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Gliomas are the most severe brain tumours with a poor prognosis. Although surgery,
postoperative radiotherapy and chemotherapy can improve the survival rate of glioma
patients, the prognosis of most glioma patients is still poor. In recent years, the influence of
gene-targeted therapy on gliomas has been gradually discovered, and intervening the
occurrence and development of brain gliomas from the perspective of the gene will
significantly improve treatment prognosis. Protein Kinase C and Casein Kinase Substrate
in Neurons 1 (PACSIN1) is a member of the conserved peripheral membrane protein family
in eukaryotes. Improper expression of PACSIN1 can lead to neurological diseases such as
Huntington’s disease and schizophrenia. However, its relationship with tumours or even
gliomas has not been explored. The study aims to explore PACSIN1 as a prognostic factor
that can predict overall survival (OS) for gliomas. We collected the data fromCGGA, TCGA,
GEO databases and the pathological glioma tissue specimens from 15 clinical glioma
patients surgically resected. The differential expression of PACSIN1 in various clinical
indicators, the genes related to PACSIN1 expression, the prognostic value of PACSIN1
and the functional annotations and pathway analysis of differently expressed genes (DEGs)
were analysed. The results revealed that PACSIN1 had low expression levels in grade IV,
IDH1 wild-type and 1p/19q non-codel group gliomas, and PACSIN1 was considered a
mesenchymal molecular subtypemarker. PACSIN1 expression is positively correlated with
OS in all gliomas and it was found that PACSIN1 influenced the occurrence and
development of gliomas through synaptic transmission. The PACSIN1 expression is
negatively correlated with the malignant degree of gliomas and positively associated
with the OS, indicating that PACSIN1 would play an essential role in the occurrence and
development of gliomas and might be a potential new biomarker and targeted therapy site
for gliomas.
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INTRODUCTION

Glioma is a primary tumour developed by glial cells of the brain
or central nervous system, accounting for 24% of the total
number of primary brain and central nervous system tumours
(Davis, 2018). Among them, Glioblastoma (GBM) is the most
common primary malignant tumour of the central nervous
system, with poor prognosis. Due to its highly malignant
biological behaviours such as high proliferation and
invasiveness, it severely limits the overall survival (OS) of
tumour patients (Brat et al., 2015; Schalper et al., 2019).

High grades, Isocitrate dehydrogenase 1 (IDH1) wide-type,
1p/19q non-codel gliomas represent poor prognosis (Louis et al.,
2014; Louis et al., 2016; Hu et al., 2017; Chang et al., 2018). At
present, the treatment of gliomas is mainly surgical resection, plus
radiotherapy, chemotherapy and other treatment methods.
However, the effect is still not ideal, and the survival time of
patients still cannot be effectively extended (Lim et al., 2018). It
has been shown that gene-targeted therapy has an important
impact on the survival of patients for many cancers (Hyman
et al., 2015; Long et al., 2016). Moreover, many studies have
shown that targeted therapy can improve the therapeutic effect
of gliomas (Lin et al., 2017). Intervention in the occurrence and
development of brain gliomas from the perspective of the gene
will significantly improve the effectiveness of treatment. The
pathogenesis and prognosis of gliomas are related to many
factors. Exploring new biomarkers of gliomas helps predict
biological behaviour, and the new biomarkers help patients
design personalized treatment projects and develop new
therapeutic targets.

Protein Kinase C and Casein Kinase Substrate in Neurons 1
(PACSIN1), also known as SYNDAPIN1, is a member of the
PACSIN family. Studies have demonstrated that the PACSIN
protein family is a conservative peripheral membrane protein
family in eukaryotes and plays an essential role in the synaptic
vesicle transport cycle and receptor-mediated endocytosis
(Anggono et al., 2006; Clayton et al., 2009). Meanwhile, it can
bind to tubulin to promote the assembly of microtubules
(Grimm-Günter et al., 2008), and also plays a particular role
in membrane shaping and reconstruction, which is crucial for the
formation of neural morphology (Quan and Robinson, 2013).
Besides, PACSIN1 plays roles in regulating interferon response
(Schwintzer et al., 2011; Esashi et al., 2012). It can even inhibit
synapses, regulate axonal elongation and branch, so as to regulate
nerve development and nervous system disorders (Liu et al., 2012;
Mahadevan et al., 2017). However, its role and function in
tumours are still unclear. So far, many studies have found that
PACSIN1 plays an essential role in developing of neurons and the
regulation of the nervous system (Pérez-Otaño et al., 2006), and
the inappropriate expression of PACSIN1 can even lead to
Huntington’s disease, schizophrenia and other neurological
diseases (Gopalakrishnan et al., 2016; Koch et al., 2020).
Therefore, we hypothesized that PACSIN1 expression is
related to the occurrence and development of gliomas.

Our study collected and extracted data of clinical
indicators and gene expression of gliomas from Chinese
Glioma Genome Atlas (CGGA), The Cancer Genome Atlas
(TCGA), Gene Expression Omnibus (GEO) databases and
clinical samples, gradually analyzed the influence of
PACSIN1 expression on the related clinical indicators of
gliomas, studied its clinical significance and explored the
mechanism of PACSIN1 affecting gliomas, so as to provide
the experimental basis for the diagnosis, prognosis,
development and treatment of gliomas.

MATERIALS AND METHODS

General Information
The clinical and gene expression data were downloaded from
the mRNAseq_325 and mRNA sequencing samples (non-
glioma as control) in CGGA (http://www.cgga.org.cn/). And
we also downloaded 702 clinical and gene expression data of
gliomas from TCGA (https://portal.gdc.cancer.gov/) and the
data of Platform and Series matrix of 684 patients in three
datasets (GSE4290, GSE16011 and GSE58218) of glioma
samples from GEO (https://www.ncbi.nlm.nih.gov/geo/).
The RStudio (version4.0.1) and Perl software (version5.30.
2.1) were used to collate CGGA, TCGA and GEO datasets,
including annotation, merge, the complement of missing
values, background correction, and data standardization of
raw data.

Data Set Filtering
When conducting clinical analysis, the CGGA dataset’s data
included grades, IDH1 mutation status, 1p/19q codeletion
status, different molecular subtypes defined by TCGA network
(Verhaak et al., 2010), survival status, survival time and
PACSIN1 expression. The data collected from the TCGA
dataset included grades, IDH1 mutation status, 1p/19q
codeletion status, survival status, survival time and PACSIN1
expression. The data collected from the GEO datasets included
grades, IDH1 mutation status, 1p/19q codeletion status and
PACSIN1 expression.

Correlation Analysis
Pearson correlation analysis was performed to retrieve the genes
significantly associated to the PACSIN1 expression, and the
heatmap package of R language was used to list the differently
expressed genes (DEGs). Gene Ontology (GO) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) performed the
functional annotations of the DEGs and analyzed gene
signaling pathways using clusterProfiler, org. Hs.eg.db and
pathview packages of R language. Then, PACSIN1 and DEGs
were uploaded to the STRING website (https://string-db.org/)
to build a protein-protein interaction (PPI) network
(Szklarczyk et al., 2017). The analysis results were imported
into Cytoscape v3.8.0 software and cluster analysis was carried
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out by Molecular Complex Detection (MCODE) plugin to find
out the major gene clusters in the network (Bader and Hogue,
2003), and then the genes with high scores were further
analyzed to explore their related functional annotations
and signaling pathways.

Clinical Sample Collection
Total 15 patients with glioma (5 cases in each grade-Ⅱ ⅢⅣ) were
randomly selected from The Affiliated Suzhou Hospital of
Nanjing Medical University. We took the specimen of the
patient’s surgically resected pathological glioma tissues.
Inclusion criteria: ①All patients were diagnosed as glioma
by definite examination, which followed surgical treatment
indications; ②All patients underwent a single glioma
resection. ③All patients volunteered to participate in this
study and signed the informed consents. Exclusion criteria:
①Patients with a history of the tumour; ② Patients with
concurrent multiple tumours; ③Patients with other
operations during glioma resection. ④Patients whose
postoperative pathology cannot make an exact diagnosis.
This study was approved by the Ethics Committee of
Nanjing Medical University.

Immunohistochemical (IHC)
The tumor sample of patients with glioma were made into
paraffin sections, dewaxed with xylene, rehydrated with
gradient alcohol, and boiled in the citrate antigen solution.
After washed with PBS, the sections were incubated with 10%
sheep serum and PACSIN1 antibody (Proteintech Cat#
13219-1-AP, RRID: AB_10637851) at 4°C overnight. After
that, the sections were incubated with HRP-conjugated
secondary antibody (Proteintech Cat# SA00001-2, RRID:
AB_2722564), set at room temperature for 1 h, incubated
with DAB (BOSTER Cat# AR1000) for 10 min, soaked in
hematoxylin for 3 min, washed with PBS, and then sealed.
The staining results were put under a microscope (BX53,
Olympus, Tokyo, Japan) to find the expression differences of
cancer tissues. At least three tumour sections were analysed
for each patient.

Statistical Methods
Kruskal-Wallis rank sum test was performed to detect the
expression difference of PACSIN1 among patients with
different glioma grades and different molecular subtypes
defined by the TCGA network (Verhaak et al., 2010).
Wilcoxon rank-sum test was performed to detect the
expression difference of PACSIN1 among patients with
different IDH1 mutation status and 1p/19q codeletion
status. Kaplan-Meier analysis was performed to investigate
the prognostic value of PACSIN1. Moreover, Cox proportional
hazards model analysis was used to verify PACSIN1 as an
independent prognostic factor and R language packages
(GGplot2, pROC, PheatMap, and Corrgram) was applied
for other statistical calculations and graph drawing. All
differences were considered statistically significant at the
level of p < 0.05.

RESULTS

Protein Kinase C and Casein Kinase
Substrate in Neurons 1 Significantly
Downregulates in the Tumor Group, and
Decreases With the Progression of Glioma
Grades
In order to search for targeted molecular markers related to brain
gliomas and evaluate their potential as molecular markers, we
collected gene data of 325 tumour tissue samples and 20 normal
tissue samples in CGGA and 157 tumour tissue samples and 23
normal tissue samples in GSE4290 dataset of GEO in the early
stage. Softwares such as Rstudio and Perl were used to annotate the
data, supplement the missing values, correct the background, and
standardize the data. We detected and analyzed the DEGs in the
tumour group and the normal group from the total gene expression
profile perspective. Among these DEGs, PACSIN1, one member of
the conservative peripheral membrane brain protein family in
eukaryotes, caught our attention. The expression of PACSIN1 is
lower in gliomas compared with normal group by analyzing CGGA
and GSE4290 datasets (Figures 1A,B).

The PACSIN1 expression in glioma grades was extracted from
CGGAmRNAseq_325 samples. After data collation, Kruskal-Wallis
rank sum test was conducted to detect the expression difference of
PACSIN1 among patients with different glioma grades. The results
showed that the mRNA expression of PACSIN1 was negatively
correlated with glioma grades (p < 0.0001) and was significantly
lower in the grade IV group (Figure 1C). The results were verified in
the TCGA dataset and 276 samples from the GSE16011 dataset
(Figures 1D,E). In order to further verify the correlation between
PACSIN1 and glioma grades, we collected pathological tissue samples
from 15 patients in different grades. IHC results was consistent with
database results that PACSIN1 protein expression was negatively
correlated with glioma grades and there was statistical significance
among each grade (p< 0.0001). The higher the glioma grade, the lower
the PACSIN1 protein expression (Figure 2). The PACSIN1 protein
expression in the grade IV group was significantly lower than that in
the grade Ⅱ and Ⅲ group (p < 0.0001). The results indicated that
PACSIN1 plays a vital role in the progression of gliomas.

Protein Kinase C and Casein Kinase
Substrate in Neurons 1 Raises in
IDH1-Mutant Gliomas, and Reduces in 1P/
19q Non-codel Gliomas
The PACSIN1 expression in IDH1 mutation status and 1p/19q
codeletion status was extracted from the CGGAmRNA_325 sample.
IDH-mutant gliomas have a better prognosis than IDH wild-type
gliomas (Chang et al., 2018). The results indicated that PACSIN1
expression in IDH1-mutant group was significantly higher than that
in IDH1wild-type group (Figure 3A, p < 0.001). Compared with the
same pathological type of patients without defect, patients with 1p/
19q codel have higher sensitivity to chemotherapy and longer
survival time (Hu et al., 2017). As shown in Figure 3D, the
PACSIN1 expression in 1P/19q non-codel group was significantly
lower than that in the 1p/19q codel group (p < 0.0001). The results
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were verified in TCGA and 228 samples from GSE58218 dataset
(Figure 3B,C,E,F). All the above results suggested that PACSIN1
upregulated in IDH1-mutant gliomas and downregulated in 1P/19q
non-codel gliomas.

Protein Kinase C and Casein Kinase
Substrate in Neurons 1 Decreases in
Mesenchymal Molecular Subtype Gliomas
and can be Considered as a Potential
Biomarker
In order to explore the PACSIN1 expression in gliomas further,
we analyzed the PACSIN1 expression in different molecular

subtypes (Classical, Mesenchymal, Neural, and Proneural)
defined by the TCGA network (Verhaak et al., 2010). The
results revealed that the PACSIN1 expression in
mesenchymal molecular subtype decreased significantly
more than other subtypes, and there were significant
differences between these subtypes (p < 0.0001, Figure 4A).
To further verify this finding, we performed the receiver
operating characteristic curve (ROC) to verify the
relationship between PACSIN1 expression and gliomas at
all grades of the mesenchymal molecular subtype. In the
CGGA dataset, the area under the curve (AUC) was 76.0%,
indicating that PACSIN1 has a particular predictive ability
(Figure 4B).

FIGURE 1 | PACSIN1 expression in glioma group and normal group and in different grades. PACSIN1 expression was lower in tumor group and higher in normal
group in CGGA (A) and GEO4290 datasets (B). PACSIN1 expression decreased with the increase of grades in CGGA (C), TCGA (D) and GSE 16011 datasets (E).

FIGURE 2 | PACSIN1 IHC results in different grades. PACSIN1 protein expression staining results (semi-quantitative scoring, expression intensity × expression
area): upper, ×200; lower, ×400 (A) suggested that PACSIN1 protein expression downregulated with the progression of grades (B). Blue purple represents the nucleus
stained with hematoxylin and brown yellow represents the expression of PACSIN1.
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Protein Kinase C and Casein Kinase
Substrate inNeurons 1 Is Proportional to the
OS and Could Be Used as an Independent
Prognostic Factor for the OS of Glioma
Patients
In order to explore the impact of PACSIN1 on the survival of
glioma patients, we analyzed the PACSIN1 expression in the
survival status and survival time of 325 samples from the CGGA
dataset and 603 samples from the TCGA dataset. When observing
the survival time of each group in the CGGA dataset, the results
explained that the patients with low expression of PACSIN1
significantly shortened OS in all grades of gliomas (Figure 5A,

p < 0.0001). Similar results were obtained in the TCGA dataset
(Figure 5B, p < 0.0001). Then, to determine whether PACSIN1
expression could act as an independent prognostic factor,
univariate and multivariate Cox regression analyses of CGGA
dataset were performed (Table 1). Univariate regression analysis
results showed that PACSIN1 (p < 0.0001), with all clinical
indicators including age (p < 0.0001), IDH1 mutation status
(p < 0.0001), 1P/19q codeletion status (p < 0.0001), and grade (p <
0.0001) could be used as a predictor of OS of gliomas at all grades.
Hazard ratio (HR) is an expression of the hazard or chance of
events occurring in the treatment arm as a ratio of the hazard of
the events occurring in the control arm. Hazard ratios are
commonly used in survival analysis to allow hypothesis testing

FIGURE 3 | PACSIN1 expression in IDH1 mutation status and 1p/19q codeletion status. PACSIN1 upregulated in the IDH1-mutant group in CGGA (A), TCGA (B),
GSE 58218 datasets (C) and downregulated in non-codel group in CGGA (D), TCGA (E), GSE 58218 datasets (F).

FIGURE 4 | PACSIN1 expression in different molecular subtypes defined by TCGA network. PACSIN1 was decreased in mesenchymal molecular subtype in
CGGA dataset (A). ROC curve of PACSIN1 expression to predict mesenchymal molecular subtype in CGGA dataset (B).
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(Blagoev et al., 2012; Sashegyi and Ferry, 2017). In Table 1,
hazard ratio of PACSIN1<1. This indicates that the higher the
gene expression, the longer the survival time of patients.

In the results of multivariate regression analysis, PACSIN1
showed significant results (p < 0.0001) in the evaluation of age
(p � 0.047), IDH1 mutation status (p � 0.940), 1P/19q codeletion
status (p < 0.0001), and grade (p < 0.0001). The results suggested
that PACSIN1 could be used as an independent prognostic factor.

Protein Kinase C and Casein Kinase
Substrate in Neurons 1 Affects the
Occurrence and Development of Gliomas
by Interfering With Synaptic Transmission
Finally, we preliminarily explored the possible mechanism by
which PACSIN1 inhibits the progression of gliomas. First,
Pearson correlation analysis was performed between the
expression of PACSIN1 and other genes in the genomic map
of the CGGA dataset in 325 patients. The results showed that 224
genes (R > 0.8) were significantly correlated with the PACSIN1

expression (Figure 6). Next, GO function annotation and KEGG
pathway analysis were performed on the DEGs. GO enrichment
analysis was performed on the biological process (BP), cellular
component (CC) and molecular function (MF) (Figures 7A–C, B
and C). Based on GO three groups’ analysis results, the DEGs
were mainly enriched in the modulation of chemical synaptic
transmission, regulation of trans-synaptic signaling, presynapse,
synaptic membrane and neuron to neuron synapse. KEGG
pathway analysis results showed that the DEGs were mainly
enriched in Glutamatergic synapse, Calcium signaling
pathway, Insulin secretion, Synaptic vesicle cycle and
GABAergic synapse and other pathways (Figure 7D). In
addition, we also performed a Pearson correlation analysis on
the PACSIN1 expression and other genes in the whole genome
map of the TCGA dataset, and 167 DEGs were obtained (R > 0.8).
Meanwhile, GO function annotation and KEGG pathway analysis
were also performed, and the results were shown in Figures
7E–H. The results indicated that PACSIN1 may regulate synaptic
transmission to affect the occurrence and development of
gliomas.

FIGURE 5 | Relationship between PACSIN1 expression and survival status and time. Kaplan-Meier estimates of survival for all grades in the CGGA (A) and TCGA
datasets (B).

TABLE 1 | Univariate and multivariate Cox analysis of PACSIN1 expression and clinical indicators in CGGA dataset.

Clinical factors Univariate p Multivariate p

HR 95%CI HR 95%CI

Lower Upper Lower Upper

Age 1.033 1.020 1.046 <0.0001 1.013 1.000 1.025 0.047
Gender (Male) 0.935 0.709 1.232 0.631 — — — —

IDH mutation status (Mutant) 0.355 0.268 0.470 <0.0001 1.013 0.719 1.429 0.940
1p/19q status (Non-codel) 5.887 3.608 9.606 <0.0001 3.803 2.254 6.417 <0.0001
Grade (WHO IV) 4.758 3.536 6.402 <0.0001 2.734 1.942 3.848 <0.0001
High PACSIN1 expression 0.555 0.475 0.649 <0.0001 0.741 0.633 0.868 <0.0001
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In order to build a PPI network, we uploaded PACSIN1 and
224 DEGs to the STRING website, and set the interaction score as
0.7. Then, the obtained analysis results were imported into

Cytoscape v3.8.0 software to construct an image with 84 nodes
plus 223 edges (Figure 8A). We also usedMCODE to find out the
major gene clusters in the network and finally obtained a total of

FIGURE 6 | Correlations of 224 DEGs expression with the clinical indicators in gliomas in CGGA dataset.

FIGURE 7 |GO function annotation and KEGG pathway analysis results of 224 DEGs. DEGs in CGGA dataset GO pathway enrichment analysis results BP (A), CC
(B), MF (C), KEGG pathway enrichment analysis results (D). DEGs in TCGA dataset GO pathway enrichment analysis results BP (E), CC (F), MF (G), KEGG pathway
enrichment analysis results (H) P. adjust: p value of gene enrichment. Counts: number of genes in a cluster of DEGs that belong to this pathway.
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30 genes (Figure 8B). Next, we analyzed the functional
annotations and signaling pathways of these genes. GO and
KEGG enrichment analysis of these genes revealed that they
were mainly related to synaptic transmission (Figures 8C,D,E,F),
which was consistent with the above research conclusions.

DISCUSSION

Glioma, the most common subtype of primary brain tumour, is a
highly invasive and neurodestructive tumour, and is considered
one of the most lethal cancers in humans (Ostrom et al., 2015).
According to the Stupp research group results, although surgery,
postoperative radiotherapy and chemotherapy can improve the

survival rate of glioma patients, the prognosis of most glioma
patients is still poor (Stupp et al., 2005). At present, many studies
have shown that targeted therapy can improve the efficacy of
glioma treatment (Lin et al., 2017). In the DEGs screening of
CGGA and GSE4290 datasets between the tumour group and the
normal group, we obtained the gene PACSIN1 and found that it
significantly downregulated in gliomas (Figures 1A,B).
Previously, PACSIN1 was only recognized to affect neurons
development and nervous system regulation (Pérez-Otaño
et al., 2006; Gopalakrishnan et al., 2016; Koch et al., 2020),
and its relationship with tumours or even gliomas has not
been explored.

In order to further explore the relationship between PACSIN1
and gliomas, we retrospectively analyzed a total of 1,546 glioma

FIGURE 8 | PPI network between PACSIN1 and DEGs and the enrichment analysis of themain gene cluster. The PPI with 84 nodes plus 223 edges was processed
with Cytoscape v.3.8.0, and themain gene cluster analysed byMCODEwas colored by yellow (A,B). Themain gene cluster in GO enrichment analysis results BP (C), CC
(D), MF (E), KEGG enrichment analysis results (F).
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patients from CGGA, TCGA, GSE16011, GSE58218 datasets and
15 glioma samples. First, we investigated the relationship between
PACSIN1 and clinical indicators of gliomas (grades, IDH1
mutation status, 1p/19q codeletion status and different
molecular subtypes defined by TCGA network (Verhaak et al.,
2010)). In 2016 the world health organization (WHO) divided
gliomas from low to high into grade I (the lowest degree of
malignancy, the best prognosis) to grade IV (the highest degree of
malignancy, the worst prognosis). The four grades are based on
“genotype molecules” and “histological phenotypes” combination
and the “comprehensive” judgment (Louis et al., 2014) according
to the histopathological characteristics and malignant degree,
including glioblastoma corresponding grade IV group. The
results showed that the expression level of PACSIN1 was
significantly decreased in different grades (Figures 1C,D,E,
Figure 2). Besides, according to IDH mutation status, gliomas
can be classified into IDH1 wild-type, IDH1-mutant and NOS
(meaning that there is not enough information to define the
entity). And according to 1p/19q codeletion status, gliomas can
be classified into codel and non-codel group. Many studies
indicated that IDH1-mutant gliomas and codel gliomas have a
better prognosis (Hu et al., 2017; Chang et al., 2018). In our study,
it was revealed that PACSIN1 raised in IDH1-mutant group and
reduced in 1p/19q non-codel group (Figure 3). Besides,
PACSIN1 also downregulated in the mesenchymal molecular
subtype group (Figure 4), suggesting that PACSIN1 would be a
biomarker of the mesenchymal molecular subtype gliomas, with a
more malignant phenotype and a worse prognosis. Moreover, in
order to explore the effect of PACSIN1 on the survival of glioma
patients, this study analyzed the PACSIN1 expression in the
survival time and status of 325 samples in the CGGA dataset and
603 samples in the TCGA dataset, and found that patients with
lower expression of PACSIN1 had significantly shorter OS in all
grades of gliomas (Figure 5). Univariate and multivariate
analyses verified that PACSIN1 could be an independent
prognostic factor (Table 1), which has a certain predictive
effect on the occurrence and development of glioma patients.

Finally, in order to explore the mechanism of PACSIN1
inhibiting the occurrence and development of gliomas, total
224 DEGs were screened out through correlation analysis, and
functional annotation and pathway analysis were conducted.
Then we constructed the PPI network and found the main
gene cluster, and we also analyzed these genes with functional
annotation and pathway analysis. Finally, it was found that
PACSIN1 mainly affects the occurrence and development of
gliomas through synaptic transmission (Figures 6–8).

Many studies have proved that synaptic transmission
influences the development of gliomas. In particular, in 2019,
Nature published three studies simultaneously, revealing a
remarkable discovery: the formation of synaptic structures
between gliomas and neurons will promote tumour growth.
The results of Michelle Monje’s research group show that both
AMPA receptor-dependent excitatory post-synaptic current and
gap junction targeting mechanisms can significantly slow down
the proliferation of gliomas (Venkatesh et al., 2019). Thomas
Kuner’s research group also detected the presence of a synaptic
component containing the AMPA receptor (Venkataramani

et al., 2019). And this is not unique to gliomas. The results of
Douglas Hanahan’s research group reveal that breast cancer
invasion in the brain may also be mediated by NMDA
receptors and glutamate transmitters on excitatory synapses
(Zeng et al., 2019). All the above studies have proved that
tumour cells in the brain can form excitatory synapses with
neurons to promote tumour growth. In this study, we
conducted functional annotation and pathway analysis of the
DEGs of PACSIN1, and found that PACSIN1 affects the
occurrence and development of gliomas mainly through
synaptic transmission (Figures 6–8). Meanwhile, it has been
shown that PACSIN1 can participate in the transport process
by regulating AMPA receptor and NMDA receptor (Anggono
et al., 2013; Marco et al., 2013; Widagdo et al., 2016). It still needs
our further research and exploration whether PACSIN1 could
affect synaptic transmission by modulating AMPA receptors and
NMDA receptors, and then influence the occurrence and
development of gliomas.

Meanwhile, genes such as CAMK2A, NCS1, NPTX1, RAB3A
and SYT1 have been found to affect synaptic transmission.
Studies have shown that CAMK2A mutations affect dendritic
morphology, lead to synaptic defects, and thus affect behavioural
changes associated with ASD (Stephenson et al., 2017). NCS1
binds to the guanine exchange factor Ric8a to regulate the
number of synapses and affect the release of neurotransmitters
(Romero-Pozuelo et al., 2014). NPTX1 can coordinate the
increase of synaptic strength and then regulate neuronal
activity through T-type voltage-gated calcium channel and two
transcription factors SRF and ELK1 (Schaukowitch et al., 2017).
RAB3A deficiency can regulate epilepsy and synaptic activity in
hippocampal CA1 region by impair excitatory glutamate synaptic
transmission and synaptophysin II synergism (Feliciano et al.,
2013). SYT1 can regulate C2a and C2b in C2 region, thus
affecting targeted synaptic vesicles (Courtney et al., 2019). And
to our surprise, studies have proved that these genes have a
certain relationship with gliomas and could influence the
occurrence and development of gliomas to a certain extent
(Kim et al., 2014; Yukinaga et al., 2014; Zhang et al., 2018;
Zhou et al., 2019; Li et al., 2021). These studies lead us to
wonder if these genes could influence glioma development
through synapses, as these findings suggest. Then we analyzed
the expression of these genes and PACSIN1 in the CGGA dataset.
Unexpectedly, these five genes are the members of the DEGs of
PACSIN1, which are positively correlated with PACSIN1
(Figure 6). It makes us curious whether these genes play a
certain regulatory role in the influence of PACSIN1 on the
occurrence and development of gliomas, which is also our
direction for further exploration and verification in the future.

In this study, PACSIN1 was combined with gliomas for the
first time. Through the correlation study between gene expression
changes and clinical indicators, it was found that PACSIN1 can be
used as an independent prognostic molecule of gliomas, and can
predict the prognosis and development of patients’ disease to a
certain extent, which will be a potential new site for targeted
therapy of gliomas. The shortcoming of this study is that we only
conducted a preliminary analysis and discussion at the glioma
level, but did not deeply explore the tumour types caused by the
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differentiation of gliomas in the cell morphology. In addition, we
did not carry out relevant animal and cell experiments, but only
collected human tissue samples for data analysis. The above
studies on the correlation between PACSIN1 and gliomas and
the relevant mechanism still need to be further investigated in
clinical samples. We will further explore the function of this gene,
focusing on its role in other cancer and neurological diseases.

This study provides a basis for the following clinical studies on
PACSIN1 in gliomas, and offers new ideas for targeted therapy of
gliomas. If the PACSIN1 expression can be interfered in the body,
so as to regulate the synaptic transmission pathway, it will make
an outstanding contribution to the inhibition of the occurrence
and development of gliomas, which is of great significance for
glioma patients.
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