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Abstract

Background: Global commerce and human transportation are responsible for the range
expansion of various insect pests such as the plant sucking aphids. High resolution DNA markers
provide the opportunity to examine the genetic structure of aphid populations, identify aphid
genotypes and infer their evolutionary history and routes of expansion which is of value in
developing management strategies. One of the most widespread aphid species is the peach-potato
aphid Myzus persicae, which is considered as a serious pest on various crops in many parts of the
world. The present study examined the genetic variation of this aphid at a world scale and then
related this to distribution patterns. In particular, 197 aphid parthenogenetic lineages from around
the world were analysed with six microsatellite loci.

Results: Bayesian clustering and admixture analysis split the aphid genotypes into three genetic
clusters: European M. persicae persicae, New Zealand M. persicae persicae and Global M. persicae
nicotianae. This partition was supported by Fs;and genetic distance analyses. The results showed
two further points, a possible connection between genotypes found in the UK and New Zealand
and globalization of nicotianae associated with colonisation of regions where tobacco is not
cultivated. In addition, we report the presence of geographically widespread clones and for the first
time the presence of a nicotianae genotype in the Old and New World. Lastly, heterozygote
deficiency was detected in some sexual and asexual populations.

Conclusion: The study revealed important genetic variation among the aphid populations we
examined and this was partitioned according to region and host-plant. Clonal selection and gene
flow between sexual and asexual lineages are important factors shaping the genetic structure of the
aphid populations. In addition, the results reflected the globalization of two subspecies of M.
persicae with successful clones being spread at various scales throughout the world. A subspecies
appears to result from direct selection on tobacco plants. This information highlights the ultimate
ability of a polyphagous aphid species to generate and maintain ecologically successful gene
combinations through clonal propagation and the role of human transportation and global
commerce for expanding their range.
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Background

Myzus persicae (Sulzer) (Hemiptera: Aphididae) is an
exceptional species in many respects. It is extremely poly-
phagous, highly efficient as a plant-virus vector and one of
the most widespread insect pests, as it has been recorded
on all continents where crops are grown [1]. The species
has a typical aphid annual cycle (cyclical parthenogene-
sis), i.e., a sexual generation on peach during winter and
spring, alternating with many parthenogenetic (all
female) generations during spring on peach and on vari-
ous crop and non-crop annual plant hosts in summer and
autumn. The sexual generation may be lost either totally
(obligate parthenogenesis) or partially (functional parthe-
nogenesis when a few sexual forms are produced). Geno-
types with different reproductive strategies can occur
sympatrically in peach growing areas where populations
on summer crops consist of new recombinants that have
migrated from peach and old clones that survived the pre-
vious winter(s) parthenogenetically on winter hosts. Their
proportions depend on the availability of peach trees for
the sexual phase and the severity of winter which mostly
affects the parthenogenetical overwintering [2-4]. The
plasticity in the mode of reproduction is a great biological
advantage for M. persicae, because as a species, it is able to
adapt to different climatic conditions in terms of day
length and temperature [5]. Sexual reproduction provides
the advantages of cold hardy eggs and new gene combina-
tions in the subsequent generations. Asexual reproduction
has the advantage of maintaining successful gene combi-
nations and success in temperate regions where green
bridges are available. The effect of reproductive strategy
on the population structure of M. persicae has gained
much attention recently. Studies conducted in Australia
[4,6] and Europe [7,8] showed that clonal diversity was
greatest in populations capable of a sexual phase com-
pared to parthenogenetic ones. The most extreme case of
reduced variability has been documented from Scotland,
where the majority of the stable long-term population
appears to consist of only three genotypes [9,10].

Mpyzus persicae exhibits strong selection with respect to
host-plant adaptation on tobacco. Tobacco-feeding popu-
lations show consistent morphological differences from
those on other crops, regardless of the mode of reproduc-
tion or origin [11-13]. The subspecies name, Myzus persi-
cae nicotianae, has been given to the tobacco population
[14] and genetic differences have also been reported
between the specialist (nicotianae) and the generalist (per-
sicae) subspecies [15]. The two taxa experience multifari-
ous divergent selection, i.e., selection against cross-host
migrants and their subsequent generations, which is cru-
cial for the maintenance of host specialization [16,17]. In
outdoor choice experiments with winged females, it has
been shown that the two taxa have evolved an improved
host recognition mechanism which is based on chemical
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cues perceived prior to the initiation of feeding [17].
Gene-flow between the two taxa is reduced due to differ-
ences in the mode of reproduction (asexual vs. sexual) or
to the existence of prezygotic reproductive isolation mech-
anism in sexual populations [15].

Myzus persicae has developed multiple insecticide resist-
ance mechanisms which have spread to many parts of the
world due to aphid migration or to human transport
activity [18]. The international trade in plants offers con-
siderable potential for the widespread distribution of
insect pests [19] and M. persicae is ideally suited for this. It
is associated with many transportable crop hosts and its
primary host, the peach tree, has been spread throughout
the world. Knowledge of the inter-regional or inter-conti-
nental dispersal routes of M. persicae and the between
region genetic variation will be helpful in elucidating sev-
eral aspects of its ecology that offer explanations for the
spread and persistence in heterogeneous environments of
successful genotypes. This information could also help to
predict the evolution and spread of insecticide resistance
mechanisms at both regional and global scale, to locate
sources of host-plant resistance or biological control
agents and to make inferences about the relative fitness
and persistence of the pest. To our knowledge no other
study has attempted to examine the genetic variation of
M. persicae or the spread of certain genotypes at such a glo-
bal scale. Some studies have focused mainly on insecticide
resistance mechanisms. For instance, a phylogenetic anal-
ysis of a fragment of the para-sodium channel gene flank-
ing the kdr and super-kdr mutations in samples from
various countries and continents suggested multiple inde-
pendent origins of both mutations [20]. In other recent
studies the genetics of M. persicae was examined using
microsatellite DNA genotyping analysis, but not at a glo-
bal scale, mostly in populations of the same or of two
neighbouring countries [6-8,21]. In some cases certain
asexual genotypes were widespread and found on herba-
ceous crops from year to year [8,21].

In this paper we studied the genetic variation of M. persi-
cae at a global scale by examining worldwide samples. A
particular aim was to understand the population structure
and to identify the possible routes of global dispersal.

Results

Microsatellite analysis was carried out using four inde-
pendent runs of 96 samples per run. It was possible to
include some of the same samples on all four runs. The
accuracy of the capillary system for alleles known to be the
same was generally 1 bp or less. The ABI capillary genoty-
per produced slightly different size calculations for some
of the samples that had been analysed previously using
older ABI systems. The results were tabulated and used as
input for population genetic analysis programmes.
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Bayesian clustering analysis

The posterior probabilities (PPD) of the whole data set,
which included all the 197 parthenogenetic lineages, were
calculated with STRUCTURE software [22] for K values 1-
15 without any prior population information. Following
the pointers for choosing K provided in previous studies
[22,23], the best solution for K proved to be 3 in four
independent runs. There was a sharp increase of PPD val-
ues with K moving from 1 to 3. For K > 3 the gain of infor-
mation is rather less and exhibits gradually lower values.
A plateau appears to be reached at K = 3 (see Additional
file 1) and the information brought by the fourth K cluster
(and the following) is less important than the informa-
tion brought by the former three. It seems that splitting
the samples in three clusters represents the optimal subdi-
vision of the data and avoids unjustified and less inform-
ative oversplitting.

DISTRUCT software [24] was used to create an admixture
clustering plot of the 11 M. persicae predefined samples
(Figure 1). Each aphid lineage is represented as a vertical
bar partitioned into three coloured segments, the lengths
of which are proportional to the estimated membership
coefficients of the lineage in each of the three K genetic
clusters defined by STRUCTURE. The four independent
runs performed using STRUCTURE gave almost identical
plots (result not shown). Cluster 1 contained almost all
lineages from France and those from pepper and potato
from Slovenia (samples FRP and SLO in Figure 1). One
French lineage from weed showed a high membership
coefficient to Cluster 3. Most of the peach lineages from
eastern central Greece, some from peach in northern
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Greece and from UK crops (other than tobacco, termed
here crops), one from peach in Argentina and one from
pepper in Spain had high membership coefficients for
Cluster 1.

Cluster 2 is characterized by the lineages collected from
tobacco (sample WET except the third lineage, sample
GRT and the last two lineages in sample FES in Figure 1).
Most of the lineages from peach in northern Greece,
where tobacco is widely cultivated, showed a high mem-
bership coefficient for Cluster 2. Lineages belonging to
Cluster 2 were also found on crops in UK, Canada, Turkey
and Slovenia, on weeds in Chile and on peach in central
eastern Greece and Japan.

Cluster 3 is characterized by the lineages collected from
potato in New Zealand and Australia (sample AUO in Fig-
ure 1). High membership coefficient to Cluster 3 was
observed in various lineages from UK crops as well as in a
few lineages from crops in Slovenia, Canada and Japan
and weeds in Sri Lanka. Apart from the three samples
France (FRP), Greece tobacco (GRT) and New Zealand/
Australia (AUO) all the others were not pure and this is
also demonstrated in their mean membership coefficients
to the three clusters (Table 1).

Allele frequencies, Hardy-Weinberg equilibrium and
linkage disequilibrium

A moderate to high allelic diversity was found in the seven
populations analysed. Apart from the highly polymorphic
locus M49 (10-21 alleles) the number of alleles per locus
and population ranged from 3 to 15 (> 7 in 51% of the

AW
Figure |

FRP

WET MGP

CGP GRT

AUD  SC0 ENC 500 FES

Partition of genetic variation. Admixture clustering plots of the | | Myzus persicae samples examined. Number of clusters,
K = 3; Custer | = green colour, Cluster 2 = red colour, Cluster 3 = blue. Each aphid lineage is represented as a vertical bar
partitioned into K segments. The lengths of each segment are proportional to the estimated membership coefficients of the lin-
eage in each of the three K clusters. Lineages of different samples are separated by black lines. AMV = America (first from
peach in Argentina, second from weeds in Chile, the last two from pepper in Canada) (n = 4), FRP = France peach (four line-
ages from weeds) (n = 62), WET = Western Europe tobacco and pepper (the third lineage) (n = 6), NGP = northern Greece
peach (n = 20), CGP = central eastern Greece peach (n = 19), GRT = Greece (northern and southern regions) tobacco (n =
14), AUO = New Zealand (plus two lineages from potato and peach in Australia) potato (n = 23), SCO = Scotland other than
tobacco crops (n = 16), ENO = England other than tobacco crops (n = 9), SLO = Slovenia (the last lineage from Turkey) pep-
per and potato (n = 17), FES = Far East (first two from weeds from Sri Lanka, third from peach from Japan, fourth and fifth
from radish and potato from Japan and the last two from tobacco from Japan) (n = 7). The samples from peach in northern
Greece and Japan were from tobacco growing regions as was the sample from weeds in Chile. All the other non-tobacco sam-
ples were collected in non-tobacco growing regions.
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Table I: Average proportion of membership of each pre-defined
aphid population in each of the 3 K genetic clusters derived from
the Bayesian clustering analysis.

Populations! Cluster | Cluster 2 Cluster 3 n?
FRP 0.889 0.052 0.060 62
WET 0.034 0.845 0.131 5
NGP 0318 0.617 0.065 20
CGP 0.547 0.407 0.046 19
GRT 0.055 0.910 0.035 14
AUO 0.084 0.040 0.876 23
SCO 0.355 0.323 0.323 16
ENO 0.071 0314 0.616 9
SLO 0.669 0.185 0.146 16

IFRP = France peach plus four lineages from weeds; WET = Western
Europe tobacco, NGP = northern Greece peach, CGP = central
eastern Greece peach, GRT = Greece (northern and southern areas)
tobacco, AUO = New Zealand potato plus two lineages from
Australia from potato and peach, SCO = Scotland other than tobacco
crops, ENO = England other than tobacco crops, SLO = Slovenia
pepper and potato. 2n = number of lineages examined.

cases) in the other five loci. The average over all loci and
populations was 9.5 alleles/locus (for allele sizes see Addi-
tional file 2). Mean allelic richness (Rs) ranged among
populations from 7.2 to 11.8. Mean observed heterozy-
gosity over all loci ranged from 0.623 to 0.855, with no
significant differences among populations (P = 0.542).
The UK population had the largest values for every diver-
sity indicator (Table 2). Significant single locus deviation
from HW equilibrium was observed in 8 out of the 56
tests. The loci which showed deviations were M35, M40,
M49, M63 and myz9. In all cases the deviation was asso-
ciated with a positive Fg value, i.e., a heterozygote defi-
ciency. The multilocus test showed significant positive Fig
values in four out of the seven populations examined
(Table 3). Significant linkage disequilibrium was
observed in 14 out of the 105 locus pairs examined.

Fst and genetic distance analysis

The pairwise multilocus Fg; analysis revealed important
interpopulation variation and the global Fg; value was
0.086. Relatively high values were observed in compari-
sons between most of the European populations and
those from Australasia. High values were also observed in
most of the comparisons between the tobacco population
from Europe (EUT) and those from tobacco-free regions
(Europe: FRP, EUO, CGP; New Zealand/Australia: AUO).
However, the peach population from a tobacco-growing
region in northern Greece (NGP) showed mostly low Fg;
values when compared with the former two sample cate-
gories, suggesting similarity to both (Table 4). The UK
population showed low or moderate Fgp values in the
comparisons with each of the other regions including Aus-
tralasia suggesting it has links with all the major popula-
tions. The spatial population subdivision was also
supported with the single-locus test for allelic differentia-
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Table 2: Genetic diversity indices for the Myzus persicae
populations

Populations! ™M49 Mé3 M86 M35 M40 myz9 All

FRP 162 I 12 7 6 9 10.2
104 76 9.0 4.3 5.0 7.1 72

0.806 0.806 0.710 0.452 0.677 0.694 0.691

0.864 0.794 0839 0449 0764 0813 0.754

NGP 10 7 9 6 4 9 7.5
9.5 6.9 85 6.0 38 8.7 72

0.900 0.700 0.800 0.850 0.350 0.800 0.733

0.865 0810 0847 0763 0512 0855 0.775

CGP 13 5 I 7 4 6 77
12.3 5.0 10.4 7.0 4.0 5.7 74

0.684 0.684 0842 0684 0474 0526 0.649

0.861 0.644 0852 0797 0687 0713 0.759

EUT I 7 10 7 3 12 8.3
106 6.7 9.3 6.8 2.8 1.6 80

0.842 0579 0789 0474 0.158 0.895 0.623

0.903 0.734 0.856 0826 0.152 0922 0.732

AUO I 9 I 6 6 10 8.8
9.3 83 9.9 5.7 5.7 8.4 79

0.652 0.783 00913 0783 0913 0826 0812

0.807 0.776 0.849 0.757 0817 0.796 0.800

UKO 21 14 14 10 9 15 13.8
168 122 118 9.0 8.0 132 118

0913 0913 0957 0.609 0.783 0.957 0.855

0923 0.895 0.898 0831 0.787 0916 0.875

SLO 14 8 10 7 7 9 10.0
14 8 10 7 7 9 10.0

0.875 0563 0.688 0625 0688 0.688 0.688

0.909 0800 0.833 0683 0756 0.752 0.789

FRP* 16 I 12 6 6 9 10.2
10.5 7.8 8.7 4.1 5.1 6.9 5.4

0.793 0.845 0.707 0.448 0.655 0.690 0.690

0.858 0.805 0.834 0432 0763 0.806 0.750
NZO 9 9 I 6 6 8 8.2
82 85 10.0 5.8 5.8 7.2 7.6

0.619 0810 0905 0810 0952 0810 0818

0.779 0.768 0.849 0764 0821 0.783 0.794

IFRP = France peach plus four lineages from weeds; NGP = northern
Greece peach, CGP = central eastern Greece peach, EUT = western
Europe and Greece tobacco, AUO = New Zealand potato plus two
lineages from Australia from potato and peach, UKO = UK other than
tobacco crops, SLO = Slovenia pepper and potato. FRP* = refers to
FRP without the four lineages from weeds. NZO = refers to AUO
without the two lineages from Australia. 2First line number of alleles,
second line allelic richness (number of alleles independent of sample
size, i.e., based on minimum sample size of 16 individuals), third line
heterozygosity observed and fourth line heterozygosity expected.
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Table 3: Single and multilocus probability tests for deviations from Hardy-Weinberg equilibrium and Fg values.

Populations!' n? M49 Mé63 M86 M35 M40 myz9 Overall

FRP 62 +0.067 -0.016 +0.155 -0.006 +0.115 +0.148 +0.084
NS/NS3 NS/NS NS/NS NS/NS 0.009/NS 0.022/NS 0.004/NS

NGP 20 -0.041 +0.139 +0.057 -0.118 +0.321 +0.066 +0.056

NS/NS NS/NS NS/NS NS/NS NS/NS 0.044/NS NS/NS

CGP 19 +0.209 -0.064 +0.012 +0.144 +0.316 +0.267 +0.148
NS/NS NS/NS NS/NS NS/NS 0.041/NS 0.034/NS 0.0158/NS

EUT 19 +0.069 +0.216 +0.080 +0.434 -0.038 +0.030 +0.153
NS/NS NS/NS NS/NS 0.002/NS NS/NS NS/NS 0.022/NS

AUO 23 +0.195 -0.009 -0.077 -0.034 -0.120 -0.039 -0.014

NS/NS NS/NS NS/NS NS/NS NS/NS NS/NS NS/NS

UKO 23 +0.011 -0.021 -0.067 +0.272 +0.006 -0.045 +0.023

NS/NS NS/NS NS/NS 0.003/NS NS/NS NS/NS NS/NS

SLO 16 +0.039 +0.304 +0.179 +0.088 +0.093 +0.088 +0.132
NS/NS 0.008/NS NS/NS 0.020/NS NS/NS NS/NS 0.004/NS

FRP* 58 +0.076 -0.050 +0.153 -0.039 +0.143 +0.145 +0.081
NS/NS NS/NS NS/NS NS/NS 0.006/NS NS/NS 0.023/NS

NZO 21 +0.210 -0.056 -0.067 -0.061 -0.164 -0.035 -0.030

NS/NS NS/NS NS/NS NS/NS NS/NS NS/NS NS/NS

IFRP = France peach plus four lineages from weeds; NGP = northern Greece peach, CGP = central eastern Greece peach, EUT = western Europe
and Greece tobacco, AUO = New Zealand potato plus two lineages from Australia from potato and peach, UKO = UK other than tobacco crops,
SLO = Slovenia pepper and potato. FRP* = refers to FRP without the four lineages from weeds. NZO = refers to AUO without the two lineages
from Australia. 2n = number of genotypes examined. 3Probabilities for Heterozygote Deficit/Heterozygote Excess, NS = non significant.

Table 4: Multilocus Fgr pairwise values and probabilities for allelic
differentiation

88 FRP
_|: SLO
77 | NGP
EUT

FRP NGP  CGP EUT AUO UKO SLO

7 CGP FRP . * * * * * *
AUO NGP 0.070 - * * * * *
94 = UKO CGP 0061 0043 - * * * *
EUT 0.154 0.036 0.082 - * * *
—
0.05 AUO 0.6 0.118 0.140 0.167 - * *
Figure 2 UKO  0.065 0.045 0.070 0.075 0.053 - *
Phylogeny of Myzus persicae populations. Neighbour SLO 0036 0073 0057 0.146 0.118 0036 0.000
joining tree based on shared allele distances among seven
Myzus persicae populations. Numbers denote bootstrap per-
centages (from 1000 resamplings). FRP = France peach plus The numbers below the diagonal are the multilocus Fgy values. Above
four lineages from weeds; NGP = northern Greece peach, the diagonal are the probabilities for the absence of allelic
CGP = central eastern Greece peach, EUT = Western differentiation between populations are given (*P < 0.001). FRP =

— France peach plus four lineages from weeds; NGP = northern Greece
Europe and Greece tobacco, AUQ = New Zealand potato peach, CGP = central eastern Greece peach, EUT = Western Europe

(plus two lineages from Australia from potato a.nd peach, UK and Greece tobacco, AUO = New Zealand potato plus two lineages
= UK other than tobacco crops, SLO = Slovenia potato and from Australia from potato and peach, UKO = UK other than
pepper. tobacco crops, SLO = Slovenia pepper and potato.
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tion as all pairwise comparisons were significant (Table
4). The NJ tree based on the DAS genetic distance (Figure
2) resulted in two major clusters. The first cluster con-
tained the samples from New Zealand/Australia (AUO)
and that from UK (UKO). In the second cluster tobacco
lineages (sample EUT) and those from peach from the
tobacco-growing region in northern Greece (sample
NGP) formed a distinct group separated from the remain-
ing samples.

Discussion

The present study has revealed a broadly heterogeneous
genetic structure of M. persicae at a global scale as evi-
denced by high allelic differentiation and relatively high
Fgpvalues between certain populations, and the partition-
ing of genetic variation by the Bayesian clustering analy-
sis. The observed genetic variation can be attributed to
mode of reproduction, host-plant adaptation, differences
between regions and dispersal.

Genetic diversity and reproductive mode

A moderate to high genic diversity was found at the intra-
population level, as well as cases of both single and multi
locus deviations from HW equilibrium which was associ-
ated with heterozygote deficiency. The populations on
peach, which are expected to contain only or mostly cycli-
cal parthenogenetic genotypes, showed HW deviations in
one or both of M40 and myz9 loci. In the populations
from herbaceous hosts, which probably consist of a mix-
ture of obligate/functional and cyclical parthenogens,
some heterozygote deficiency was observed in M35, M49
and M63 loci. Heterozygote deficiency in microsatellite
loci appears to be common among aphid species (S. ave-
nae, France [25], R. padi, France [26]) including M. persicae
(France [7,21], Australia [4] and Greece [15]) and it has
been recorded in both sexual and asexual populations.
However, some studies have found less deviation from
HW equilibrium in sexual populations (M. persicae, Aus-
tralia [6] and M. persicae, Greece [15]). In populations
found on secondary hosts, HW deviation might be
expected due to the presence of asexual lineages. Asexual-
ity with strong clonal selection is likely to cause deviations
from HW equilibrium in polymorphic loci, such as micro-
satellite markers, via hitch-hiking and evolution in clonal
lineages. The direct effects of local clonal propagation
were mediated in the current study by removing clone
duplicates. In some cases, e.g., hl lineages of Rhopal-
osiphum padi (L.) in France [27] and M. persicae in Victoria
Australia [4], a heterozygote excess has been found in
asexual lineages. In R. padi this excess is attributed either
to ancient loss of sexuality and the consequence of accu-
mulated mutations or to a hybrid origin. In other cases,
however, asexual lineages showed heterozygote deficiency
and heterozygosity levels close to that of their sexual
counterparts (hIl R. padi lineages in France [27] and M.
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persicae in France [7]). This has been associated with a
recent loss of sexuality and the time has not been suffi-
cient to allow accumulation of mutations in asexual line-
ages. It has also been suggested that gene flow between
sexual and asexual functional parthenogens producing
males may be sufficient to prevent differences in heterozy-
gosity accumulating between reproductive modes. Previ-
ous studies have discussed reasons why R. padi [26] and
M. persicae [21] sexual populations show homozygous
excess (selection, clonal expansion, Wahlund effect,
inbreeding and other population effects). All of these
studies concluded that null alleles were not responsible
for the effects as these would have been detected during
the scoring process. Wahlund effect of sampling from dis-
tinct gene pools in the same population may contribute to
the homozygote excess at least in some populations that
have been examined here. In support of this, the Bayesian
analysis showed that some populations contain members
of more than one genetic cluster.

Partitioning of genetic variation — host-plant and region

In general, the high F¢values obtained in pairwise popu-
lation comparisons and the estimated overall value
(0.086) are among the highest reported in an aphid spe-
cies using microsatellite markers [25,26,28] and in the
same order as those reported in previous studies for M.
persicae populations from Europe [7,15] and Australia [6].

The Bayesian clustering and admixture analysis parti-
tioned the genetic variation into three clusters, European
(1), tobacco (2) and Australasian populations (3). Clus-
ters 1 and 3 correspond to the generalist M. persicae persi-
cae while Cluster 2 corresponds to the tobacco-adapted
subspecies M. persicae nicotianae. Cluster members are
spread over all continents and in most of the countries
from which populations have been examined. These
results support the hypothesis that the globalization of
agriculture will have an immediate impact on the evolu-
tion of pest populations. Previous studies have provided
more direct evidence of this through the spread of obli-
gate/functional parthenogenetic genotypes (see detailed
discussion below). In addition to anthropogenic activity,
M. persicae populations will be influenced by natural mat-
ing and biological processes according to geographical
region (Australasia vs. Southern Europe) and to tobacco
adaptation, i.e., nicotianae vs. persicae (tobacco vs. other
crops, tobacco or peach in tobacco regions vs. peach in
non tobacco regions). In general, the proportion of mem-
bership for the tobacco Cluster 2 was greater in tobacco-
growing areas. In addition, the genetic distance and the
Fgranalyses supported the separation of the tobacco aphid
populations as well as the regional population structure of
persicae. It is worth noting that the separation between the
peach population from eastern central Greece and the
equivalent from northern Greece, as revealed by Fg; and

Page 6 of 13

(page number not for citation purposes)



BMC Ecology 2009, 9:13

Bayesian analyses (membership coefficient of CGP to
European persicae: 0.55), was not as strong as observed in
a previous paper (membership coefficient of the equiva-
lent peach population to persicae cluster: 0.78, [15]). A
possible explanation is that the two peach samples from
Greece examined here (NGP and CGP) were a mixture of
genotypes of both subspecies at a different ratio according
to the region. An influx of the tobacco aphids (Cluster 2)
into the peach orchards of eastern central Greece associ-
ated with Cluster 1 and the converse in peach orchards in
northern Greece could be an explanation.

Tobacco-adapted lineages

Our results suggest that certain alleles are associated with
the genotypes of M. persicae feeding on tobacco. This can
be considered as defining a tobacco adapted aphid
'genome' perhaps encoding a series of important enzyme
variants for this specialisation as a result of continuous
selection on this plant. This phenomenon is associated
with the taxon M. persicae nicotianae and according to our
results it is widespread and appears to have moved into
countries where tobacco is not cultivated (UK and Slove-
nia) or the cultivation is limited (Canada). It is not sur-
prising to find nicotianae on other crops, since it is able to
colonize and reproduce on various herbaceous hosts
within the vast host range of M. persicae s.1. [16,29]. It is
likely that the source of the UK nicotianae genotypes is
Europe. Studies using the European suction trap network
[30] have shown that M. persicae s.1. in Europe can migrate
over southern England. Evidence that supports the conti-
nental origin of UK nicotianae is the identification in this
study of a red nicotianae genotype found in the UK and
also a tobacco region in southern Greece (and in Bulgaria,
Fenton unpublished data). We also noticed that none of
the M. persicae genotypes sampled historically in the UK
(e.g.. C, D, E I, ], Lin Fenton et al. [21,31], are amongst
the tobacco Cluster 2 aphids. This suggests that nicotianae
has arrived rather recently in UK. The ability of the
tobacco aphid to colonise new territories, even if its opti-
mal host is not present, has interesting evolutionary
implications. In addition to marker differences, it also dif-
fers physically from persicae. Generally a red nicotianae col-
our morph predominates in various parts of the world
[11] and red colour populations have been associated
with a complete or partial loss of sexuality [3,32]. The red
colour morph might have ecological advantages such as
absorption of solar radiation [33] and lower choice selec-
tion by parasitoids [34]. The red form present on tobacco
plants in North America may be more resistant to organo-
phosphorus insecticides than the green form [35]. It has
also been found that the red form of M. persicae s.1. mostly
has an A1,3 autosomal translocation, which is linked to
the E4-based resistance mechanism, whereas the same
translocation only occasionally appears in the green form
[11,36]. Lastly, parthenogenetic lineages of the red form
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of M. persicae s.]. have shown better performance on
tobacco plants than green ones [37]. It has been hypothe-
sised that adaptation to tobacco arose as a single evolu-
tionary event in sexual populations, probably in East Asia
where nicotianae was first reported as a pest [13,38]. The
tobacco-adapted population then established as perma-
nently asexual populations in various regions. In some
temperate regions the availability of peach favoured the
return to a yearly sexual generation. The Bayesian cluster-
ing and admixture analyses in the present study revealed
a genetic similarity of the nicotianae genotypes which
strengthens the hypothesis that the adaptation to tobacco
was a single evolutionary event.

The UK population and a potential link with Australasia

The UK population contained only 23 genotypes. Despite
this it was the most diverse by every measurement.
Approximately one third of the UK lineages belonged to
each of the three Clusters. Given that peach is not openly
cultivated in the UK, recent asexual populations appear to
mostly develop from successive waves of colonising
clones [9]. Surprisingly, unlike the rest of the European
populations, elements of the UK population were most
like the Australasian population. Taking into account the
admixture clustering plot, it seems that the UK is a good
candidate as a source of exchange with the gene pool of
the Australasian (mainly New Zealand) aphids. The earli-
est introductions of exogenous aphids to Australia and
New Zealand were likely to be associated with settlers
from Europe, especially from the UK. In support of this,
previous studies revealed many common microsatellite
alleles between M. persicae genotypes from Australia [6]
and Europe [39]. Europe does also seem to be the origin
of other non-indigenous Australasian aphid pest species
such as Elatobium abietinum (Walker) (Hemiptera: Aphidi-
dae) [40]. In the present study, parameters were similar or
higher when the New Zealand population were compared
with European populations. Moderate or high genetic
diversity has also been reported in previous New Zealand
[41] and Australian studies [4,6]. Theoretical and empiri-
cal work suggests a general pattern of loss of genetic diver-
sity during colonization [42,43]; this is because emigrant
populations are serially bottlenecked [44,45]. The sub-
stantial genetic variation observed in New Zealand and
Australian M. persicae suggests that the species has not
been bottlenecked and this could be attributed to sexual
reproduction [41,46] and the time that it has been there.
In Australia the species was first recorded in 1910 [47],
although it is believed to have existed there since at least
1893. This period is adequate for the mutation of new
microsatellite length alleles in asexual lineages [48] and
for sexual reproduction to give rise to diversified geno-
types. In the aphid Schizaphis graminum (Rondani) (Hemi-
ptera: Aphididae), which was introduced in the USA in the
1880s, sexual reproduction was considered as the main
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reason for the high diversity observed [49]. The UK M. per-
sicae population is believed to lack holocyclic forms and
therefore restoration of the full sexual cycle through muta-
tion or though breeding between clones with partial loss
of sexual reproduction (functional parthenogenesis) [50]
may have been required. Nevertheless, introduction of
sexual clones cannot be excluded. Another factor is possi-
ble multiple introductions of M. persicae in New Zealand.
Van Toor et al [41] reported that clones NZ2 and NZ3
appeared to be introduced as they contained many unique
alleles when compared to the remaining NZ population.
Additional support for the existence of multiple introduc-
tions was found when NZ3 was recognised as being a
common asexual M. persicae clone found in Scotland
(clone D in Fenton et al. [31]). Exchange of genotypes
between New Zealand and Australia could also occur as
demonstrated for Sitobion genotypes [51]. The two Aus-
tralian lineages examined in the current study had 17 of
the 21 alleles recorded in common with the New Zealand
population suggesting a recent common origin.

Clone dispersal

The present study revealed some genotypes that were sam-
pled many miles apart in different countries some of
which had been identified before, e.g., Clones B (UK and
Turkey) and D (UK and New Zealand) [31,41], and others
we identified for the first time in the current study e.g.,
Clone M in UK and Slovenia; a genotype found in France
and Greece, another in UK, Greece and Bulgaria and
another in southern Greece and Slovenia. These studies
have suggested that widespread clones appear to occur as
aresult of selection for insecticide resistance in agriculture
[9,31,41,52]. We have examined a relatively small
number of individuals in the M. persicae population, yet
we have detected these clones. This suggests that the
number of successful insecticide resistant genotypes is still
relatively limited, despite the possibility of resistance
genes combining into more and more genotypes in sexual
populations every year. In addition to the spread of resist-
ant clones, it has also been found that asexual tobacco
aphid lineages have spread between neighbouring coun-
tries such as Greece and Italy [8] and in the current study
a widespread nicotianae lineage was found in southern
Greece and Slovenia and another in Greece, UK and Bul-
garia. We also report here that a distinct tobacco lineage
has been found in Greece and Chile. A previous study
found only one microsatellite genotype of the tobacco
aphid in Chile and it seems likely that the lineage we have
identified is the same as that reported by Fuentes-Contre-
ras et al. [32]. These studies suggest an old world origin of
southern American nicotianae as the subspecies exhibits
genotypic variation in Europe [8], but none in Chile [32].
During the last decade several studies have revealed that
the spread of certain genotypes over distant geographical
areas is a common phenomenon among aphid species
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(e.g., Sitobion [51], S. avenae [25,28,53,54]) including M.
persicae [4,8,31,41]. The rapid spread of the M. persicae s.1.
lineages in different countries and continents should be
attributed mostly to human transport and commerce.
While winged aphids may be transported very rapidly
over great distances by low level-jet streams [55] other
studies have found that particular genotypes remain local-
ised [10]. The widespread lineages reported in the current
work probably represent asexual genotypes reproducing
parthenogenetically all-year-round. This trait enables
them to spread because their reproduction will not be
altered by temperature, day length or the requirement for
peaches to complete their life cycle. These clones might
represent 'general-purpose genotypes' [56] with broad
ecological tolerance, which predominate in fluctuating
environments through selection, although anthropogenic
activities, e.g., insecticide selection pressure might also be
involved [9,52].

Conclusion

The present study is the first attempt to elucidate the pat-
tern of global genetic variation of M. persicae s.l. using
high resolution DNA markers. Figure 3 is a representation
of some of the processes that influence population struc-
ture. The populations of M. persicae in and around peach
orchards exhibit considerable genetic diversity and in
some cases population parameters are close to those of
sexually reproducing insects (Figure 3a). Geographical
separation does create discrete gene pools as exhibited by
the separation of New Zealand and European sexual pop-
ulations. Sympatric speciation has generated a tobacco
race of M. persicae and this process could clearly have been
aided by agriculture with monocultures selecting tobacco
adapted genotypes (Figure 3b). In addition to selection by
tobacco, selection by insecticides is likely to have played a
role in determining population structure. In the early
stages of the evolution of resistant genotypes inbreeding
could occur, reducing population diversity (Figure 3¢). In
all of these cases, any well adapted genotype could bypass
sexual reproduction to become clone. The most successful
of these asexual lines will become superclones spreading
naturally as well as being aided by commercial activities
(Figure 3). Long lived superclones will accumulate muta-
tions. Examples of these superclones can be found in both
nicotianae and persicae lineages. Evidence was reported of
movement of the tobacco aphid from Europe to S. Amer-
ica and the spread of some persicae lineages to geographi-
cally distant regions (Europe to New Zealand). UK
populations consist of asexual clones originating from
diverse sources. This information highlights the ultimate
ability of polyphagous aphids to adapt to different envi-
ronmental conditions and the role of commerce in the
globalization of insect pests.
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Figure 3 (see previous page)

Processes affecting population structure in Myzus persicae. The figure illustrates processes that influence the genetic
structure of the aphid population at local, regional and global scale, with emphasis on selection due to host-plant and insecti-
cide pressure. A. Represents the basic population of M. persicae living in and around peach trees and orchards. The emerging
spring population is diverse and this diversity is maintained because no lineage dominates during the summer months and gam-
etes have equal opportunities for mating at the end of the return migratory phase. These populations can produce asexual
clones from time to time. B. Represents the situation where tobacco cultivation is close to peach trees. Tobacco selects for
particular gene combinations and this in turn carries alleles associated with these genes. Over time, tobacco selection pressure
has generated breeding barriers and a distinct aphid form. The tobacco form shares many characteristics of the main group
being capable of growing on a range of host plants and globalisation. C. Represents the process that occurs when an insecticide
resistance allele occurs in a population for the first time. There will be an immediate advantage for individuals in a clone carry-
ing this resistance allele and within one season their numbers would increase rapidly. At the end of that season a sexual lineage
will return to peaches in vast numbers, where it will mainly inbreed. Over time two events are likely, that the resistance allele
will spread into more genotypes and that some of these genotypes will become asexual clones and then superclones capable of
globalisation.

Table 5: Myzus persicae lineages used in the study.

Region Collection Year (month) Locality Crop Colour Total
Green Red

Canada 2005 (iv) - Pepper | | 2
Argentina 1993 (xii) - Peach | |
Chile 2005 (ix) El molle Weed | |

UK (Scotland) 1995, 2001-04 Various B sprt, cabbage, oilseed rape, 13 3 16

potato
UK (England) 1987, 1991, 1997, 1999, Lincs, Yorks, Kent B sprt, cabbage, oilseed rape, 7 2 9
2002-03 Herts, Suffolk, Cambs, Norfolk sugar beet, potato

North Greece 2006 (vi) Meliki Peach 20 0 20
North Greece 2006 (vii, viii) Meliki Tobacco 8 | 9

Eastern central Greece 2006 (vi) Lechonia Peach 19 19
South Greece 2005 (vi) Naphplion Tobacco I 4 5

France 2001, 2003 Bellegarde, Nimes Peach 53 5 58
France 2001 Nimes Weeds 4 4
Germany 1999 Tobacco 2 2

Slovenia 2006 Ljubljana, Krosko Pepper, potato 16 16
Spain 1999 (vii) Madrid Tobacco I 2 3
Spain 1992 (vii) - Pepper | |
Turkey 1998 - Pepper | 0 |
Japan 1993 (v) Kyoto Peach | |
Japan 1982 (vii), 1997 (vii) Kyoto, Funehiki tobacco 2 2
Japan 1995 (V), 2001 (x) Kyoto Radish, potato | | 2

Sri Lanka 2006 Sri Lanka Weed 2 2
Australia 2005 - Peach | |
Australia 2005 - Potato | |
New Zealand 2005 Lincoln, Christchurch, Dorie, Potato 21 21

Pukekohe, Rakaia, Ashburton,
Pukekohe
Total 173 24 197
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Methods

Aphid samples

The data set consisted of 197 aphid lineages collected
from 14 countries in four continents mainly from peach
and tobacco but other herbaceous hosts were included
(Table 5). To obtain these unique genotypes, thousands of
individuals had been sampled and analysed in the various
study areas over a ten year period. The samples from
peach in northern Greece and Japan were from tobacco
growing regions as was the sample from weeds in Chile.
All the other samples were collected in non-tobacco grow-
ing regions [see 21 (France), 41 (NZ), 10(UK)]. The sam-
ples from herbaceous crops from UK, Slovenia and
southern Greece were from non peach-growing areas and
they should consist mostly of asexual lineages. Most line-
ages were reared parthenogenetically under laboratory
conditions and specimens from each lineage were kept at
-80°C or in tubes filled with absolute ethanol until mic-
rosatellite analysis. Some of the samples consisted of a
single aphid collected directly from the source tree or
plant and stored as above.

In some cases the numbers of individuals representing an
area were low and in these cases samples collected from
the same region or continent and host, as well as data
between years, were pooled for some of the analyses (i.e.,
genetic diversity indices, Hardy-Weinberg equilibrium,
linkage disequilibrium, F¢yand genetic distance analysis).
Samples from crops other than tobacco were also com-
bined (termed here 'crops'). Both unique and multicopy
genotypes were included in the analysis, but with only
one copy of each multicopy genotype per population in
order to avoid artificial deviations from the Hardy-Wein-
berg and linkage equilibria within populations and dis-
torted estimates of allele frequencies [57].

DNA extraction and microsatellite genotyping

Details on DNA extraction, microsatellite loci amplifica-
tion, analysis and visualization are present in a previous
paper [58]. Six microsatellite loci; M35, M40, M49, M63,
M86 and myz9 [59], were chosen on the basis of their res-
olution (based on allele numbers of 12, 11, 35, 19, 21 and
18, respectively, giving 2.43 x 10'3 possible combina-
tions). Many of the lineages had been analysed in earlier
work [e.g., [21]]. Therefore, to eliminate any doubt over
allele size scoring due to technical modifications, the
entire collection of genotypes was analysed again for this
study using exactly the same equipment and fluoro-
chrome primers.

Bayesian clustering analysis

A Bayesian clustering method [22] as implemented in the
program STRUCTURE version 2.2 was used to infer the
number of K unknown genetic populations in which the
sampled multilocus genotypes can be split. This model-
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based Bayesian method also assigns a probability that the
individuals belong to a certain population or to more
than one population if they are admixed. In this analysis
all 197 lineages were used (see Figure 1, Table 5). The data
set was analysed using the admixture and uncorrelated
allele frequencies models and K values 1-15 without
incorporating population information. Four independent
runs for each K were conducted with 100,000 iterations
after a burn-in period of 20,000 iterations in each run.

Allele frequencies, Hardy-Weinberg equilibrium and
linkage disequilibrium

The sample of American and Far East aphids was not
included in this analysis due to the low number of the
individuals examined. In addition, the samples from Scot-
land (SCO) and England (ENO) were combined in one
sample (UKO) as well as the European samples from
tobacco (pooled sample are EUT). Therefore, seven popu-
lations were analysed. Allele frequencies, mean number of
alleles per locus, observed (Hg) and expected (Hg) heter-
ozygosity and inbreeding coefficient (F5) were calculated
using GENEPOP version 4.0 [60] (see also http://gene
pop.curtin.edu.au/). Allelic richness (Rs = number of alle-
les independent of sample size) was also calculated using
FSTAT version 2.9.3.2 [61], see also http://www?2.unil.ch/
popgen/softwares/fstat.htm). Differences in the average
observed heterozygosity over all loci among populations
were examined using the STRUC program of GENEPOP v.
3.4, which computes an unbiased estimate of the exact P
value of a probability test of homogeneity on R x C con-
tingency tables using a Markov chain method [62]. Devi-
ation from Hardy-Weinberg (HW) equilibrium at each
locus was examined separately using the U test [62] as
implemented in GENEPOP version 4.0. A Markov chain
(MC) method is used for the unbiased estimation of the
exact P value of this test [63]. A multisample score test
[62], which is performed by MC algorithm, was used as a
global test across loci. Independence of microsatellite loci
was examined with the G log-likelihood based exact test
[64], which uses a simple modification of the MC algo-
rithm described in Raymond & Rousset [62]. The latter
two tests were performed using GENEPOP version 4.0.

Fst and genetic distance analysis

Population structure was also assessed by calculating mul-
tilocus Fgp values [65] for pairwise comparisons of sam-
ples using GENEPOP version 4.0. In addition, allelic
differentiation between samples was examined using
GENEPOP version 4.0. The test statistic is the G log-likeli-
hood based exact test. In these analyses seven populations
were used. To further investigate the genetic relationship
between populations, a neighbour joining (NJ) tree based
on the allele shared distance (DAS) [66] was constructed
using the software POPULATIONS version 1.1.28 (http://

bioinformatics.org/~tryphon/populations/). DAS  dis-
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tance counts the number of different alleles between mul-
tilocus genotypes. Bootstrap values were calculated by
resampling loci, and are presented as percentages over
1000 replications.
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