false discovery rate (FDR) of 1% on the protein
level was achieved by applying the target-decoy database search. Filtering was performed using a 64-bit
Percolator. For quantification, an 0.02 m/z window was centered on the theoretical m/z value of each of
the six reporter ions and the intensity of the signal closest to the theoretical m/z value was recorded.
Reporter ion intensities were exported in a result file of the Proteome Discoverer 2.1 search engine as an
Excel table.

Evolutionary divergence. Two independent approaches were utilized in order to estimate the
evolutionary distance between sequences, both leading to the same evolutionary distance estimate
output. (i) For MEGA software, the analyses involved 18 sequences. Analyses were conducted using the
Poisson correction model (67). All positions containing gaps and missing data were eliminated. There
were a total of 385 positions in the final data set. Evolutionary analyses were conducted in MEGA7 (68).
(ii) The branch length distances were also calculated via a custom script that used ETE software (69). The
custom Python ETE v.3 Python library script is provided in the supplemental material.

Computational methods. Computational analyses include (i) the pairwise and multiple sequence
alignments, (ii) protein structure analysis, and (iii) protein interaction network analysis. Clustal Omega
(70) was used to perform multiple sequence alignment with default parameters. Pairwise sequence
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alignments of the wild-type EF-Tu against each ancient and modern EF-Tu protein were performed by
EMBOSS Needle of Clustal Omega with default parameters, which uses the Needleman-Wunsch align-
ment algorithm.

The protein interactome of E. coli was retrieved from the HitPredict (45) database, and the network
analysis was performed with the network package of Python (71). The subnetwork of EF-Tu interaction
partners was visualized with Cytoscape (72).
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