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Abstract
Mathematical modeling of nystagmus oscillations is a technique with applications in diagnostics, treatment evaluation, and
acuity testing. Modeling is a powerful tool for the analysis of nystagmus oscillations but quality assessment of the input data
is needed in order to avoid misinterpretation of the modeling results. In this work, we propose a signal quality metric for
nystagmus waveforms, the normalized segment error (NSE). The NSE is based on the energy in the error signal between the
observed oscillations and a reconstruction from a harmonic sinusoidal model called the normalized waveformmodel (NWM).
A threshold for discrimination between nystagmus oscillations and disturbances is estimated using simulated signals and
receiver operator characteristics (ROC). The ROC is optimized to find noisy segments and abrupt waveform and frequency
changes in the simulated data that disturb the modeling. The discrimination threshold, ε, obtained from the ROC analysis,
is applied to real recordings of nystagmus data in order to determine whether a segment is of high quality or not. The NWM
parameters from both the simulated dataset and the nystagmus recordings are analyzed for the two classes suggested by
the threshold. The optimized ε yielded a true-positive rate and a false-positive rate of 0.97 and 0.07, respectively, for the
simulated data. The results from the NWM parameter analysis show that they are consistent with the known values of the
simulated signals, and that the method estimates similar model parameters when performing analysis of repeated recordings
from one subject.
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Introduction

Nystagmus is a symptom expressed as involuntary oscil-
lating eye movements with a reported prevalence of 24
per 10,000 people in the general population (Sarvanan-
than et al., 2009). The nystagmus symptoms may lead to
decreased visual acuity and in certain cases to oscillopsia,
which is a sensation that the world is in motion (Leigh &
Zee, 2015). For some of those who are affected, the symp-
toms are persistent. Traditionally, nystagmus is divided into
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acquired nystagmus, which develops later in life due to for
example trauma, and early onset nystagmus, which is devel-
oped before or a few months after birth (Hussain, 2016;
McLean et al., 2007).

Diagnostics of nystagmus is difficult and often requires
long clinical experience. In order to evaluate the condition
of a person with nystagmus, various methods, both
automatic and manual, for diagnostics and evaluation of the
nystagmus signal patterns have been developed (Leigh &
Zee, 2015; Dell’Osso & Daroff, 1975; Dell’Osso & Jacobs,
2002). These methods may involve classification of the eye
movement dynamics, often referred to as the waveform. The
waveform may provide insights into the underlying cause of
the nystagmus symptoms (Leigh & Zee, 2015). In this work,
the waveform, as measured by an eye-tracking system, is
considered on a cycle-to-cycle basis.

Eye tracking is a technology used to estimate the gaze
direction or to measure eye movements (Holmqvist et al.,
2011). The technology has previously been used in nystag-
mus research, and various metrics for evaluation of nys-
tagmus, based on eye-tracking data, have been constructed.
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Many of these methods utilize automatic processing of the
recorded eye-movement signals. Automatic processing of
nystagmus signals is an established and alternative analy-
sis method compared to manual inspection of nystagmus
oscillations. The analysis techniques originate from a wide
range of different disciplines such as control theory (Broom-
head et al., 2000), dynamic systems modeling (Akman et al.,
2005), time series analysis (Theodorou & Clement, 2016)
and time-frequency analysis (Hosokawa et al., 2004). One
may consider two different approaches to model nystagmus:
system-based and signal-based modeling. System-based
modeling is aimed at the mechanisms of the nystagmus
itself. Such methods are often concerned with modeling of,
e.g., the saccadic system, and investigates possible mecha-
nisms behind nystagmus (Broomhead et al., 2000; Akman
et al., 2005; Abadi et al., 1997; Harris & Berry, 2006).
Signal-based modeling of nystagmus data is aimed at mod-
eling and classification of measured nystagmus oscillations,
i.e., waveforms. Such models may be used for classifica-
tion of recorded signals into different established waveform
morphologies (Theodorou & Clement, 2016; Abadi & Wor-
folk, 1991), in order to determine the visual function of a
person with nystagmus (Dell’Osso & Jacobs, 2002; Felius
et al., 2011), or to evaluate the effect of a treatment (Young
& Huang, 2001). Manual classification of cycle-to-cycle
waveform morphologies have previously been investigated
(Dell’Osso & Daroff, 1975), where 12 different wave-
form morphologies observed in people with nystagmus are
described.

When modeling nystagmus eye movements, it is desir-
able to only include segments in the data that contribute
to the overall understanding of the underlying condition.
Therefore, an exclusion criterion for the data may be intro-
duced. In this context, an exclusion criterion refers to the
method for which data in a study is excluded from further
analysis. In this work, exclusion of data is considered on
a sub-signal level, meaning that some segments in a sin-
gle recording may be included whereas other segments may
be excluded from further analysis. In order to illustrate the
importance of data exclusion, consider the eye movement
recording in Fig. 1. Here, a slow phase detector (Rosengren
et al., 2019) based on velocity leads to detection of slow
phases in the non-oscillatory part of this data segment, due
to the low velocity of this part. Even though a low veloc-
ity is an indicator or a slow phase, it is undesirable to use
this segment to describe the nystagmus oscillations of this
specific person, or to use this segment for calibration. It
is therefore desirable to have a method that automatically
rejects segments in the recorded signals that do not exhibit
an oscillating pattern and thus should not be included in the
analysis.

Slow Phase
Recorded Signal

Fig. 1 Example of slow phase detection. The slow phase detection
method from Rosengren et al. (2019) applied to a nystagmus signal.
The red asterisks show the segments of detected slow phases. As can
be seen, the segment without an oscillatory pattern in the recorded
signal is erroneously labeled as a slow phase

Removing segments of non-oscillating data from record-
ings is a process that has previously been used in nystagmus
research. A method for removal of blinks using position,
velocity and acceleration thresholds has been implemented
for calibration purposes (Dunn, 2014). The threshold is
based on the standard deviation of the recorded signals.

In order for this method to be operative, at least one
blink needs to be present in the recording (Dunn, 2014). A
threshold for the nystagmus cycle length has been used as
an inclusion criterion on a signal segment level (Theodorou
& Clement, 2016). The cycle length was identified using a
method using periodic orbits, where the main cycle length
was determined as the peak in a histogram of the periodic
orbits. All cycle lengths within ±12.5 ms of the main cycle
length were included in the analysis.

Although some methods exist for detection of segments
in nystagmus eye-movement recordings that should be
excluded from further analysis, no systematic investigation
with the specific purpose to evaluate the performance of
the data exclusion methods has to our knowledge been con-
ducted. This means that there is very little information on
how well these methods work for excluding undesirable
data segments. Data exclusion is an important component
when characterizing nystagmus oscillations, since the reli-
ability of automatic analysis methods may be significantly
influenced by how the method handles disturbances and
’non-nystagmus’ segments. If the exclusion criterion allows
too many segments to enter further analysis, there is a risk
of modeling segments that do not represent the nystagmus
oscillation of the patient. On the other hand, if the exclu-
sion criterion allows too few segments, there is a risk of not
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having enough data left for subsequent analysis, as well
as of missing dynamic changes, such as waveform and
frequency changes, in the recording.

In this work, we present a signal-based method for
modeling of nystagmus signals with the purpose to select
segments for further analysis. In order to do so, a metric
called the normalized segment error (NSE) is introduced.
The modeling method is based on a harmonic sinusoidal
model, and the NSE is computed as the normalized error
between the reconstructed signal and the recorded eye-
movement signal. An evaluation dataset consisting of
simulated signals is created and used for performance
evaluation. The method is also evaluated on a dataset with
recordings from participants with nystagmus.

This paper is organized as follows: In Section “Proposed
model”, the model of the nystagmus oscillations is
presented. The datasets used for evaluation of the proposed
model are described in detail in Section “Datasets”. The
evaluation strategy for the proposed method is presented
in Section “Model performance evaluation”. Finally, the
results are presented and the method is discussed in
Sections “Results” and “Discussion”, respectively.

Proposedmodel

The model considered in this work is based on a pseudo-
stationary assumption of the nystagmus signal. Consider the
harmonic sinusoidal model s[n] with H harmonics (Stridh
et al., 2009),

s[n] =
H∑

h=1

sh[n], (1)

where

sh[n] = ah sin[2π(f1h)n + φh] (2)

and, ah is the amplitude of the h:th harmonic, f1 is the first
harmonic frequency and φh is the phase of harmonic h, and
n = 0, . . . , N − 1.

The estimation of the model parameters consists of two
steps. The first step describes the data preprocessing and
the extraction of harmonic components, see Section “Pre-
processing”. The second step, the parameter estimation, is
described in Section “Block model parameter estimations”.
A description of the model features used for analysis of
the nystagmus recordings is presented in Section “Wave-
form features”. Finally, the NSE is defined in Section “The
normalized segment error (NSE)”.

Preprocessing

The preprocessing stage consists of two parts. First, the
signal is downsampled to 100 Hz (original sampling rate is
1000 Hz for the data presented in this work). The second
step is to high-pass filter the signal using a third-order
Butterworth filter with a cutoff frequency of 2 Hz, removing
frequencies lower than the cutoff. The preprocessed signal
is denoted sp[n].

In order to estimate the different harmonic components,
sh[n], each component needs to be extracted from the
preprocessed signal. After the preprocessing, the global first
harmonic frequency of the signal, F̂1, is estimated using
Welch spectrum estimation with an overlap of 50 % and
a segment length of 512 samples (for a 100-Hz signal).
The harmonic components, sh[n], are computed as sp[n]
filtered through a Kaiser bandpass filter, Bh(f, F ) with the
following design settings:

B1(f, F ) =
{

1, if
∣∣F − f

∣∣ ≤ fw1

0, if
∣∣F − f

∣∣ > fw2
(3)

for the first harmonic, and

Bh(f, F ) =
{

1, if Fh − (1 + δh) ≤ f ≤ Fh + (1 + δh)

0, if Fh − (2 + δh) ≤ f ≤ Fh + (2 + δh)

(4)

for h > 1, where δh = (h−1)
2 . In this work, fw1 = 1.3 and

fw2 = 2.3 (Stridh et al., 2009).

Blockmodel parameter estimations

As stated above, the frequency of the nystagmus signal is in
general not stationary. The signal is therefore divided into
short segments of length Nb. The choice of the segment
length is considered with the following tradeoff: if the
segment length is too short, it may result in poor parameter
estimates, and if it is too long, the stationarity assumption
of each segment may not be valid. The latter problem
is addressed by using a method of overlapping segments,
while reconstructing the signal for a shorter interval. The
segment length was set to Nb = 67 (corresponding to
0.67 s).

Another issue is that the frequency estimate F̂1 is not
necessarily representative for all intervals in the recorded
signal. If the first harmonic frequency varies more than
±1.3 Hz, the output energy of the affected segments
may be severely reduced. In order to remedy this, two
additional sets of harmonic components are computed for
the frequencies F̂0 = F̂1 − 2.6 and F̂2 = F̂1 + 2.6. The
frequency estimate for the time interval nb = [n0, . . . , n0 +
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Nb − 1] is determined by maximizing the first harmonic
energy,

F̂ [nb] = arg max
F̂i

[
E(F̂0)[nb], E(F̂1)[nb], E(F̂2)[nb]

]
,

(5)

where

E
(
F̂i[nb]

) =
n0+Nb−1∑

k=n0

∣∣∣∣s(i)
1 [k]

∣∣∣∣
2

(6)

and s
(i)
1 [nb] is the resulting first harmonic signal after

sp[nb] is filtered through B1(f, F ), and where F = F̂i .
The signal, however, is reconstructed for a time interval
nc ∈ [l − c0, l + c0] where the overlap c0 is computed as

c0 = Nb

2F̂ [nb]
, (7)

n0 is the start sample for the interval of length Nb and

l = n0 + Nb

2
. (8)

This means that every approximate wave is reconstructed
separately based on a window around it. The frequency, fh,
and phase, φh, of each harmonic are estimated according to
Stridh et al. (2009)

f̂h = arg max
f

∣∣∣∣
n0+N∑
nb=n0

sh[nb]e−j2πf nb

∣∣∣∣ (9)

and

φ̂h = arctan

(
−

∑n0+N
nb=n0

sh[nb]sin(2πf̂hnb)∑n0+N
nb=n0

sh[nb]cos(2πf̂hnb)

)
(10)

The amplitude, âh, for the h:th harmonic is estimated
from the analytic signal transformation (Sörnmo & Laguna,
2005),

âh = 1

2c0

l+c0−1∑
i=l−c0

|s̃h[i]| (11)

where s̃h[i] is the analytical transformation of sh.
The signal is not stationary unless f̂h = hf̂1, ∀h, which

is generally not going to be the case. In order to create a
stationary model, Eq. 1 is rewritten as

s[nb] =
H∑

h=1

ah sin[2π(f̂1h)nb+2π(f̂h−f̂1h)nb+φ̂h] (12)

where f̂h is the frequency estimate of harmonic h. The
second argument of the sinusoid, 2π(f̂h − f̂1h)nb, may
be viewed as a phase component. In order for this to be
stationary, the index nb is replaced by a fixed index value,

for example the block center index l (Stridh et al., 2009).
This results in the model

s′[nb] =
H∑

h=1

âh sin[2π(f̂1h)nb + φ̂′
h] (13)

where

φ′
h = 2π(f̂h − f̂1h)l + φ̂h. (14)

Waveform features

When the model parameters have been estimated, it
is possible to reconstruct and compare waveforms with
different frequencies, amplitudes, or morphologies. The
relationship between the amplitude coefficients in a
harmonic model is a direct measure of the influence of
each respective harmonic. For example, if the first harmonic
amplitude is much greater compared to the amplitudes of the
other harmonics, the resulting signal will be close to a pure
sinusoid. Two waveforms may be similar in morphology, but
where the absolute amplitudes are quite different. In order
to compare waveform morphologies of a harmonic model,
all amplitudes are normalized according to

R̂h = âh

â1
. (15)

The first harmonic phase is a measure of where the
oscillation in a given segment begins. However, when
comparing different waveform morphologies, it is not of
interest to study the absolute phase, but rather to study
the relative phase values. In order to compare different
waveform morphologies, the phases of all harmonics are
adjusted to the first harmonic phase according to Stridh et al.
(2009):

φ̂′′
h = φ̂′

h

h
. (16)

Once all phases have been rescaled to the first harmonic, the
angular difference, δφ′′

h
, between the first harmonic phase

and rescaled harmonic phases are computed according to
Stridh et al. (2009):

δ̂φ′′
h

= φ̂′′
h − φ̂′′

1 = φ̂′′
h − φ̂′

1 (17)

A new model, the normalized waveform model (NWM),
may be written as

sa[nb] =
H∑

h=1

R̂hsin(2πf̂1hnb + δ̂φ′′
h
h) (18)

The normalized segment error (NSE)

As described in Section “Introduction”, the NSE is
introduced in order to determine whether a signal segment
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should be considered for further analysis. The NSE of a
segment with length Ns is computed as

NSEs =
∑n0+Ns−1

ns=n0
|s′

p[ns] − s′[ns]|2∑n0+Ns−1
ns=n0

|s′
p[ns]|2

(19)

where

s′
p[m] = sp[m] − 1

Ns

n0+Ns−1∑
ns=n0

sp[ns] (20)

and

s′[m] = s[m] − 1

Ns

n0+Ns−1∑
ns=n0

s[ns]. (21)

The signals sp[n] and s[n] denote the preprocessed and
reconstructed signals, respectively, and Ns is the segment
length. If NSEs > ε for some value ε, the segment should
be excluded from further analysis. The choice of the ε value
is further discussed in Section “ROC analysis”.

Datasets

In this section, the two datasets used for the evaluation of
the proposed method are presented. In Section “Evaluation
dataset”, the evaluation dataset (ED), which consists of
simulated signals, is described in detail. The purpose of
this dataset is to evaluate the proposed method on signals
with known characteristics and known disturbances, which
is important both for evaluation of the parameter estimation
process and to set the threshold of the exclusion criterion.
The content of the recorded participant dataset, PD, is
presented in Section “Participant dataset”.

Evaluation dataset

In order to evaluate the performance of the proposed
method, it is tested on a dataset with known reference
signals. The analysis software for the evaluation dataset was
written in Python (version 2.7) using the SciPy (version
1.0.0) signal processing library.

In order to use signals that resemble real nystagmus
waveforms, the illustrations of nystagmus waveforms
presented in Dell’Osso and Daroff (1975) were digitized
using image processing. The digitized signals were then
parametrized using Fourier analysis in order to introduce
signal modulations as well as to be able to track model
parameter values. The different waveforms were captured
as images using a print screen function on a 27-inch
(5120 x 2880) resolution screen and transformed into
one-dimensional signals. A detailed description of the
parametrization of the different waveforms is found in

Appendix together with the phase and amplitude values for
each waveform type.

In order to study the performance of the modeling
method, simulated template signals were created and cor-
rupted by various signal modulations. Three different types
of modulations were introduced: amplitude modulation, fre-
quency shift, and noise consisting of white Gaussian noise.

A total of 50 test signals, each consisting of the four
template signals DJ-L, EF-R, PPFS and T (Dell’Osso &
Daroff, 1975), with a total duration for each test signal of
24 s, were generated. The template waveforms were chosen
as the signal parameters are reasonably different from each
other, and it was desirable to test the method for different
types of waveforms. Examples of these four waveforms
are found in Fig. 2. Each test signal comprised of four
waveform components, where each waveform component
consisted of one of the four waveforms DJ-L, EF-R, PPFS

or T. The duration of each waveform component was 6 s
and the sampling frequency was set to 1000 Hz. The order
of the different waveform component was randomized for
each 24-s signal (four waveform components × 6 s). The
initial frequency of each of waveform component was set to
6 Hz. The model, y[n], for the amplitude modulation and
frequency shift is given by

y[n] = A[n]
H∑

h=1

ah sin[2π(f1[n]h)n + φh], (22)

where A[n] is the amplitude variation and f1[n] is the
time-dependent frequency for each waveform component.

A[n] = sin[2πfAn + cos(2π
fA

5
n)] (23)

Fig. 2 Evaluation dataset waveforms. The four different waveforms
used to create the evaluation dataset were dual jerk - left (DJ-L),
extended foveation - right (EF-R), pseudo pendular with foveating
saccades (PPFS) and triangular (T). All waveforms have been
reconstructed using Fourier analysis
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Table 1 The random variable values for the evaluation dataset

f [u] n1 fA wa dw

U
(

8, 10

)
Z ∈ [1500, 4500] U

(
10−2, 10−1

)
N

(
0, 0.05

)
Z ∈ [500, 1000]

f1[n] =
{

6, if n ≤ n1

f [u], if n1 < n ≤ N,
(24)

For each waveform component, there was one frequency
shift, occurring between 1.5 s and 4.5 s after the onset of
the waveform component. The new frequency, f[u], was
randomly sampled from a uniform distribution, U

(
8, 10

)
.

The number of noise episodes in each simulated
signal was randomized where the maximum number of
occurrences was six times for every waveform component.
The distribution of the noise was a zero mean white noise
Gaussian distribution, N

(
0, 0.05

)
. The time of occurrence

for each noise episode was also randomized, and it was
possible for multiple episodes to occur simultaneously. The
onset and offset times for the frequency shifts and noise
episodes were stored for all waveform components. The
variables for the simulated signals are presented in Table 1.

A disturbance vector, D[n] is defined as

D[n] =
{

1, if ton − δt ≤ n ≤ toff + δt

0, if otherwise
(25)

where ton and toff are the onset and offset times of either
a frequency modulation or a noise segment. The term δt

is an additional disturbance time added due to the moving
window of the modeling method. For this work, δt = 100
samples. An example of a simulated signal is presented
in Fig. 3. The original signal without any disturbances,
yo[n], is plotted in Fig. 3a. The change in frequency,
waveform, and the noise segments are illustrated in Fig. 3b.
The corresponding disturbance vector, D[n], is plotted in
Fig. 3d.

Participant dataset

The dataset containing nystagmus recordings, PD, consists
of two sub-datasets denoted PD1 and PD2. In short,
these datasets were recorded with the following setup.
Uncalibrated pupil and corneal reflection data were
recorded binocularly at 1000 Hz using an EyeLink 1000
Plus eye tracker in desktop mode, with the host software
v. 5.09 and the DevKit v. 1.11.571. The eyes were
tracked using the center of mass mode. The geometry
of the experiment setup was in accordance with the
manufacturer’s recommendations (SR-Research, 2010). The
stimuli software was written in Python and PsychoPy
(version 1.83) (Peirce, 2007). An ASUS VG248QE monitor
with a resolution of 1920 × 1080 pixels, with dimensions
53 × 30 cm was used for stimuli presentation and all

participants were seated 80 cm from the screen. The head
was stabilized using a chin and forehead rest. The study
is approved by the ethics board at Lund University and
all experiments are in accordance with the Declaration of
Helsinki.

All participants were subject to calibration and validation
before the experiment started. During the calibration,
the participants were instructed to focus on a set of
nine calibration targets, appearing in a randomized order.
The vertical target positions were ±10◦ and 0◦ and the
horizontal target positions were ±18◦ and 0◦. The same
procedure was implemented during the validation using
four different targets appearing in random order. Both the
horizontal and vertical positions of the validation targets
were ±5◦. During both the calibration and the validation,
each eye was first recorded monocularly (the other eye was
covered) followed by a binocular recording. A black circle
with radius 0.6◦ with a red circle of radius 0.15◦ in the
center were used as the calibration target. The color of the
background was gray.

During the experiment, the participants were presented
with fixation targets in five different positions: (−16◦, 0◦),
(16◦, 0◦), (0◦, 0◦), (0◦, −8◦) or (0◦, 8◦), where the first
coordinate is the horizontal position and the second is the
vertical position and the coordinate (0◦, 0◦) is at the center
of the screen. The same target composition (black circles
with red centers) as for the calibration was used and each
target was shown for 15 s, except for the center target which
was shown for 30 s. After each target had been shown, a
target at the central position, (0◦, 0◦), was shown for 5 s.
The analysis of these segments has not been included in this
work. In between each target, the participant was allowed
to rest the eyes and blink for 5 s. This dataset is referred
to as PD1. In total, recordings from five male participants
with diagnosed early onset nystagmus were included (M =
34.9 [years], SD = 14.7 [year]). The participants were
diagnosed by a senior neuro-ophthalmologist [BH] at Skåne
University Hospital, Lund, Sweden.

A second dataset, PD2, was created by performing
repeated experiments for one of the participants from PD1

(eight times on different days). The data from one session
were excluded due to equipment malfunction. The same
calibration, validation, and fixation recording procedure as
were used for PD1 were also used for PD2, where the
horizontal calibration positions were ±16◦ and 0◦. The age
of this male participant was 25 years. PD2 was created
in order to investigate the repeatability of the estimated
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Fig. 3 Illustration of the simulated signals. a The original simulated signal yo[n], b the ’observed’ simulated signal y[n], c the frequency f1[n]
and the d disturbance vector D[n] are illustrated

model parameters and thereby the measured nystagmus
pattern. All participants were calibrated using the foveation
detection and the Procrustes calibration method presented in
Rosengren et al. (2019).

Model performance evaluation

The performance evaluation is divided into two differ-
ent parts. The first part, presented in Section “Evaluation

dataset analysis”, is the analysis of the ED. In Section “Par-
ticipant dataset analysis” examples of the modeling perfor-
mance for participant dataset PD1 and PD2 are presented.
All signals are analyzed using the NSE. The ε estimated
from the ED, see Section “Evaluation dataset analysis”, is
used in the analysis of the PD1 and PD2. The NSE is com-
puted in 200-ms segments, which corresponds to half of a
cycle of an oscillation at 2.5 Hz. Segments in the data for
which the EyeLink system cannot track the pupil are marked
by the system. At each such occurrence, 200 ms before and
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after the occurrence were removed from the signal. This
occurs for example during a blink. All segments for which
the time between two episodes of missing data was less than
5 s were excluded from analysis.

Evaluation dataset analysis

ROC analysis

As described in Section “Evaluation dataset”, three different
signal modulations have been introduced in the ED. Two of
these, the frequency shift and the noise, lead to segments in
the dataset that should be excluded from further analysis.
Just before and after an abrupt change in frequency, there
is no ’pure’ waveform, which is why these segments in the
signals should be excluded from further analysis.

The goal of the modeling is to find these episodes in the
recorded signal by utilizing the NSE of each reconstructed
signal segment. In order to use the NSE as an inclusion
criteria, an NSE threshold that maximizes the number of
segments that contains nystagmus waveforms (true-positive
rate) and at the same time minimizes the number of
segments with the unwanted waveform modulations (false-
positive rate) is constructed. For this purpose, the receiver
operating characteristics (ROC) is used as follows:

C =
{

1, if NSEs > ε

2, if NSEs ≤ ε
(26)

A true positive (TP) is defined if D[n0] = . . . = D[n0 +
Nd − 1] = 1 and C = 1 in Eq. 26. A false positive (FP) is
defined if C = 1, where D[n0] = . . . = D[n0+Nd−1] = 0.
A true negative (TN) is defined if C = 2 and D[n0] = . . . =
D[n0+Nd −1] = 0 whereas a false negative (FN) is defined
if C = 2 and D[n0] = . . . = D[n0 + Nd − 1] = 1. In this
work, the length of each disturbance segment, Nd , equals 20
samples (200 ms).

The true-positive rate (TPR) is defined as

TPR = TP

TP + FN
(27)

and the false-positive rate (FPR) is defined as

FPR = FP

FP + TN
(28)

All segments that contain both undesired episodes (noise,
frequency, or waveform change) and desired episodes
(nystagmus oscillations) were excluded from the analysis.
The optimal ε was determined by

ε̂ = arg min
dε

(
dε

)
(29)

where

dε =
√

(1 − T PR(ε))2 + FPR(ε)2. (30)

Frequency analysis

The frequency estimation is a crucial part of the model
parameter estimation. If the frequency estimation is
poor, there is a risk that the bandpass filters (see
Section “Preprocessing”) use the wrong passband, which
in turn may lead to poor estimation of the other model
parameters. The bandpass filters have a theoretical binary
gain of 1 if the frequency is within the passband and 0 if the
frequency is outside. This means that if

|f̂1 − fw1| ≤ 1.3, (31)

the spectral energy is large. The filtering process is
evaluated by determining the percentage of segments for
each class of the two classes C = 1 and C = 2, where the
gain in Eq. 3 is equal to 1.

Amplitude analysis

The distributions of the amplitude ratios R̂2 and R̂3 are
estimated using kernel density estimation (KDE) and are
compared to the true values of R1 and R2. The KDEs are
estimated using a Gaussian kernel with a bandwidth 0.05.
If the modeling is accurate, it is expected that the energy of
the distribution for the accepted values are centered around
the true parameter values. At the same time, it is expected
that there is a larger variance of the estimated values for the
rejected segments.

Participant dataset analysis

There are three properties of the proposed model that
are desired to study using the participant datasets. The
first property is the ability to model different waveforms
from different individuals. The second property is the
ability to replicate results from one individual over multiple
recordings. The last property is the ability to differentiate
waveforms recorded from different spatial positions, i.e.,
fixation targets. The PD1 is used for evaluation of the first
property whereas the PD2 is used for evaluation of all three
properties.

In order to study these properties, the parameters of
the normalized waveform model are analyzed. Contrary to
the analysis performed for the ED, there are no reference
parameters to compare with for these two datasets. Instead
of comparing the parameter values to known reference
values, the distributions of the estimated model parameters
are studied. The parameters R̂2 and δ̂φ′′

2 for each recording
are used to compute a polar coordinate pair according to:

x = R̂2cos(δ̂φ′′
2 ),

y = R̂2sin(δ̂φ′′
2 ). (32)
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Fig. 4 Example signals from PD2. The signals represent recordings
from five different fixation positions (for one participant). The
coordinate pair after each signal describes at which fixation target
position the signals were recorded. The frequency and waveform of
the signal recorded at position (−16◦, 0◦) is different compared to the
other four

Using the ε estimated in Section “ROC analysis”, each polar
coordinate pair is classified as either accepted or rejected.

In order to study the spatial performance of the
normalized waveform model, a representative waveform
from each fixation target recording is reconstructed from
the model parameters. An example of the variance in
spatial waveforms from PD2 is illustrated in Fig. 4. The
representative waveform is reconstructed using the densities
of the f̂1, R̂2, R̂3, δ̂φ′′

2 and δ̂φ′′
3 parameters. For the first

three parameters, KDEs are estimated from all estimated
parameter values from the recording of one fixation target.
The parameter values maximizing each respective KDE
are used for the representative waveform. The KDEs were
estimated using a Gaussian kernel with a bandwidth of
0.5 for the estimation of f̂1 and a bandwidth 0.05 for
the estimation of the amplitudes ratios. For the angular
parameters, δ̂φ′′

2 and δ̂φ′′
3 , a circular histogram was used

instead. The bandwidth of the circular histogram was set to 5◦.

Results

The Results section is divided into two parts, where
the ED results are presented in Section “Evaluation
dataset” and results for PD1 and PD2 are presented in
Section “Participant data”.

Evaluation dataset

The results for the ED are organized in the following
structure: First, the choice of ε, determined by Eq. 29, is
presented. Based on this ε, the performance of the frequency
and amplitude ratio estimations are analyzed.

Choice of ε

The ROC analysis of ε is presented in Fig. 5. Out of
the blocks that were considered for the ROC analysis,
the prevalence of corrupted episodes (excluding amplitude
modulation) was 44 %. The total number of analyzed
segments was 4295.

The ε that minimizes the distance d in Eq. 30 is marked
with a circle. The corresponding TPR and FPR values
for ε = 0.18 are TPR = 0.97 and FPR = 0.07. The
interpretation of this is that 97 % of all segments of noise,
frequency, or waveform changes are detected and that 7 %
of all segments where a non-oscillating signal was detected,
are true nystagmus oscillations. This ε is used for all
subsequent analysis, both for the ED and the PD datasets.
All segments where ε > 0.18 are labeled as rejected (C =
1), and all other segments are label as accepted (C = 2).

Frequency and amplitude ratio estimation performance

The results show that out of the accepted segments, 99.7
% of the blocks satisfy the criterion in Eq. 31. Only 65 %
of the rejected segments satisfy this criterion. This means
that 99.7 % of the accepted segments are within the allowed
bandwidth of the bandpass filters.

The distributions of the estimated R̂2 and R̂3 are plotted
in Fig. 6. The distribution of R̂2 and R̂3 for accepted
segments (C = 2, dashed line) matches the known
references values well. The distribution of the estimated R̂2

and R̂3 for rejected segments (C = 1, full line) has a larger
variance compared to the accepted data. The peaks at the

ROC

 = 0.18
FPR=TPR

Fig. 5 Receiver operating characteristics. The false-positive rate
(FPR) is plotted against the true-positive rate (TRP) for various
values of the error threshold. The position on the ROC minimizing
equation (30) is plotted as a gray circle
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Fig. 6 KDE of R̂2 and R̂3 for the ED. The estimated distributions of
the amplitude ratios R̂2 and R̂3 are presented in Figs. 6a, 6b for the
two classes rejected segments (C = 1) and accepted segments (C = 2).

The vertical gray lines represent the known reference values for each
of the four waveforms. Note that the R3 value for the DJ-L and EF-R
are almost identical

positions of the known values are not clearly distinguishable
for the rejected segments.

Participant data

The percentage of rejected segments for the participant
datasets PD1 and PD2 are presented in Table 2. As can
be seen, the average percentage of rejected segments are
47 % and 29 % for PD1 and PD2, respectively. For one
participant in PD1, 90 % of the total number of segments
for the five fixation target recordings were rejected. The
average rejection rate of PD1 (47 %) data is similar to the
average rejection rate of the ED data (44 %).

The polar representations of R̂2 and δ̂φ′′
2 are plotted

in Fig. 7, where the top and bottom rows show example
recordings from PD1 and PD2, respectively. The rejected
segment parameter estimations are plotted as red squares
and the accepted segments parameters are plotted as blue
circles. Two general trends can be observed in these figures.
First, high rejection rates lead to a larger spread of values
within the unit circle. For example, all estimated values in
Fig. 7e (19 % rejection rate) are more concentrated than

Table 2 The proportion of rejected segments for ED, PD1 and PD2

Dataset Average Lowest Highest

ED 0.44 0.27 0.58
PD1 0.47 0.19 0.90
PD2 0.29 0.22 0.41

The lowest proportion of rejected segments is quite similar for the two
datasets PD1 and PD2. The highest proportion of rejected segments,
however, is quite different 0.9 and 0.41, respectively. The results are
presented on a participant level, meaning that the total proportion
of the rejected segments for one participant (five fixation target
recordings for each participant) is presented for each of the datasets

the parameter values presented in Fig. 7a (90 % rejection
rate). This means that the waveform morphology for the data
presented in Fig. 7e varies to a lower degree compared to
that in Fig. 7a. Note that Fig. 7j illustrates the aggregated
parameter estimations for all recordings in PD2. Second,
the repeatability of the two parameter values R̂2 and δ̂φ′′

2
appears to be high for high-quality signals. All of the
included parameter values from the PD2 dataset (the bottom
row) are positioned at approximately the same location
inside the unit circle. There is one important thing to note:
the R̂2 values have been limited to R̂2 ≤ √

2 in these
plots. In some cases, the R̂2 value is much larger than this
restriction. If this is the case, then the segment is most
often classified as rejected (C = 1). These results illustrate
the individual variation in waveform morphology during
one measurement and the reproducibility properties of the
model between repeated measurements.

The polar coordinate representation of R̂2 and δ̂φ′′
2 of

the signal shown in Fig. 1, is presented in Fig. 8. The
diamonds represent the oscillations after 5 s whereas the
crosses represent the oscillations up until 5 s. As illustrated
in Fig. 8, there is a relatively large variance of the parameter
values for the crosses compared to the diamonds. All
diamonds have similar radius and angle, whereas the crosses
are spread out over the entire unit circle. This indicates
that when there is an oscillatory pattern with a repetitive
waveform in the data, the model parameters are clustered
together. However, when there is no such pattern, the model
parameters diverge. These results may be used to determine
whether there is a stable oscillating pattern in the data or not.

The reconstruction of the waveforms for the PD2 data is
illustrated in Fig. 9. As is shown in Fig. 4 (the original signals),
the eye movement recorded at position (−16◦, 0◦) is signifi-
cantly different compared to the other four fixation recordings.
This is true for all the repeated recordings in PD2. The
change in nystagmus characteristics on the left side of
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Fig. 7 Polar coordinates from signals with varying rejection rates and
waveform morphologies. The plots above show the estimated R̂2 and
δ̂′′
φ2

plotted as polar coordinates for five recordings from PD1 (top
row) and four recordings and the aggregated estimations (Figure (j)
from PD2 (bottom row). The percentage in each caption shows the

overall exclusion rate for each participant recording. The parameters
have been estimated from a recording of the primary position (0◦, 0◦).
The blue circles represent the accepted segments and the red squares
represent the rejected segments

the screen for this patient has been captured in the signal
reconstruction (Fig. 9). This implies that the normalized
waveform model is useful for analysis of and comparison
between different nystagmus waveforms. These results are an
illustration of the spatial properties of the model.

In Fig. 10, examples of rejected cycles from the PD1

and PD2, are presented. The thick full line intervals in the
signals represent segments that are rejected from further
analysis. Figure 10a illustrates that segments that are too
non-stationary are rejected from analysis. The same type of

Fig. 8 Illustration of polar coordinates. The R̂2 and δ̂φ′′
h

values from
the signal in Fig. 1 are plotted as the radius and angle, respectively.
The parameters estimated from the first 5 s of the signal are plotted as
crosses, whereas the rest of the parameters are plotted as diamonds

pattern is found in Fig. 10b. In Fig. 10c, most of the signal
is rejected. This is likely due to a too low frequency of the
oscillation that is highly affected by the high-pass filter used
in the preprocessing stage.

Discussion

In this work, we have presented a method for assess-
ment of signal quality, referred to as the NSE, for use in

Fig. 9 Example reconstruction of the participant dataset (PD2)
waveforms. The reconstruction of the representative waveforms in
Fig. 4 for each of the five spatial positions. The x-axis represents time
and the y-axis represents the position of the fixation targets where the
data were recorded
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Fig. 10 Examples of different rejection rates. Three different levels of rejection rates are presented in Figs. 10a–c. The rejected segments are
plotted as thick lines. Note that the length of the different signals varies. The title states the rate of rejection for each signal

eye-tracking recordings from nystagmus patients. The NSE
is used to exclude data segments that are undesirable to
model due to for example recording artifacts. The nystag-
mus oscillations are modeled using a harmonic sinusoidal
model. The signal is divided into segments and the NSE
is assessed for each segment where a high NSE value sug-
gests that the segment should be excluded from further
analysis. The method is validated by analysis of simu-
lated signals, which have been synthesized from previously
reported waveform templates (Dell’Osso & Daroff, 1975).
Various frequency and amplitude modulations as well as
abrupt waveform changes and noise have been introduced
and the presented method is evaluated based on its ability
to identify these segments. The accuracy of the frequency
and amplitude estimations has been evaluated for the simu-
lated signals. Finally, model parameter estimation has been
evaluated on recordings from nystagmus patients.

There are four aspects of the method presented in this
work that are of significance for the modeling of nystagmus
oscillations. First, the NSE allows automatic detection of

segments that should be rejected from further analysis. As
illustrated in Fig. 6 and by the ROC computations, the NSE
is able to capture segments that represent the underlying
nystagmus oscillation, while rejecting segments that do not
contain an oscillatory signal. Note that the signal quality and
NSE discussed in this work are different compared to the
waveform quality presented in Dell’Osso and Jacobs (2002).
In that work, waveform quality is related to the results
obtained from a visual acuity test for different nystagmus
waveforms.

Second, the NSE allows the users of this method to
compare different segments to each other, and use the
segments that are of ‘hi gh quality’, .i.e., that has a low NSE.
This metric may be used to rate different segments in terms
of their quality, and focus the analysis to the segments with
the highest quality. Third, the harmonic model has proved
itself to be useful when reconstructing waveforms. As can
be seen in Fig. 9, the presented model is able to capture
differences in the waveforms of the signals observed in
Fig. 4. These results suggest that the model is appropriate
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for capturing various nystagmus waveforms, which means
that the method could be used as a clinical diagnostic tool.

Finally, the method does not need calibrated data in order to
work. This is a great advantage, since calibration of nystagmus
patients is often hard (Rosengren et al., 2019), and the results
of calibration are often unreliable. The method may also be
used as a preprocessing step in order to find segments with
a high signal quality to be used for calibration.

The frequency estimation results that are presented
in Section “Frequency and amplitude ratio estimation
performance” suggest that inaccurate frequency estimation
for segments with high NSE is 35 %, and at the same time,
that almost all (99.7 %) of the segments with a low NSE
provide accurate frequency estimates. This is important
since the method relies on accurate frequency estimations
in order to work properly. The filtering method presented
in Eq. 6 was developed specifically for nystagmus signals.
In PD1 and PD2, the frequency range of most oscillations
were between 3 and 6 Hz. It is, however, possible to find
nystagmus oscillations with frequencies outside this range
(Leigh & Zee, 2015). A possible alternative to the filter bank
approach presented in this work was presented in Buttu et al.
(2013). This method was developed for electrocardiogram
(ECG) analysis and would likely need to be adjusted for
nystagmus analysis.

The results of the ROC analysis suggest that the NSE
assessment works well to separate oscillatory segments
from corrupt segments. In this work, the optimum ROC
value was estimated by computing the distance to the top left
corner of the ROC coordinate system. The optimization of
ε may, however, be performed to maximize other desirable
features. For example, in order reduce the number segments
corrupted by noise considered for analysis, one may want
to use a lower ε. This comes to the cost of fewer segments
accepted for analysis and of more excluded segments with
nystagmus oscillations.

The waveform reconstruction of the data presented in Fig. 4,
and illustrated in Fig. 9, captures a representative waveform.
By using only three harmonics (five features) it is possible
to capture the main properties of the waveform. In this case,
such properties include the presence of a foveation period,
different frequency for the various waveforms, and the direction
of the fast phase. The reconstruction method used in this work
is based on the assumption that there is only one type of wave-
form (according to the classification by Dell’Osso and
Daroff (1975)) recorded at each fixation target, which is not
necessarily true. In order to use this method for reconstruc-
tion of recordings with multiple waveforms, an alternative
waveform reconstruction approach would be needed.

The examples representing the estimated R1 and δφ′′2
parameters as polar coordinates, Figs. 7 and 8, illustrate that
ε can be used to separate oscillations from disturbances.

There are a few things to take into consideration when
evaluating the performance of the presented method on real
data. First, it is not possible to know what the true parameter
values should be. In order to perform an evaluation of the
method on real signals, some assumptions are required.
In this case, the assumption is that for a recording of a
specific fixation target, the model parameters should be
reasonably close to each other for the accepted segments,
and they should be separated for the rejected segments.
Second, the rejection of segments should be justified. For
example, if only one segment is accepted, and all other
segments are rejected, then the spread of the parameter
values for the accepted segments would be zero. However,
this would likely not be useful, since there would be no
data left to analyze. As is illustrated in Fig. 7, the parameter
values of the accepted segments (blue circles) are more
concentrated to a certain position inside the unit circle
compared to the parameter values of the rejected segments
(red squares). As illustrated in Fig. 10, the rejection of
segments is focused on finding segments in the signal where
the waveform morphology is difficult to define, e.g., due
to a change in waveform morphology. Although there are
cases of nystagmus where the waveform changes, e.g.,
periodic alternating nystagmus (PAN), the time it takes for
a waveform to change in PAN is usually several minutes
(Leigh & Zee, 2015). The ability to detect waveform
changes is determined by the segment length, Nb, which in
this work equals 0.67 s, and the ε-value. As can be observed
in Fig. 10b, there are multiple waveforms embedded in
the signal, and the model is able to capture some of
the changing waveforms, although some are rejected. If
a shorter segment length is chosen, a better waveform
change resolution is obtained, however, this will lead to a
decrease in frequency estimation performance. If the ε is
increased, waveform changes will be easier to detect, but
at the expense of a higher inclusion rate of non-nystagmus
segments. Depending on the desired application of the
method proposed in this work, the values of Nb and ε could
vary from the suggestions made in this work.

There are some limitations in terms of the simulated
signals generated for the ED. The reconstruction of these
waveforms from the original work (Dell’Osso & Daroff,
1975) introduced some artifacts, especially ringing. This is
observed for the EF-R waveform in Fig. 2. While this may
look like a deviation from the original illustration, these
waveforms still serve their purpose for modeling. One of the
important characteristics of the nystagmus cycle is whether
a foveation period exists and the proportion of this period
relative to the cycle duration. These characteristics are well
captured by the model presented in this work.

Overall, this method can be used to model and detect
changes in waveform morphology, which may be useful
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information when evaluating different treatment strategies
for nystagmus patients, as well as for comparison of eye-
movement patterns between different patients.

Conclusions

The normalized segment error (NSE) and the normalized
waveform model (NWM) have been shown to capture
the most important features of the nystagmus oscillations.
The NSE produced good results for the simulated signals,
and the NWM is useful for describing real nystagmus
recordings. The method presented in this work may be
used to model entire nystagmus signals to be used as a
preprocessing step for other models or as a tool to classify
different nystagmus waveforms.
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Appendix

Template waveform reconstruction

1. The greyscale image is thresholded such that all pixels
with a greyscale value smaller than 100 is set to 0
(black) and all other pixels are set to 255 (white).

2. The one-dimensional signal is created by running
through the columns of the signal and assigning the
amplitude of each row the corresponding column value.

3. A four-point median filter is applied in order to remove
any outliers from the reconstruction.

4. For each waveform, the start and stop of one cycle is
determined by manual annotation by one of the authors
[WR].

5. The mean is subtracted from the extracted waveform
and subsequently divided by the maximum of the
absolute value.

6. The signal is then resampled to create a 10-s-long 5-Hz
signal using a sampling frequency of 1000 Hz.

7. Finally, the signals from step 6 were parametrized from
15 harmonics using Fourier analysis.

Table 3 Parametrization results from the reconstruction of the waveforms from Dell’Osso and Daroff (1975). The phases are presented in radians

Waveform a1 a2 a3 a4 a5 a6 φ1 φ2 φ3 φ4 φ5 φ6

Asymmetric pendular (AP) 0.93 0.26 0.07 0.02 0.01 0. 1.13 2.22 3.2 4.12 − 1.17 − 1.16

Bidirectional jerk - left (BDJ-L) 0.6 0.16 0.16 0.07 0.07 0.05 1.29 3.59 − 0.56 2.85 − 0.69 2.93

Bidirectional jerk - right (BDJ-R) 0.6 0.16 0.16 0.07 0.07 0.05 1.85 0.45 2.58 − 0.29 2.45 − 0.21

DJ-L 0.63 0.32 0.21 0.28 0.12 0.09 3.04 2.97 2.87 2.59 2.71 2.64

Dual jerk - right (DJ-R) 0.63 0.32 0.21 0.28 0.12 0.09 − 0.1 − 0.17 − 0.27 − 0.55 − 0.44 − 0.5

Extended foveation - left (EF-L) 0.64 0.28 0.21 0.16 0.12 0.1 2.49 2.69 2.69 2.58 2.52 2.5

EF-R 0.64 0.28 0.21 0.16 0.12 0.1 − 0.65 − 0.45 − 0.45 − 0.57 − 0.62 − 0.64

Jerk - left (J-L) 0.67 0.33 0.21 0.16 0.12 0.1 2.98 2.83 2.71 2.55 2.39 2.27

Jerk - right (J-R) 0.67 0.33 0.21 0.16 0.12 0.1 − 0.17 − 0.32 − 0.43 − 0.59 − 0.75 − 0.87

Pendular (P) 1.02 0.02 0.01 0.03 0.02 0.01 1.63 3.32 − 0.94 1.09 4.14 4.61

Pendular with foveating saccades (PFS ) 0.82 0.21 0.1 0.07 0.04 0.03 1.62 0.76 − 1.32 2.94 1.11 4.61

Pseudo cycloid - left (PC-L) 0.64 0.29 0.16 0.1 0.08 0.06 1.87 − 0.54 3.27 0.63 4.1 1.29

Pseudo cycloid - right (PC-R) 0.64 0.29 0.16 0.1 0.08 0.06 − 1.27 2.6 0.13 3.77 0.96 4.43

Pseudo jerk - left (PJ-L) 0.75 0.27 0.1 0.06 0.05 0.04 2.19 1.08 − 0.36 3.77 2.06 0.21

Pseudo jerk - right (PJ-R) 0.75 0.27 0.1 0.06 0.05 0.04 − 0.95 4.22 2.78 0.63 − 1.08 3.35

Pseudo pendular (PP) 0.88 0.07 0.14 0.05 0.05 0.03 1.02 − 0.84 2.0 0.02 2.69 0.56

PPFS 0.84 0.19 0.11 0.09 0.02 0.04 1.21 − 0.19 2.88 1.22 − 1.23 2.1

T 0.73 0.01 0.1 0.0 0.05 0.0 1.75 − 0.81 2.13 3.96 2.27 4.33
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