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Abstract

Understanding how neural systems integrate, encode, and compute information is central to understanding brain
function. Frequently, data from neuroscience experiments are multivariate, the interactions between the variables
are nonlinear, and the landscape of hypothesized or possible interactions between variables is extremely broad.
Information theory is well suited to address these types of data, as it possesses multivariate analysis tools, it can
be applied to many different types of data, it can capture nonlinear interactions, and it does not require
assumptions about the structure of the underlying data (i.e., it is model independent). In this article, we walk
through the mathematics of information theory along with common logistical problems associated with data type,
data binning, data quantity requirements, bias, and significance testing. Next, we analyze models inspired by
canonical neuroscience experiments to improve understanding and demonstrate the strengths of information
theory analyses. To facilitate the use of information theory analyses, and an understanding of how these analyses
are implemented, we also provide a free MATLAB software package that can be applied to a wide range of data

from neuroscience experiments, as well as from other fields of study.
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ignificance Statement

A primary function of the brain is to process and store information. Therefore, it makes sense to analyze the
behavior of the brain using information theory, a statistical tool especially designed to quantify information.
Furthermore, given improvements in data-gathering techniques, the power of information theory to analyze
large, complex data sets is particularly relevant. In this tutorial, we provide a thorough introduction to
information theory and how it can be applied to data gathered from the brain. Our primary audience for this
tutorial is researchers new to information theory. We provide numerous intuitive examples including small
abstract systems, small and large brain circuits, systems from famous neuroscience experiments, and free
ksoftware to implement all calculations and models presented herein. j
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Introduction
The brain has numerous levels of interaction ranging

from gene networks that control cell function to neural
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circuits that control behavior. While the study of each of
these levels requires highly specialized data acquisition
approaches, they are similar in that they all require the
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assessment of interactions among numerous variables
that fluctuate over time. Improved data acquisition and
computing technologies have produced more complex
and exhaustive insights into neural processing. Data from
neuroscience experiments are increasingly multivariate,
such as simultaneous recordings of many neurons or
voxels. Moreover, experiments that simultaneously ac-
quire data of different types are common. For instance, an
awake behaving in vivo calcium imaging experiment with
a stimulus and a behavior possesses at least three distinct
types of data (physiologic, behavioral, and stimulation
data). This improvement in data quality and scale pres-
ents a challenge: how can sometimes subtle, yet impor-
tant, interactions among variables and the computations
they perform be optimally captured? Answering this ques-
tion is further complicated by the fact that data from neuro-
science experiments are frequently noisy and represent
systems with nonlinear relationships. Finally, it is often very
difficult to develop hypotheses for rules or models that
govern the interactions between the numerous variables in
the data that can be tested in a clear and straightforward
fashion. Information theory (Cover and Thomas, 2006;
Stone, 2018) represents a valuable tool to address these
increasingly common data analysis concerns.

Because of its general applicability, information theory
has been widely used in neuroscience (Rieke et al., 1997;
Borst and Theunissen, 1999; Victor, 2006; Quiroga and
Panzeri, 2009; Dimitrov et al., 2011; Timme et al., 2014a;
Wibral et al., 2014a, b). For instance, research has fo-
cused on analyses of electroencephalography (EEG),
magnetoencephalography (MEG), and functional MRI
(fMRI) data (Jeong et al., 2001; Lizier et al., 2011; Vicente
et al., 2011). Research has also focused on trial-based
data (Wollstadt et al., 2014; Gomez-Herraro et al., 2015;
Asaad et al., 2017) and single-trial time-averaged analy-
ses (Wibral et al., 2013; Timme et al., 2014b, 2016; Nigam
et al., 2016). Two particular areas of interest include stud-
ies of connectivity (Honey et al., 2007; Ito et al., 2011;
Timme et al., 2014b, 2016; Nigam et al., 2016; Wollstadt
et al., 2017) and sensory encoding (Bialek et al., 1991;
DeWeese and Meister, 1999; Brenner et al., 2000; Panzeri
et al., 2001; Butts, 2003; Butts et al., 2007). Throughout
these analyses, researchers have used continuous data
(e.g., BOLD signal and voltage) as well as discrete data
(e.g., action potentials). These studies have produced a
wide range of important and interesting results that have
contributed to the advancement of neuroscience.

In this article, we present a general overview of com-
monly used information theory metrics along with appli-
cations to several neuroscience systems. We sought to
provide an easily accessible discussion of information
theory for researchers new to the field. We provide nu-
merous citations to more advanced reviews and espe-
cially important texts to address topics not covered
herein, though we do not present a wide review of all the
neuroscience experiments that have used information
theory.

The discussion of the mathematics surrounding informa-
tion theory includes sections on probability distributions (in-
cluding issues surrounding binning, continuous versus
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discrete data, and single trials versus trial-based data), nu-
merous information theory measures (along with simple gen-
eral examples to gain intuition), significance testing, the
methods to provide models that describe the interactions of
the underlying variables, and the simulations used in the cre-
ation of the neuroscience examples. To foster continued use of
information theory in neuroscience, we also include a MATLAB
software package (the Neuroscience Information Theory Tool-
box; https://github.com/nmtimme/Neuroscience-Information-
Theory-Toolbox).

Finally, we apply information theory analyses to simu-
lated data generated from simple neuron models in a wide
variety of circumstances, including numerous simple cir-
cuit models, a model of sensory habituation, a model of
movement direction encoding by primary motor cortex
neurons, a model of location encoding by place cells, and
a model of light stimulus response by center-surround
retinal ganglion cells. These simulations focused on neu-
ral spiking data. However, the information theory analyses
discussed herein and the accompanying software can be
applied to a wide variety of neuroscience data including
blood oxygen level-dependent (BOLD) signal data from
fMRI studies, fluorescence data from calcium imaging
studies, voltage signals from extracellular, EEG, or MEG
studies, animal behavior data, genetic data, or molecular
concentrations.

Materials and Methods

The big-picture view of information theory
What is information?

What, specifically, do we mean when we talk about
“information”? Clearly, information can mean many differ-
ent things in different contexts (Adriaans, 2012), but in
neuroscience, information is frequently invoked when dis-
cussing information encoding (i.e., stimulus encoding),
information processing (i.e., decision-making), and infor-
mation storage (i.e., memory). In our interactions with
other scientists, we have found that a lack of understand-
ing about the meaning of information is often the most
significant impediment to using information theory analy-
ses. In large part, this article was written with clarifying
this issue in mind. If you have ever found yourself saying
things like, “They measured an information of 0.05 bits.
What does that mean?”, we hope you find some satisfying
resolution in this article.

In information theory, one variable provides information
about another variable when knowledge of the first, on
average, reduces uncertainty in the second (Cover and
Thomas, 2006). (To be more precise, this is called “mutual
information,” but we’ll stick with “information” for now.)
For instance, suppose you and | meet at a conference. |
turn my back to you and flip a fair coin. Then, you ask me,
“Did the coin come up heads?” | truthfully tell you, “Yes.”
The word | said reduced your uncertainty in the state of
the coin (you didn’t know the result of the coin flip, but
now you do), so my message contained information about
(encoded) the coin’s state. It turns out that because the
state of the coin has two equally likely values (50%
chance heads and 50% chance tails), my message con-
tained 1 bit of information. As we’ll see below, bits can be
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thought of as the average number of yes/no questions
required to ascertain the value of a variable. In the case of
a coin, a yes/no answer to one question from you (e.g.,
“Did the coin come up heads?”) will allow you to deter-
mine the state of the coin.

Similar to a coin flip, in a neuroscience context, we can
measure how much information a neural variable (analo-
gous to my message) contains about a stimulus (analo-
gous to the coin flip result), for instance. Unsurprisingly,
information theory analyses can become far more com-
plex (e.g., what if | lie to you sometimes, what if there are
two coins, or what if we do not have whole bits?), but the
crucial point is that information is the reduction in uncer-
tainty. If one variable provides information about another,
knowing the state of one variable on average allows you
to better predict the state of the other than you would
have if you did not know the first variable.

Why use information theory?

What makes information theory a useful analysis tool in
neuroscience? First, information theory is model indepen-
dent. In other words, it is not necessary to hypothesize a
specific structure to the interactions between variables in
a data set to use information theory. When applying an
information theoretic measure to data, the result is not a
parameter in a model (e.g., synaptic strength), but rather
a number that quantifies some relationship within the
data. The model-free character of information theory al-
lows a much wider range of interactions and phenomena
to be quantified than could be achieved with a model-
dependent approach that is limited by the assumed
model. To be clear, information theoretic analyses typi-
cally require some assumptions about the data. Fre-
quently, it is assumed that the system is not changing
throughout observations (e.g., a neuron that encodes a
stimulus at the beginning of the experiment will do the
same at the end), though allowances can be made to
accommodate such changes. Furthermore, parameters
such as bin sizes involved in discretization are chosen in
the analysis, and the choice of these parameter can affect
final results. However, the underlying relationships be-
tween the variables under study need not follow a pre-
defined model.

Second, information theory can be applied to any mix-
ture of data types. Information theory is capable of pro-
ducing meaningful measurements when the data are
originally any combination of, for instance, action poten-
tials, BOLD signals, voltage values, animal positions,
stimulus light position, drug dosages, or lever presses.
The original data can be continuous or discrete, and the
data can be gathered over a single trial or via repeated
trials. Furthermore, the original data can be first pro-
cessed via a wavelet transform (Hramov et al., 2015) or a
dimensionality reduction technique (Cunningham and Yu,
2014), for instance, and then fed into an information the-
ory analysis. This is especially important for recent studies
of interactions across different hierarchical levels within
the brain (e.g., interneuron to inter—brain region commu-
nication).

Third, information theory is capable of detecting linear
and nonlinear interactions. Given the prevalence of non-

May/June 2018, 5(3) e0052-18.2018

Reviews 3 of 40

linear phenomena in neuroscience (the action potential
being a central example), this ability is especially impor-
tant.

Fourth, information theory is naturally multivariate. It
possesses several metrics designed to quantify the be-
havior of systems with any number of variables, from
single-variable systems to systems with very large num-
bers of variables (at least in principle). The information
theory measures that are easiest to understand and apply
to experimental data tend to involve one to three vari-
ables, so we will primarily discuss multivariate measures
up to three variables in this tutorial. Importantly, given
recent advances in recording large numbers of neural
variables (e.g., large multielectrode arrays, calcium imag-
ing, fMRI, etc.), the multivariate analysis capabilities of
information theory are especially relevant.

Fifth, information theory produces results in general
units of bits. This facilitates straightforward comparisons
between cells, brain regions, animal strains, tasks, mod-
els, or subjects, though possible biases must be consid-
ered in such comparisons. This ability to measure effects
in bits allows for direct evaluations of effect sizes.

As with any analysis, information theory also possesses
some disadvantages in comparison to other methods (see
What can information theory tell you?). However, the abil-
ity of information theory to detect a wide range of inter-
actions and structure in large complicated systems is
especially valuable at this time in neuroscience. There-
fore, we feel that additional resources, such as this tutorial
and the accompanying software, are critical to communi-
cate the strengths and weaknesses of information theory
to the neuroscience community.

What can information theory tell you?

While information theory is a powerful tool for highlight-
ing interesting interactions in a wide variety of systems, it
is important to distinguish the types of questions informa-
tion theory can and cannot answer. The result of an
information theory analysis is a number or set of numbers
that can describe many aspects of the system under
study. For instance, it is possible to quantify the uncer-
tainty of one or more variables and dependencies be-
tween variables, as well as the influence of one or more
variables on one or more other variables (Cover and
Thomas, 2006). Often, these sorts of analyses are valu-
able because they can quantify phenomena like encoding
(e.g., how much information a neuron provides; Bialek
et al., 1991; Brenner et al., 2000) and complex encoding
relationships (e.g., how much information neurons A and
B provide together; Bettencourt et al., 2008; Timme et al.,
2016).

Though the results of information theory analyses are
valuable for certain types of questions, information theory
analyses are not capable of producing models that de-
scribe how the system works. For instance, if an informa-
tion theory analysis yields a result that neuron A and
neuron B share 0.05 bits of information, little is learned
about this system of neurons beyond the fact that their
activities are related to a certain extent. For instance, the
information theory analysis does not tell us if the neurons
are related via an excitatory or inhibitory interaction. Cru-
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Table 1. Marginal and joint probability distributions for an example system of two dependent coins.

¢, = heads
c, = heads p(c, = heads, ¢, = heads) = 0.4
c, = tails p(c, = heads, c, = tails) = 0.1
Marginal distributions p(cy = heads) = 0.5
for coin 1

c, = tails Marginal Distributions
for Coin 2
p(c, = heads) = 0.5

p(c, = tails) = 0.5

p(c, = tails, c, = heads) = 0.1
p(c, = tails, c, = tails) = 0.4
p(cy = tails) = 0.5

The joint distribution describe the likelihood for each possible combination of the two coins. The marginal distributions describe the likelihood for each coin
alone. Marginal distributions can be found by summing across rows or columns of the joint distribution (Eqn. 1).

cially, information theory can be used to restrict the space
of possible models (e.g., various information theory quan-
tities can be used to answer questions related to the
direction of interactions between variables: does neuron A
drive neuron B or vice versa?), but information theory
does not produce a model in terms of the original vari-
ables that were fed into the information theory analysis.
Information theory does not produce a model with spike
times, voltage values, spike rates, or any other physical
quantity.

We feel this point is of great practical importance when
designing an information theory analysis. If you want to
build a model, information theory will be a helpful tool to
organize your model by, for instance, limiting which
variables are in your model and giving you an idea of
what sorts of interactions will be necessary between
the variables. However, if you desire a model, additional
model-building and -fitting techniques will be neces-
sary, because an information theory analysis will not
eliminate all possible models (James and Crutchfield,
2017). In this article, though we will briefly discuss
some of these models, we will not focus on model
building because it is highly system specific. If your
ultimate goal is model building, our goal in this article is
to provide you with information theory tools to help you
guide your model building.

Probability distributions and initial analysis steps
What is a probability distribution?

Fundamentally, information theory makes statements
about the shapes of probability distributions. Thus, before
discussing information theory measures, it is first neces-
sary to discuss probability distributions. To establish in-
tuition, we will primarily focus on examples involving coins
and abstract variables because these are more straight-
forward and the math often works out to be more aes-
thetically pleasing. As we will see, neurons rarely encode
1 bit of information precisely, but systems of coins can
easily be made to produce whole bits of information.
However, the tools we will discuss can just as easily be
applied to neuroscience data, as we will see below.

A probability distribution is simply a distribution that
describes the likelihood of certain outcomes of a random
variable or group of variables. Probability distributions
[notated as p(A)] can be discrete (“probability mass func-
tion”) or continuous (“probability density function”). They
can describe one variable or multiple variables (referred to
as a “joint probability distribution”). For instance, if we
call p the probability mass function for a fair coin (c is the
state of the coin), then p(c = heads) = 0.5 and p(c =
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tails) = 0.5 because a fair coin will land heads side up 50%
the time when it is flipped and tails the other 50% the
time. We use a discrete probability distribution to describe
a flip of a coin because its states are discrete. It can only
be heads or tails, not some proportion of heads and
tails. A biased coin might have a probability distribution of
p(c = heads) = 0.75 and p(c = tails) = 0.25, indicating
that 75% of the time the coin lands with the heads side up
and only 25% of the time lands with the tails side up. Note
that the sum of the possible states in a discrete probability
distribution and the integral of the possible values in a
continuous probability distribution must be 1.

We can describe systems of more than one variable
using a joint probability distribution. If we had two coins
(c, and c,) that were independent and fair, then the joint
probability distribution (notated as p(A, B) would be
p(cy, c;) = 0.25 for all four possible combinations of
heads and tails. In this case, because the coins are inde-
pendent, p(c,, ¢,) = p(c,)p(Cc,). In cases with dependent
variables, this relationship does not hold.

In addition to joint probability distributions, other types
of probability distributions are frequently useful in infor-
mation theory analyses. A marginal probability distribution
represents the likelihood for the outcomes of a subset of
variables in the joint distribution. It can be calculated by
summing across certain variables in a joint distribution.
For instance, using the example probability distributions
for coins above, we can relate the marginal distribution for
the first coin p(cy) to the joint distribution for both coins
p(c4, ¢,) via (Egn. 1)

p(cy) = EP(CwCz) (1)

These ideas can be further explored by considering a
system of two magically linked (dependent) coins. Sup-
pose that each coin in isolation produces heads and tails
50% of the time like a normal, fair coin. But, when the
second coin is flipped right after the first, it is more likely
to take the same value as the first coin. A joint proba-
bility distribution and the associated marginal distribu-
tions for this system might look like Table 1. This system
does not have a uniform probability distribution. For in-
stance, the state (c, = heads, ¢, = heads) appears 40% of
the time, while the state (¢, = tails, c, = heads) appears
only 10% of the time. The likelihood that variable coin 2 is
heads p(c, = heads) is equal to the sum of p(c, =
heads, c, = heads) and p(c, = tails, ¢, = heads) because
those are the two possible combinations of all the coins
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Table 2. Conditional probability distributions for the example
system shown in Table 1.

Likelihood of a state of coin 1 given the state of coin 2

p(c, = heads|c, = heads) = 0.8  p(c, = tails|c, = heads) = 0.2
p(c, = heads|c, = tails) = 0.2 p(c, = tails|c, = tails) = 0.8
Likelihood of a state of coin 2 given the state of coin 1

p(c, = heads|c, = heads) = 0.8  p(c, = tails|c, = heads) = 0.2
p(c, = heads|c, = tails) = 0.2 p(c, = tails|c, = tails) = 0.8

The conditional probability p(A|B) describes the likelihood of a state of a
given the state of B and can be related to the joint and marginal probability
distributions (table 1) via Bayes’ theorem (Eqn. 2).

where coin 2 is heads. Notice that all the marginal distri-
bution values are 0.5, indicating that the coins appear in
isolation to be normal, fair coins.

The conditional probability distribution is another im-
portant way to represent probabilities in systems of mul-
tiple variables. A conditional probability distribution is the
likelihood of outcomes for some subset of variables given
the states of other variables in a joint probability distribu-
tion. In other words, conditional probability distributions
describe the likelihood to obtain outcomes of certain
variables assuming that other variables are known. The
conditional probability distribution (notated as p(A|B) for
the probability of A given B) can be related to the marginal
and joint probability distributions using Bayes’ theorem
(Egn. 2):

@

We can use Bayes’ Theorem to calculate the condi-
tional probability distributions (Table 2) for the example
system of two dependent coins whose joint and marginal
distributions are shown in Table 1. In this example
p(c, = tails|c, = heads) = 0.2, which means that when
coin 2 is heads there is only a 20% chance that coin 1 is
tails. Conversely, p(c, = heads|c, = heads) = 0.8, which
means that when coin 2 is heads, there is an 80% chance
that coin 1 is also heads.

Throughout this tutorial, we will focus almost exclu-
sively on discrete probability distributions for several
important reasons. Primarily, when first learning about
probability distributions and information, we find it is eas-
ier for most people to focus on discrete probability distri-
butions. Working with continuous distributions involves
concepts from calculus and the continuous analogs of
various information theory measures can produce subtly
different, but possibly confusing results (e.g., the entropy
for discrete distributions is always non-negative, but the
continuous analog can be negative (Cover and Thomas,
2006). In addition, continuous versions of several informa-
tion theory measures discussed in this tutorial have not
yet been developed. However, we wish to emphasize that
information theory analyses of continuous probability dis-
tributions can be successfully employed, continuous data
are best understood mathematically using continuous prob-
ability density functions, and the interested reader should
consider further resources on the subject (Cover and
Thomas, 2006). Of course, a great deal of neuroscience data
are continuous, so we will use various techniques (e.g.,
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binning) to convert continuous data to discrete data
throughout this tutorial (see Data Binning and Handling Con-
tinuous Data.).

Converting neuroscience data to probability distributions

If casting data in terms of probability distributions is
necessary to information theory analyses, how do we
convert raw data from neuroscience experiments into
probability distributions? Indeed, this is a nontrivial prob-
lem that has the potential to dramatically affect the out-
come of information theory analyses. This process (so-
called state space reconstruction) is of vital importance
(Wibral et al., 2014a).

Many neuroscience experiments involve multiple ob-
servations of the system/organism under study, via either
multiple trials or a single recording of a system’s behavior
through time (Fig. 1A). The data from the experiment can
then be discretized (if necessary) into states s (Fig. 1B,
see Data Binning for more information about binning and
see Handling Continuous Data and Further Refinements
for alternatives to binning). (Note, we are not referring to
time binning at this point, but rather binning of multiple
observations of some variables across trials or time.)
Admittedly, understanding this binning procedure is one
of the most difficult aspects of employing an information
theory analysis. Part of the problem lies in the fact that this
step is highly flexible and system specific. Suppose the
data consist of individual electrode voltage values through
time. In this case, we could bin the values into certain
voltage ranges (e.g., less than -1 mV, -1 to 1 mV, and >1
mV). (We will discuss why/how to pick certain ranges
below.) Then, we could refer to all voltage measurements
below -1 mV as state 1, between -1 and 1 mV as state 2,
and above 1 mV as state 3.

At the most basic level, the probability of a state is
estimated as the total number of observations of that
state divided by the total number of observations for all
states (Fig. 1C). For instance, if we note s as the state of
the variable being recorded (e.g., electrode voltage),
N(s) as the number of experimental observations of state
s (a so-called frequency distribution; e.g., the number of
time bins where the voltage was in a certain range), and
N,,s as the total number of experimental observations,
then the probability for the state s would be estimated by

B N obs (3)

So, if we recorded the voltage for 10,000 time bins and
1298 of those time bins produced a voltage less than -1
mV, we would find p(s = 1) = 0.1298. It should be noted
that this is a form of maximum likelihood estimation
(Myung, 20083), in that we assume that the data observed
represent the most likely outcome of the underlying prob-
ability distribution. Once the probability distribution is
estimated, the appropriate information theory measure
can be applied (Fig. 1D, see sections below on various
information theory measures).

Depending on the information measure to be used, the
states could consist of a single data type (e.g., voltage on
one electrode) or multiple data types (e.g., voltage record-
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Figure 1. General information theory analysis protocol. A, A neuroscience experiment or simulation is performed to gather
environmental data (e.g., stimuli), physiologic data (e.g., voltage recordings), and/or behavioral data (e.g., animal location). B, If
necessary, the data are then discretized (see Data Binning). Some types of data (e.g., spike data) do not require discretization. In this
example, two sets of data were produced, but analysis of any number of data sets is possible. C, The discretized data are then
converted to probability distributions by first counting the number of times each unique set of states was observed. In the case of
single trial data (gray tables), the joint states for all of the data are counted to estimate the probability distribution. In the case of
trial-based data (green and orange tables), the joint states are counted for all data at certain time bins across trials. D, The desired
information theory measure is applied to the probability distribution.

ings from multiple electrodes). If multiple data types are
used, the state is then a joint state for all the variables
(e.g., voltage recording 1 is less than -1 mV and voltage
recording 2 is >1 mV). If the analysis utilizes single-trial
data, the states could be experimentally recorded values
through time, with each time bin being a unique state
observation. Such an analysis will produce a time-ave-
raged information value throughout the recording (see
discussion of stationarity concerns below). If the anal-
ysis utilizes trial-based data, the states could be exper-
imentally recorded values at a given time point across
trials (e.g., 100 ms after the stimulus), with each trial
being a unique state observation instead of each time
bin throughout a recording being a state observation.
Such an analysis will produce an instantaneous infor-
mation value at a given time point in the trial (Lizier
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et al., 2008; Wibral et al., 2014a for other interpretations
of instantaneous information values). If multiple values
are being recorded through time, delays can be intro-
duced in the time order of the states (e.g., stimulus at a
given time in a trial and neural signal 200 ms later in a
trial).

It is important to note that the state being observed is
very flexible. For instance, with neurons the distinction
between rate coding and spike timing coding has fre-
quently been discussed (Victor and Purpura, 1996; Borst
and Theunissen, 1999; Panzeri and Schultz, 2001; Van
Rullen and Thorpe, 2001; Stanley, 2013). In this case, the
state could be the number of spikes in a given time bin
when a rate coding scheme is being investigated, or the
state could be a specific pattern of spikes when a spike
timing coding scheme is being investigated.
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Enough observations must be performed to adequately
sample the space of possible joint states. As a bare
minimum, the number of observations must be greater
than the number of possible joint states, though more
observations are usually necessary to perform an infor-
mation theory analysis. To the best of our knowledge,
there are no agreed-on standards for the number of ob-
servations necessary to adequately estimate a joint prob-
ability distribution, though informal discussions with other
researchers suggest >10 observations per possible state is
ideal. Note that the use of significance testing via surrogate
data (see Significance Testing) can minimize the occurrence
of type 1 errors (i.e., reporting a significant information theory
result when none is actually present). However, small data
sets will increase the likelihood of type 2 errors (i.e., failing to
report a significant information theory result when one is
actually present) from surrogate data significance testing
and produce bias (see Bias in Entropy and Mutual Informa-
tion). The number of observations necessary to estimate a
probability distribution has been explored to some extent in
the literature (Ramos and Macau, 2017), but a great deal of
attention has been paid to other methods to assess bias and
estimate probability distributions (see Handling Continuous
Data and Further Refinements).

In addition to concerns related to the number of obser-
vations, experimenters must also consider a fundamental
assumption of this estimation method that each observa-
tion is produced from the same underlying probability
distribution. This assumption is frequently referred to as
“stationarity.” In other words, we must assume that each
observation contributes to a picture of the same proba-
bility distribution (which we cannot directly access). If the
underlying probability distribution is changing through our
observations, the method outlined in Eqn. 3 will not pro-
duce a valid estimate of the probability distribution. Thus,
the experiment must be designed in such a way that sta-
tionarity can be assumed. This can be especially important
in single-trial data analysis, where the underlying probability
distribution may be suspected to change throughout a re-
cording. For instance, research should consider whether
animal behavior is changing over observations (e.g., is the
animal becoming satiated?) or whether neural behavior is
changing (e.g., are firing rates changing?).

Data binning

A further complication regarding estimation of proba-
bility distributions is the fact that data from neuroscience
experiments can be continuous (e.g., action potential
times, voltage, calcium signal, BOLD signal, movements,
positions, principle components, etc.) or discrete (e.g.,
action potential magnitudes, some types of stimuli, some
types of behaviors, animal strain, etc.). Data that are
naturally discrete, such as binary stimuli (e.g., light on
versus light off), are relatively easy to use with the simple
estimation method in (Egn. 3). Other data can have dis-
crete and nondiscrete features, such as action potentials
whose magnitudes are discrete (spike versus no spike)
but whose timing is continuous (though typically binned in
time by the recording resolution of the experimental sys-
tem). However, continuous data never precisely repeat
through observations, so the number of observations for
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each state would trivially be 1. In other words, a particular
voltage observation could be 5.3476 mV, and that voltage
value will not be repeated throughout an experiment.
Thus, counting the number of observations at a specific
voltage value will not provide an estimate of the underlying
probability distribution. (However, repeated observations
can provide an estimate of the density of a continuous
probability distribution; see Handling Continuous Data and
Further Refinements.)

How should we handle continuous data? The primary
solution to this problem that we will discuss in this article
is to convert the continuous data to discrete data via
some type of binning or discretization procedure. [See
Handling Continuous Data and Further Refinements for a
discussion of other methods for handling continuous data
and Daw et al. (2003) for a general review of discretization
in data analysis]. Once this binning procedure is per-
formed, the continuous data have been made discrete,
and the probability distribution estimation method de-
scribed in Eqn. 3 can be applied. We will discuss two
general procedures, all of which are implemented in the
information theory toolbox (see Software). Note that it is
frequently necessary to look at the data to see which
discretization method will be most appropriate for the
analysis and to set discretization parameters. For in-
stance, knowledge of a neuron’s firing rate can help in-
fluence decisions about time bin size and the ranges of
spike counts per bin (e.g., low-firing-rate neurons need
larger time bins and finer spike count resolution, while
high-firing-rate neurons need smaller time bins and less
spike count resolution to adequately capture the dynamic
range of the spiking behavior). In all cases, users should
avoid “parameter fishing” to find binning methods that
yield expected results (see Significance Testing.).

The first binning procedure we will discuss simply in-
volves dividing the total range of the data (i.e., minimum
value observed to maximum value observed) into N,
number of equal-width bins (Fig. 2A,B). Note that this
method preserves some large-scale patterns in the con-
tinuous distribution of the data, though that resolution is
dependent on the choice of N,,,,, which is a parameter of
the analysis. We generally refer to this method as the
“uniform width” binning method.

The second binning procedure we will discuss uses a
similar method, except the data are binned into N,
equal-count bins (Fig. 2A,C), typically referred to herein as
“uniform count” binning method. Importantly, this method
does not preserve large-scale structure in continuous
data distributions, but this method is especially powerful
when examining relationships between variables because
it maximizes the available information signal between vari-
ables (see Entropy and Mutual Information). Furthermore,
this method can allow for the use of a single null model for
the analysis of multiple variables, which can significantly
decrease computation time in significance testing (see
Significance Testing.). Finally, this method is not impacted
by the range of the data or the various scales in the data.
With equal width binning, an outlier data point may dra-
matically affect the binned structure of the data by skew-
ing the bins. For these reasons, we used the uniform
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Figure 2. Example data discretization. A, 200 example data points were randomly generated (vertical black lines represent individual
data points, black plot represents a fine-resolution histogram). The data were discretized into four uniform width bins or states (top
colored regions) or four uniform count bins or states (bottom colored regions). B,C, The number of data points in each bin divided
by the total number of data points was then used as the probability for each bin (state). Uniform width bins (B) can preserve general
data distribution features (e.g., two peaks in this case), but produce some bins with low probabilities. Uniform count bins (C) produce
uniform probability distributions, which have certain information theory advantages, but do not preserve general data distribution

features.

count method throughout the demonstrations presented
herein, though the Neuroscience Information Theory Tool-
box contains numerous demonstrations of other binning
procedures (see Software; Extended Data).

Once one of these binning methods is chosen and
applied to the data, the probability distribution can be
estimated via the method described in Egn. 3, where each
bin corresponds to a unique state.

Handling continuous data and further refinements

We chose to discuss the previous discretization meth-
ods for analyses of continuous data because they are
relatively simple to employ and understand, which aligns
well with this article’s goal of introducing information
theory analyses. However, other valuable methods of
handling continuous data have been proposed previously,
and other logistic concerns exist for information theory
analyses. For instance, kernel-based or binless strategies
exist for several information theory measures (Victor,
2002; Kraskov et al., 2004; Vicente et al., 2011). These
methods use the density of the continuous data points to
estimate the underlying continuous probability distribu-
tion. While these methods are very useful for some types
of analyses, they are more complicated than the introduc-
tory methods discussed herein, they can involve assump-
tions about the data that may not hold (e.g., the data are
normally distributed), and they have not been extended to
recently developed multivariate information theory met-
rics.

The importance of time bin size and delayed interac-
tions in various information theory analyses has been
noted previously (Wibral et al., 2013, 2014a). In our dis-
cussion above, we noted that delays could be introduced
between observations of variables (e.g., what is the state
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of the voltage on electrode 2 t seconds after the state of
voltage on electrode 17?). In short, analyses of this type are
prone to biases associated with assuming the incorrect
interaction delay in the system (e.g., assuming t = 100 ms
when really t = 200 ms). Therefore, it is necessary to
conduct measurements at appropriate delays and/or to
conduct some type of delay scanning procedure (Ito et al.,
2011; Wibral et al., 2013). If there are biological reasons to
select a certain delay between observations, that delay
should be used. For instance, it is biologically implausible
that V1 neurons will respond to visual stimuli within 1 ms.
If the delay is not known, several possible delays could be
scanned. For instance, the precise synaptic delay be-
tween two neurons may not be known, but delays ranging
from 1 to 20 ms could be scanned to see if a certain time
range corresponds to an increase in interactions.

Finally, it is important when conducting an information
theory analysis to explore the dynamic range of the sys-
tem. As will become clearer once we discuss the infor-
mation values themselves, it is vital that the variables used
actually vary across observations. Furthermore, experi-
menter-controlled variables (e.g., stimuli) must be varied
to produce an appropriate range of responses. For in-
stance, if the analysis receives only cases where one type
of stimulus was applied, it will not be possible to observe
stimulus-dependent differences in neural variables. Often
it is helpful to consider trials with different types of stimuli,
as well as trials without stimuli.

Entropy

Entropy is the fundamental information theory quantity.
It measures the uncertainty contained in a variable. Be-
cause information theory conceptualizes information as a
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Figure 3. Example entropy calculations. A, Example probability distributions for three models (red, blue, and green); B, their
associated entropy values. Model 1 was most likely to be in state 1, so it had low entropy. Model 3 was equally likely to be in all four
states, so it had maximum entropy. Uniform count binning (see Data Binning) will produce equally likely states and maximize entropy,

similar to Model 3.

reduction in uncertainty, it is necessary to quantify uncer-
tainty before information. In other words, we must under-
stand uncertainty before we can understand information.

The entropy H(X) of a discrete random variable (call this
variable X with individual states x) is (Eqn. 4) (Shannon,
1948; Cover and Thomas, 2006)

_ 1
HOO = Ep(x)logg(p (X)) @

XEX

Note that x€X refers to all of the possible states x can
take.

As a first step in understanding entropy, it is useful to
consider the simple fair coin example from above. In that
case, x could take two possible states (heads and tails),
and the likelihood for both outcomes is 0.5. Therefore, if
we refer to this coin as C,, then we have (Eqgn. 5):

©)

N —

p(heads) = p(tails) =

1 1 1
H(Cy) = polog (_> _ _,og( )
1 XE{heaZdS,tails} 2\p100 2772\1/2

1 1\ 1) .
+ E/ogg(m) = /ogz(—1 /2) =log,(2) =1 (6)

Therefore, the uncertainty of a fair coin is 1 bit. Three
other example systems with four possible states instead
of two are shown in Fig. 3. Note that for systems with
probability distributions that are more concentrated, the
entropy is lower (Model 1 in Fig. 3), while for systems with
evenly spread probability distributions, the entropy is
higher (Model 3 in Fig. 3). If a variable is likely to be in one
state (i.e., concentrated probability distribution), it has low
uncertainty. Conversely, if a variable is equally likely to be
in many different states (i.e., dispersed probability distri-
bution), it has high uncertainty. This intuitively agrees with
our definition of uncertainty. Note that the uniform counts
binning procedure (see Data Binning) will produce a uni-
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form probability distribution, which will maximize entropy
(Cover and Thomas, 2006). Furthermore, a variable that is
perfectly concentrated (i.e., it has only one possible state
and that state has a likelihood of 1) will produce an
entropy of 0. This makes sense because such a variable
has no uncertainty. Finally, the entropy cannot be nega-
tive. This is because the likelihoods of the individual states
cannot be larger than 1, so the argument of the logarithm
cannot be <1, so the logarithm will always be positive.

As is typically done in information theory, we use log-
arithms with base 2 in our entropy calculations (Eqn. 4),
but we could have chosen any other base. The choice of
base 2 produces entropy values in units of bits. Other
base values produce different units for entropy (e.g., using
the natural logarithm produces units of nats). Throughout
this paper, we will use units of bits because they provide
two useful conceptual connections. First, computer mem-
ory is expressed in units of bytes, which are related to bits
via 1 byte = 8 bits. Second, as we discussed above, we
can think of bits as yes/no questions. When we con-
ceptualize bits this way, we can think of the entropy as
the average number of yes/no questions necessary to
determine the state of the variable. Returning to the fair
coin example, we can see that one yes/no question
(e.g., “Is the coin in the heads state?”) can always allow
us to determine the state of the coin, which is why the
result of our entropy calculation in (Eqn. 6) yielded 1 bit
of entropy.

Just as probability distributions can have more than one
variable in a joint probability distribution, the joint entropy
can be calculated for systems with more than one vari-
able. The joint entropy H(X, Y) of two discrete random
variables (variable X with individual states x, variable Y
with individual states y) is given by (Egn. 7) (Cover and
Thomas, 2006)

HOGY) = ) pxylog,| %)

XEXYyEY

y
o)
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For the system of two independent fair coins from
above (likelihood of each combination of heads and tails
is 0.25), we obtain

H(Cy, Cy) = >
x€{heads,tails},yE{heads,tails ;
- 4[1—10 (L)] = o (L) = log,4) = 2
499172 92(174 g
(8)

1
p, y)logz(p ) )

This result agrees with our interpretation of entropy
as the average number of yes/no questions necessary
to determine the state. We found from Eqgn. 6 that we
needed one question to determine the state of one coin.
Because the coins are independent, we should need
two yes/no questions to determine the state of two
coins, which is exactly what we find in Egn. 8. Indeed,
in general, when the X and Y variable are independent
(i.e., px,y) = pOpQ)), the joint entropy of the two
variables is simply the sum of the individual entropies
(recall 2xexpC0) = 1) (Egn. 9):

HoXo V) = D0 px, y)logg(p % y))

XEXyEY

> p(x)p(y)/ogz(

XEXYyEY

= 2 p(x)p(y)[logg(p( )) + lo

XEXYEY

1
p(x)p(y))

{557
-3 p(x)p(y>[/°92(p<1x))]

XEXYEY

L > p(x)p(y)[logz(p (y))]

XEXyEY

- > P(X)[/ng(p( ))] E Py )[Iogz(pw))]

XEX

= HX) + H(Y) ©

The final entropy quantity of interest is the conditional
entropy, which quantifies the average uncertainty in a
variable given the state of another variable. The condi-
tional entropy H(X|Y) of two discrete random variables
(variable X with individual states x given variable Y with
individual states y) is given by (Egn. 10) (Cover and
Thomas, 2006)

H(X|Y) =

> i, y)log2( 5] )) (10)

XEXyeY

As an example for the joint entropy, we will again
turn to the system of two independent fair coins from
above. In this case, the conditional likelihood of each
combination of heads and tails is 0.5, because the
likelihood for the first coin to be heads is always 0.5
regardless of the state of the second coin. Thus, we
obtain (Eqn. 11)
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H(C/IC;) =
x€{heads tails },ye{headstails}
= oo (N = f0g, (-1
= 4[4’092(1 /2)] o0 175)
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Because the coins are independent, the conditional
entropy of the first coin given the second coin should be
the same as the entropy of the first coin alone, which is
what we found in Egn. 6.

As a final example of entropy, consider the system of
dependent coins described in Tables 1 and 2. In this case,
the joint entropy is found to be (Egn. 12)

H(C;, Cp) = 2

xe{heads,tails},yc{heads,tails}

= 2[0 4*log2( 5 4)] + 2[0 1*Iog2( 5 )] - 1.73
(12)

P, y)logz( x, y))

Because the coins are dependent, their joint entropy
(1.73 bits) is less than was found for two independent
coins (2 bits; Eqn. 8). In other words, for these dependent
coins, there is less uncertainty about the state of the
system because it is more likely to be in states where
the coins match than states where they do not match. The
conditional entropy for each coin in this system is identi-
cal and is found to be (Egn. 13):

H(C,1C,) = 2

x€{heads,tails},yE{heads,tails}

= 2[0.4*Iog2(01_—8)] + 2[0.1*Iog2(017)] = 0.73
(13)

px, y)logg(;>
p(x|y)

While each coin in isolation produces heads and tails
with equal likelihood and therefore has an entropy of 1 bit
(Egn. 6), the uncertainty in the state of each coin is
reduced when the other is known. Therefore, the condi-
tional entropy of each coin is <1 bit.

In all cases, not just systems with independent vari-
ables, the following intuitive relationship between entropy,
joint entropy, and conditional entropy can be shown
(Cover and Thomas, 2006):

HX,Y) = HX) + H(Y|X) (14)

In words, (Egn. 14) says that the joint entropy of X and
Y is equal to the entropy of X along, plus the remaining
entropy of Y when X is known.

While the formula given in Eqn. 4 may seem unusual, it
actually has several important properties that motivated
its creation (Shannon, 1948; Cover and Thomas, 2006).
First, HOXX) = 0. In other words, the entropy can never be
negative. This is very helpful because it is unclear how we
would interpret negative uncertainty. Second, systems
with one absolutely certain state have no entropy. This
makes sense because a system that is always in one state
cannot provide information, nor can another variable pro-
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Figure 4. Example mutual information calculations. A, Example probability distributions for three models (red, blue, and green); B,
their associated mutual information values. In model 1, the X and Y variables were independent, so their mutual information was zero.
In model 2, knowledge of X or Y reduces our uncertainty in the state of the other variable to some extent, so nonzero mutual

information was observed. In model 3, X and Y are identical, so their mutual information was maximal.

vide information about it. Finally, the entropy of two inde-
pendent variables is simply the sum of their individual
entropies (Eqn. 9) (i.e., the entropies are additive).

Mutual information

Information theory conceptualizes information as a re-
duction in uncertainty in one variable when another vari-
able is known. In other words, if learning the state of one
variable reduces our uncertainty in another variable on
average, then the first variable provides information about
the second variable. Importantly, we are now able to
quantify uncertainty using entropy, so we can quantify this
reduction in uncertainty and, therefore, information. While
this notion of information is conceptually similar to corre-
lation measures like explained variance, it is important to
note that the definition of information developed in infor-
mation theory possesses several distinct advantages (see
Why use information theory?, see Fig. 5 below).

Recall that the conditional entropy H(X|Y) (Eqn. 10)
expresses the entropy that remains in X given knowledge
about Y. Thus, the total entropy of X must be equal to the
entropy that remains in X after Y is learned plus the
information /(X;Y) provided by Y about X. Therefore,

HOXO = HX|Y) + 1XGY) (15)

Note that information will also be measured in bits,
because the units of entropy are bits. Because entropy
is always positive, it follows from Egn. 15 that /(X;Y) =
HX). Therefore, it is frequently advantageous in analy-
ses of real data to discretize data using a uniform count
method to maximize each variable’s entropy and
thereby maximize the available information signal (see
Data Binning).

The relatively simple expression in Egn. 15 can be
rearranged and rewritten using probability distributions
(Egns. 4 and 10) to provide an expression for information,
or as it is more generally referred to in the literature, the
“mutual information” (Cover and Thomas, 2006):
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x,y)
1Y) = HOO — HX]Y) = x, ylo (p—)
(X1Y) XE;yEyp YIoge| 5 oonw)

(16)

In Fig. 4, we present three example systems with their
corresponding mutual information values. In model 1,
knowledge of either variable does not provide information
about the other variable, so the mutual information is zero.
For instance, if X is known to be in state 1, Y is equally
likely to be in states 1 and 2. In model 2, some information
about either variable is provided by the other, so the
mutual information is nonzero. In model 3, each variable
perfectly predicts the other, so the mutual information is
maximized at 1 bit. In this case, 1 bit is the maximum
mutual information because each variable has an entropy
of 1 bit.

In addition to conceptualizing information as a reduc-
tion in uncertainty, another interpretation of information is
provided by the sum expression in Eqn. 16. Recall that
when two variables are independent p(x, y) = pCop().
Thus, in Egn. 16, for independent variables, the argument
of the logarithm becomes one for all states, which pro-
duces an information of zero. This agrees with intuition,
because independent variables cannot provide informa-
tion about each other. In this way, the mutual information
is viewed as the Kullback-Leibler distance between the
true joint distribution p(x, y) and the joint distribution un-
der the assumption the data are independent p(x)p(y)
(Cover and Thomas, 2006).

Note that the sum term in Eqn. 16 is symmetric in X and
Y, which implies that /(X;Y) = I(Y;X) (this symmetry can
also be noted in an alternative expression for the mutual
information: I(X;Y) = HOXO + H(Y) — H(X, Y); Cover and
Thomas, 2006). In other words, the information Y provides
about X is equal to the information X provides about Y. For
instance, in the example where | tell you the state of a
flipped coin from above, my message contained informa-
tion about the state of the coin, but the coin provides the
same amount of information about my message. Because
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Figure 5. Example of linear versus nonlinear analysis methods. A, Example data for three models (red, blue, and green)
with linear (red) and nonlinear (blue and green) interactions; B, the associated correlation coefficient and mutual information (Ml)
values for all three models (star: p < 0.05, correlation coefficient and p-value calculated via MATLAB, mutual information and
p-value calculated via the Neuroscience Information Theory Toolbox; see Data Binning and Significance Testing, 4 bins and 1000

null data sets).

of this symmetry, /(X;Y) from Eqgn. 16 is most commonly
referred to as the “mutual information.” We will employ
this nomenclature throughout the remainder of this article
to maintain consistency with the established literature.

To demonstrate the differences between linear analy-
ses and information theory using mutual information, we
created three model systems: one with linear interactions
and two with nonlinear interactions (Fig. 5). A linear anal-
ysis method like correlation easily detects a significant
correlation coefficient among linearly related variables but
does not detect a significant interaction among two data
sets with nonlinear interactions. Conversely, mutual infor-
mation is able to detect a significant interaction in all three
cases. While this example clearly demonstrates informa-
tion theory’s ability to detect nonlinear interactions, it is
important to note that the resulting mutual information
values do not produce a model that describes the rela-
tionship between the variables (see What can information
theory tell you? and Model Building).

Now that we have an expression for mutual informa-
tion between two variables, it is natural to expand to
systems of three or more variables. The most straight-
forward method for measuring the information between
three variables is to use mutual information between
two variables, but make one of the variables a joint (or
“vector valued”) variable of two variables. When two
variables are combined in this way, we consider each
unique combination of states for the two joined vari-
ables as a unique state for the joint set. For instance, a
joint variable consisting of two coins has four states:
each possible combination of heads and tails. The
mutual information between a joint variable constructed
from two X variables (X; and X,) and another variable Y
can be expressed using (Eqn. 17)

I({X1, Xo13Y) = E

X1EX1,X2EXp,yEY

P(X1, X2, Y) )
P (X1, X))
7

p(Xsz!Y)/ng(

Using this method, we can calculate the mutual in-
formation between one variable and two other variables
considered together. This type of analysis can be very
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helpful in neuroscience applications. For instance, we
might ask how much information two neurons provide
about a stimulus or behavior together instead of indi-
vidually. Below, we will explore other methods for
quantifying the information between more than two
variables.

Mutual information can be further expanded by consid-
ering the mutual information between two variables con-
ditioned on a third variable. This measure is referred to as
conditional mutual information and is given by (Eqn. 18)

IX;Y|2) = H(X|2) — HXY,2)

XEXYyEYzEZ

The conditional mutual information allows us to exam-
ine interactions between two variables while taking into
account the effects of a third variable. For instance, sup-
pose we had three magic coins that always produced
identical results. In this case, the mutual information be-
tween any pair of coins would be one bit. However, the
conditional mutual information between any pair given the
third coin would be zero bits. This is because the infor-
mation each coin provides about the other can be ex-
plained or provided by the third coin. Another example
illustrates that the inclusion of a third variable can in-
crease the information between two variables. Suppose
we had two independent, unbiased coins and a third
magic coin that always produced a heads when either the
first coin or the second coin produced a heads and tails
only when both coins produced tails (i.e., an OR opera-
tion). In that case, the mutual information between the first
two coins would be 0, but the conditional mutual infor-
mation between them conditioned on the third coin would
be 0.19 bits. Thus, the third coin creates conditional
dependence between the otherwise independent coins.
Conditional mutual information will be especially helpful
when examining causal relations.

Transfer entropy
As we discussed above, the probability distributions
used in information theory calculations can be produced
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Figure 6. Example transfer entropy calculations. A, Example model spike trains (color bands: spikes); B, their associated transfer
entropy values. Model 1 contained independent neurons, so it produced zero transfer entropy. Models 2 and 3 contained interactions
from neuron X to Y. In model 3, neuron X's state precisely determined neuron Y’s state one time step in the future, which produced
maximal transfer entropy. In model 4, neuron X’s state precisely determines neuron Y’s state, but the past of neuron Y also determines

its future, so it produced zero transfer entropy.

from many different types of data, possibly with different
temporal relations. When a certain temporal ordering is
used with conditional mutual information, an information
theory measure called “transfer entropy” is produced.
Transfer entropy is given by (Schreiber, 2000)

TEX —=Y) = I(quture;XpastIY

past) = H (quture | Ypast)

- H (quture |Xpasf’ YPHST)
= 2 p(ny Xp1 Z)/OQZ(

Y€ YutureXp€Xpast:Yp € Ypast

P X, 1Y) )

p(}/flyp)p(xp |yp)
(19)

Transfer entropy measures the information about the
future state of a variable (Y,,,.) provided by another vari-
able in the past (X,.) given the information provided by
the past state of the variable (Y,,y). Once these temporal
relationships are defined, transfer entropy can be inter-
preted as a better measure of causal influence from X to
Y than merely the mutual information between X, and
Ywures DECause transfer entropy measures the changes
caused in Y from X that are not accounted for by the
history of Y alone. However, it is possible for no causal
interaction to exist from X, to Y. but yet to still
observe a nonzero transfer entropy result. For instance,
even when considering Y, it is possible that some third
unmeasured variable controls X, and Y., rendering
the interaction from X, to Y. noncausal.

As an example of transfer entropy, consider simultane-
ously measuring the firing rate through time of two neu-
rons, X and Y. Assume that X sends an inhibitory
connection to Y such that when X fires, Y stops firing.
Knowing the past state of X allows you to predict the
future of Y better than predicting the future of Y with only
the past of Y. This type of interaction would result in
increased transfer entropy from X to Y.

Fundamentally, transfer entropy is simply conditional mu-
tual information with certain assumptions about temporal
order and variable source, which allows it to serve as a

May/June 2018, 5(3) e0052-18.2018

measure of causal influence. Due to the widespread interest
in neural connectivity (Bullmore and Sporns, 2009; Friston,
2011), transfer entropy has been widely used in the literature
(for example, Honey et al., 2007; Lizier et al., 2008; Ito et al.,
2011; Vicente et al., 2011; Timme et al., 2014b, 2016; Wibral
et al., 2014b; Nigam et al., 2016; Bossomaier et al., 2016).
Numerous methods have been employed to define past and
future state (Staniek and Lehnertz, 2008; Ito et al., 2011;
Wibral et al., 2013; Timme et al., 2014b). These methods
allow for the exploration of interactions over certain time
scales, the search for interactions with set delays (e.g.,
synaptic connectivity), or interactions involving patterns of
activity. An interesting alternative measure called the di-
rected information has also been used in the literature (Quinn
et al., 2011).

In Fig. 6, we present four example single-trial systems
(neuron spike trains) with example data through time and
their resulting transfer entropy values. For the sake of
simplicity in this introduction, we will assume the past
state occurs one time bin before the future state. Models
1 through 3 possessed increasing interaction strength
between the state of X at a given time with the state of Y
one time step later. As expected, these models produced
increasing transfer entropy values. Model 4 possessed a
strong interaction between the state of X at a given time
with the state of Y one time step later, but that interaction
could be explained with the past state of Y, resulting in
zero transfer entropy. This demonstrates the conditional
aspect of transfer entropy.

Partial information decomposition

As we mentioned above, we can move beyond pairs of
variables to consider information between groups of vari-
ables. The simplest such extension is to consider the
mutual information /({X;, X;};Y) between two variables
taken together (X; and X,) and a third variable Y via Eqgn.
17 (as a more advanced alternative, see (Pica et al. (2017))
for recent work on treating all variables equally). While this
step alone is helpful in many circumstances, it is possible
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to decompose this mutual information into several other
useful and intuitive components. For instance, we might
ask what portion of /({X;, X;};Y) is provided redundantly
by both X, and X, (what information overlap about Y exists
between X; and X)), or uniquely by X; or X, alone (what
information does X, provide about Y that X, does not and
vice versa), or synergistically by both X, and X, together
(what bonus information do X, and X, provide about Y
when both are known simultaneously). This dissection is
generally referred to as the partial information decompo-
sition (Williams and Beer, 2010). Quantifying these rela-
tionships can provide a great deal of insight into how a
system functions. If all of the information in /({X;, X,};Y) is
provided redundantly, then we know X; and X, are doing
the same thing, at least in an information theoretic sense.
If all of the information in I({X;, X,};Y) is provided uniquely
by X;, then we know X, is not providing information about
Y. If all of the information in /({X;, X;};Y) is provided syn-
ergistically, then we know X, and X, are somehow working
together or engaged in some type of complex interaction
with Y.

Note that we have not provided any explicit mathemat-
ical definition for the synergy, redundancy, and unique
information concepts that we are invoking. Rather, we are
relying on intuition regarding what “synergy” means in the
context of information. The following equations express
the intuitive relationships between the relevant mutual
information terms and the synergy S, redundancy R, and
unique information U1 and U2 components:

I, X1Y) = S0 XaiY) + R, Xo3Y)
+ UI(X,, Xp3Y) + U2(X0, X,3Y) (20)

I(X1;Y) = R(Xy, Xo3Y) + U1(X;, X33 Y) (21)
1(X2;Y) = R(X;, Xo3Y) + U2(Xy, X,3Y) 22

In (Egn. 20), we take the total information provided by X,
and X, together to be equal to the four underlying com-
ponents (synergy, redundancy, and unique information
terms). In Eqgn. 21, we take the information provided by
just X; to be equal to the redundancy and the unique
information provided by X;. We include only these two
terms because the unique information from X, is not
provided by X, and because the synergy is not provided
by X, alone.

While the mutual information expressions in Eqgns. 20,
21, 22 can be calculated easily using Eqns. 16-17), it is
not possible to derive mathematical expressions for the
synergy, redundancy, and unique information without fur-
ther measures. However, notice that if we had access to
a measure for redundancy or unique information, the
other components could be found easily via basic alge-
bra.

Several researchers have put forward candidate mea-
sures for redundancy or unique information to address
this problem (Williams and Beer, 2010; Harder et al., 2013;
Bertschinger et al., 2014; Griffith et al., 2014; Ince, 2017;
Finn and Lizier, 2018; see Quax et al., 2017 for an alter-
native information theory approach to measuring syn-
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ergy). In fact, this area of information theory is currently
undergoing rapid development, with numerous previous
methods for analyzing synergy and redundancy in neuro-
science contexts (Brenner et al., 2000; Schneidman et al.,
2003a,b) being improved on. We feel strongly that it is
beyond the scope of this introductory tutorial to thor-
oughly review all of these newly introduced measures for
redundancy and unique information. Doing so properly
would require an entire article. However, we also feel
strongly that some of these new methods should be
included in this tutorial because they represent new pow-
erful tools for the analyses of neural data that will be of
interest to readers and because related concepts have
been used in neuroscience for many years.

In an attempt to thread this pedagogical needle, we
have decided to focus on the first measure introduced:
the minimum information (Williams and Beer, 2010). The
minimum information possesses several advantages over
other candidate measures in that it is relatively straight-
forward, it can be expanded to any number of X variables
(in principle, though see Ince (2017) as an exception), and
it does not require numerical approximation, which is
especially relevant when analyzing large amounts of data.
As described by Williams and Beer (2010), the minimum
information (/,,,,) can be interpreted as a measure of re-
dundancy. It is given by (Egn. 23)

p(xi! y)
; p(x, y)og o0R0) )]
(23)

Imin(X1’X2;Y) = Emlnx/|:

yey

Note that the minimum information is very similar to the
mutual information as expressed in Eqn. 16, except that
there is a minimum operation over X; and X,. Thus, the
minimum information measures the smallest overlap in
information provided by both X, and X, about each state
of Yindividually. We then interpret this smallest overlap as
the redundancy portion because it is the amount of infor-
mation provided by both X; and X, individually. For in-
stance, if X; provided 0.2 bits of information about a state
of Y, but X, provided 0.3 bits for that state of Y, then only
0.2 bits of information would be redundantly provided by
both X, and X, individually. Once we equate the minimum
information with the redundancy (i.e., set R(X;, X5Y) =
l.in(X1, X2;Y)), the remainder of the decomposition terms
can be found easily via (Egns. 20, 21, 22).

Our discussion of the partial information decomposition
has so far ignored time ordering. However, it is frequently
useful in neuroscience applications to consider a time-
ordered structure where information moves from X, and
X, to Y (converging) or from Y to X, and X, (diverging) (Fig.
7A). In the converging case, we can think of Y as process-
ing information, computing, or jointly encoding informa-
tion from X; and X,. This manner of conceptualizing the
partial information decomposition could be useful in ex-
periments where two types of stimuli are presented to an
animal simultaneously while a neural variable is recorded,
or when two presynaptic neurons are simultaneously re-
corded with a shared postsynaptic target neuron. This
converging framework has also been combined with
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Figure 7. Partial information interpretations and example systems. A, Though the partial information decomposition does not require
explicit time ordering, it is frequently helpful to apply converging or diverging ordering to the interactions. B, Example of purely
redundant systems. The X variables provided the same amount of information about each state of Y. C, Example purely synergistic
systems. The X variables alone provided no information about Y, though they did together via a nonlinear operation (Op). D, Example
purely unique systems. In the converging example, only X; provided information about Y. In the diverging example, each X variable
provided information about different states of Y. The joint probability distributions for these systems are listed as extended data in

Fig. 7-1.

transfer entropy to include the history of the receiver
variable (Williams and Beer, 2011). In the diverging case,
we can think of X; and X, as representing or encoding
different features of Y. A common neuroscience experiment
that could use this framework would include a stimulus pre-
sented to an animal while simultaneously recording two neural
variables.

While we intuitively motivated the definitions of redun-
dancy, synergy, and unique information above, it is often
very helpful to consider specific examples (see below for
several neuroscience-specific examples of redundancy,
synergy, and unique information). For redundant systems,
we present converging and diverging examples in Fig. 7B.
In the converging case, X; and X, behave identically in
both cases, and the states of X; and X, precisely deter-
mine the state of Y. In the diverging case, the same output
from Y is always sent to both X; and X,. In both of these
cases, X; and X, each provide information about Y, but it
is the same amount of information about the same states
of Y, so the information is redundant.

Example synergistic systems are shown in Fig. 7C. In
the converging case, Y performs a nonlinear operation
(Op) on X; and X, such that when X; and X, match, Yis
one state, but when X; and X, do not match, Y is in
another state. In the diverging case, the state of Y deter-
mines if X; and X, will be in the same state. In both of
these cases, it is necessary to know the states of X, and
X, together to gain information about Y. Neither X; nor X,
provide information about Y alone, but together they do.
Thus, the information must result from X, and X, working
together, which makes the interactions synergistic.
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Finally, example systems with unique information are
shown in Fig. 7D. In the converging case, only X, deter-
mines the state of Y. In fact, X, provides no information
about Y. In the diverging case, X, and X, encode non-
overlapping states of Y. Therefore, the information from X,
and X, each is unique, although they both provide the
same amount of information individually.

We wish to emphasize that our use of the minimum
information is not a declaration that it is the superior
measure. While the minimum information possesses dis-
tinct advantages over other methods, it has been shown
that it measures the redundant amount of information as
opposed to the redundant content, which several authors
find counterintuitive (Harder et al., 2013; Bertschinger
et al., 2014; Griffith et al., 2014; Ince, 2017). For instance,
consider an example system with the joint probability
distribution given by Table 3. This system produces a
redundancy of 1 bit and a synergy of 1 bit when analyzed
with /.. However, the X, and X, variables provide infor-
mation about different combinations of states of Y. X,
differentiates between Y = 0,2 and Y = 1,3, while X,
differentiates between Y = 0,1 and Y = 2,3. Thus, we can

Table 3. Joint probability distribution for a system that dem-
onstrates redundancy is a measure of information quantity,
not content.

Xi Xz Y P(X1:X2,.Y)
0 0 0 0.25
1 0 1 0.25
0 1 2 0.25
1 1 3 0.25
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see that X, and X, provide the same amount of information
(1 bit) about the same individual states of Y, so /,,,,, finds a
redundancy of 1 bit, despite the difference in the content
in the information. We feel this is an important feature of
I, that readers should keep in mind, not an indication
that /., produces invalid results. If you find this interpre-
tation lacking, we recommend you explore the other
methods currently available that seek to improve on [,
(Harder et al., 2013; Bertschinger et al., 2014; Griffith
et al., 2014; Ince, 2017; Finn and Lizier, 2018).

In addition to the three-variable formulation discussed
above, the partial information decomposition can be ex-
panded to include additional X variables. The mathemat-
ics involved in this expansion is somewhat complex
(Williams and Beer, 2010), so we will forgo discussing it
here. The partial information decomposition has also been
adapted to transfer entropy measures between three vari-
ables (Williams and Beer, 2011), as well as measures of
information transfer and information gain (Beer and Wil-
liams, 2014). Information transfer is conceptually similar to
transfer entropy, where information is moving from some
past state to a future state, except that information trans-
fer measures information moving from one variable to
another variable about a third variable. Information gain
measures the information a variable gains in time about
another variable. The information gained by Y through
time about X is given by (Eqn. 24)

I G(X ; Yt) = I (X ; quture) - Imin(quture! Ypast;X) (24)

The information transferred from Y to Z about X is given
by (Eqn. 25)

IT(X ; Ypast - quture) = Imin(quture! {Zpastv Ypast};X) - Imin
(quture! Zpast;X) (25)

Note that the precise delays and time bin structure for
past and future states must be selected, similar to transfer
entropy. Because these measures represent more ad-
vanced techniques, we will provide only the expressions
here and direct the interested reader to further examples
in the literature (Beer and Williams, 2014). An alternative
method for measuring information transmission about
some other variable can be found in Ince et al. (2015).

Bias in entropy and mutual information

Several researchers have previously discussed biases
associated with different methods for estimating informa-
tion values from continuous data and/or small data sets
(Treves and Panzeri, 1995; Wolpert and Wolf, 1995; Pan-
zeri and Treves, 1996; Paninski, 2003; Nemenman et al.,
2004; Panzeri et al., 2007; Bonachela et al., 2008), noting
that limited data tend to bias information results. Below
we will discuss several software packages that use vari-
ous bias-correction algorithms to address this problem.
Given the introductory nature of this article and the fact
that these bias-correction techniques have not been de-
veloped for all of the information theory measures we will
discuss, we will not employ these techniques in this tuto-
rial. However, we feel it is important to discuss how bias
can affect an analysis.
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In simple cases, these biases can be understood as an
interplay between the inherent noise associated with any
analysis using limited amounts of data and the fact that
information theory metrics must be greater than or equal
to zero. Thus, noise in the estimate of the probability
distribution produces a nonzero information result, even if
the true underlying probability distribution would produce
an information result of zero. Frequently, the most
straightforward means of accounting for this bias when
comparisons are performed between two information the-
ory values is via significance testing (see Signficant test-
ing). However, it is important to note the possible
presence of bias when quoting information values. In
other words, a measurement of 0.2 bits of entropy for the
spiking activity of a neuron may be highly relevant within
an analysis, but it is important to note that the true entropy
of the spiking activity of the neuron may not be 0.2 bits,
depending on the number of data points used in the
calculation and the analysis techniques employed (e.g.,
number of bins).

As examples of the effects of bias associated with small
amounts of data in entropy and mutual information cal-
culations, we produced several simple model systems.
First, we produced models of low (0.33 bits) and high (2
bits) entropy. We randomly selected observations from
these probability distributions, estimated the probability
distributions using these observations and the methods
described above, and calculated the entropy. In Fig. 8A
we can see that as more observations were performed,
the estimated entropy values approached the entropy
values for the true probability distributions. For few ob-
servations, the estimated values were biased downward,
though several individual trials produced elevated entropy
values for the low entropy model. We performed a similar
simulation with simple low (0 bits) and high (0.53 bits)
mutual information models (Fig. 8B). Again, when few
observations were performed, the estimated values varied
widely, with a bias toward higher mutual information val-
ues.

Significance testing

So far, we have discussed the logistics of converting
neuroscience data to probability distributions and numer-
ous information theory measures that can be applied to
probability distributions to gain useful insights into inter-
actions in a system. The results of such analyses will
always be numbers greater than or equal to zero. Impor-
tantly, a real experimental system will rarely produce an
information theory measurement of precisely zero even
when no interactions actually exist between the variables
because of the presence of noise. In addition, bias can
dramatically alter the results of information theory analy-
ses (see Bias in entropy and mutual information). There-
fore, a vital step of any information theory analysis is to
assess which information theory measurements are sig-
nificant.

Surrogate data testing or Monte Carlo analysis is fre-
quently the solution to significance testing in information
theory analyses (Lindner et al., 2011; Timme et al., 2014b;
Wibral et al., 2014a; Asaad et al., 2017). This type of
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Figure 8. Example bias in entropy and mutual information calculations. A, Distributions of entropy values for low (0.33 bits) and high
(2 bits) models as a function of number of observations. Entropy values tended to be biased downwards, though some trials produced
elevated entropy values for trials with few observations. The probability distribution models were p,,,, = {0.95,0.04,0.009,0.001} and
Prign = 10.25,0.25,0.25,0.25}. The binning method (four total bins) allowed for a maximum entropy of 2 bits. B, Distributions of mutual
information values for low (0 bits) and high (0.53 bits) models as a function of number of observations. Mutual information values
tended to be biased upwards, though some trials produced lower mutual information values for trials with few observations. Both
models had two variables, each with two states. In the low-mutual-information model, all joint states were equally likely (i.e.,
independent variables). In the high-entropy model, the matching joint states had a probability of 0.45 and the other joint states had
a probability of 0.05. The binning method (four total joint states) allowed for a maximum mutual information of 1 bit. Dark fringe
represents interquartile range, and light fringe represents extremum range over 1000 trial simulations for each model and each unique

number of observations.

analysis is performed by generating surrogate null model
data that preserve certain aspects of the data while ran-
domizing other aspects. Once the information theory
analysis is applied to the surrogate data, a distribution of
null model information theory values can be compared to
the information theory value from the real data. The pro-
portion of null model information theory values that are
found to be larger than or equal to the real data are then
taken as an estimate of the p-value for the information
theory result from the real data.

The randomization procedures necessary to generate
surrogate null model data can be performed before cre-
ating probability distributions (e.g., spike jittering (Rolston
et al., 2007; Timme et al., 2014b)) or after creating prob-
ability distributions. Randomization before converting to
probability distributions is highly system specific. Thus,
we will primarily focus on randomization of the probability
distribution, because those techniques can be generally
applied to any type of data. Furthermore, if the equal
counts method of data binning is used (see Data Binning),
the same null model data can be applied to different
variables in many circumstances, greatly improving com-
putational efficiency. This is possible with equal counts
binning because the marginal distributions are identical
across different variables. The marginal distributions have
been rendered uniform via the equal counts binning
method to maximize entropy. Typically, preserving these
marginal distributions is the only constraint on the ran-
domization method (see below). Still, in any case, it is
important to randomize conservatively. For instance, in
the case of spike train jittering, it is frequently best to jitter
by small amounts to retain large-scale changes in firing
rate caused by bursts. Furthermore, if transfer entropy is
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to be applied to the data, it is often best to not jitter the
receiver neuron spike train to preserve the autocorrelation
between the past and future states of Y (Egn. 19).

Null model data can be created after generating prob-
ability distributions by randomizing the number of obser-
vations in joint states while preserving the number of
observations for each state of each variable (i.e., by pre-
serving the marginal distributions). For instance, suppose
we have two magic coins that always produce the same
flip result. Furthermore, suppose we flip each coin 10
times and produce 5 heads and 5 tails for each coin. The
true observations from these data, as well as the obser-
vations from a randomly chosen null model where the joint
observations are randomized while preserving the number
of observation for each coin alone, are shown in Table 4.

The null model observations in Table 4 can be con-
verted to a probability distribution via Egn. 3, and any
information measure that can be applied to the real data
can be applied to the null model data. This process can be
repeated many times to generate a null distribution of
information values, which allows for an estimate of the
p-value for the real data via the process described above.

To demonstrate the significance testing process using
randomized probability distributions, we will use a simple

Table 4. True and null surrogate observations for a hypothet-
ical experiment involving 10 flips of two magically linked
coins.

Real data Null surrogate data
C,=H C,=T C,=H C,=T
C, = 5 0 3 2
C,=T 0 5 2 3
eNeuro.org
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Figure 9. Example significance testing for mutual information via surrogate data null models. A,B, Example histogram of null model
(randomized real data) mutual information values and the mutual information value from the real data (red line) for a system with no
interactions (A) and for a system with interactions (B). As expected, the p-value in A indicates that the null model (X and Y are
independent) cannot not be rejected. In B, the p-value is low enough to reject the null model. C, p-values for models with different
numbers of observations as a function of interaction strength (100 models generated for each a value and number of observations,
solid line: median, fringe: interquartile range). Larger interaction strengths produced lower p-values, and models with more
observations could detect weaker interactions. The minimum p-value resolution available in this demonstration was 0.0001 because

10,000 surrogate data sets were generated for each real data set.

model system with two variables (X and Y) and a mea-
surement of their mutual information. Each variable can
take one of two possible states. We varied the interac-
tions in the model using a parameter a such that (Eqn. 26)

px =1,y =1 =025(1 + @ (26)
px =1y =2 =0251 — a
px =2,y=1 =025 — a
px =2,y =2 =025(1 + @

Thus, when a = 0, there was no relationship between X
and Y, and their mutual information should be zero in a
perfect system. When a = 1, X and Y were copies and
their mutual information should be one in a perfect sys-
tem. However, in real experiments, it is necessary to
estimate the probably distribution from observations (i.e.,
Eqgn. 3), so the estimated distribution will not be identical
to the real probability distribution, which will most likely
produce nonzero mutual information results even when
a=0.

We first considered an example hypothetical experi-
ment that conducted 100 observations from a model with
no interactions between X and Y (Fig. 9A). Despite the fact
that the true underlying probability distribution governing
this experiment had no mutual information, a nonzero
mutual information result was observed due to random
fluctuations in the observations. However, when the data
were randomized 10,000 times, the distribution of null
information values enveloped the value from the real data.
Thus, a high p-value estimate was produced, and this
result would not typically be recognized as significant.

Next, we considered an example hypothetical experi-
ment that also had 100 observations, but the model con-
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tained interactions between X and Y (Fig. 9B). A nonzero
mutual information result was observed, but the distribu-
tion of mutual information values from the null model were
almost exclusively less than the mutual information result
produced by the real data. Thus, a low p-value estimate
was produced and this result would typically be recog-
nized as significant.

Finally, we examined models with different interaction
strengths and number of observations (Fig. 9C). As ex-
pected, when more observations were performed, weaker
interactions could be detected as significant.

Selecting the number of surrogate data sets to generate
is an important concern with this method of p-value esti-
mation. In the examples shown above, we used 10,000
surrogate data sets, which allowed for a p-value resolu-
tion of 0.0001 (i.e., 1/10,000). Note that using this method,
if all of the surrogate data sets produce information values
less than the real value, it is only possible to estimate the
p-value as p < 1/N,,.4 [or, to provide a fixed value, p =
1/(2N,,,4)], not p = 0. In addition to improved resolution,
additional surrogate data sets may be helpful when per-
forming multiple comparison corrections for many infor-
mation values (e.g., stimulus encoding by many neurons
simultaneously) by lowering the minimum p-value. There-
fore, it is advantageous to use as many surrogate data
sets as possible. However, researchers must weigh the
desired or required p-value resolution against available
computational resources when determining the right num-
ber of surrogate data sets to use in their analyses.

Frequently the question arises of how to judge the
magnitude of an information theory result. If an analysis
yields a result of 0.5 bits, is that a lot? The answer to this
question is highly analysis specific, which prevents inter-
preting these values in the absence of additional testing.
If the data are discretized as discussed in Data Binning,
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the maximum allowed information result will be related
to the number of bins used, with more bins yielding higher
maximum information values. Frequently, a helpful method
for judging the magnitude of an information theory result
other than entropy is to compare the value to the entropy.
For instance, if the mutual information between two vari-
ables is 0.5 bits, but each of the variables has an entropy
of 0.5 bits, then the variables completely predict each
other. In a different case where each variable has an
entropy of 5 bits, a mutual information of 0.5 bits indicates
less predictive ability.

Because the information theory analyses performed
herein serve as demonstrations, we will forgo significance
testing in the demonstrations. That said, we wish to em-
phasize that significance testing is necessary to draw
meaningful conclusions from real data. To aid in this
process, the software package included with this article is
capable of conducting significance testing as discussed
above (see Software).

In addition to randomizing the supplied data on a
measurement-by-measurement basis, the software also
allows for the user to supply a previously calculated null
model. Using a previously calculated null model has the
potential to yield better p-value resolution by running one
null model with many surrogate data sets and greatly
reduce calculation by removing the need to analyze sur-
rogate data for each measurement. However, this tactic
will yield these advantages only if the same null model can
be applied to numerous measurements, which requires
the same marginal distributions across all the measure-
ments. Using uniform counts binning will frequently pro-
duce the same marginal distributions for the underlying
variables, making this process possible. For instance, if all
variables in an analysis possess the same number of
observations and uniform counts binning is used, then all
variables will have the same uniform marginal distribu-
tions. (Note that care must be taken to test that the
marginal distributions are identical in the event of obser-
vations with identical values.)

Finally, we must acknowledge two other important is-
sues surrounding significance testing. First, it is vital to
consider the number of significance tests performed and
to control for multiple comparisons (e.g., via Bonferroni
correction or false discovery rate control; Benjamini and
Hochberg, 1995; Benjamini and Yekutieli, 2001). This is
especially relevant when setting analysis parameters such
as number of bins, bin size, and delays. It is not appro-
priate to go parameter fishing to find a bin size that
produces significant results. Parameters should be set
initially based on the amount of available data and prior
knowledge of the system so the number of significance
tests can be reduced. However, in any case, multiple
comparison corrections must be performed.

Second, the entire paradigm of null hypothesis signifi-
cance testing is itself a topic of some controversy (Mc-
Shane et al., 2017). To a large extent, we agree that an
over emphasis on p-values without descriptions of effect
sizes, effect uncertainty, or models that explain the data
are not helpful to the advancement of science. A thorough
discussion of this topic is beyond the scope of this tuto-
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rial, but we wish to emphasize that simply quoting a
significant result in an information theory analysis (e.g.,
animal strain 1 showed significant mutual information, but
animal strain 2 did not) is less than ideal. It is important to
note that information theory allows researchers to move
beyond simply quoting p-values because information the-
ory analyses produce results in bits, which allows for a
direct measurement of effect size (though bias effects
must be considered as well; see Bias in Entropy and
Mutual Information). In other words, a difference in mutual
information results of 1 bit indicates a smaller effect size
than a difference of 2 bits. The ability to measure effect
sizes and perform significance testing in a model-free
manner makes information theory a valuable tool, but,
especially in the context of debates about null hypothesis
significance testing, it is not the only tool that should be
used (see Model Building).

Model building

We feel it is important to discuss the place of an infor-
mation theory analysis in neuroscientific studies. As we
discussed above (see What can information theory tell
you?), information theory is very helpful for detecting
complex interactions between variables, but it is not ca-
pable of providing a model that explains the gathered
data. In other words, information theory can provide in-
sights about which variables are related and how they are
related (e.g., neuron 1 influences neuron 2, but not vice
versa), but it cannot provide a unique model that explains
those interactions (e.g., neuron 1 makes an excitatory
synapse on neuron 2). Indeed, it is possible for systems
governed by different rules to produce identical informa-
tion theory results (James and Crutchfield, 2017). Of
course, the model-free nature of information theory
makes it an extremely powerful tool because it requires no
assumptions about how the variables are related (though
it can require some assumptions related to data analysis
such as binning, see Discussion). This is especially rele-
vant in complex systems where researchers frequently do
not know what model should explain the data or do not
want to restrict their analyses to certain types of models.
However, the creation of these models is one of the most
significant goals of science. In general, we seek to create
compact, simplified models that explain vast oceans of
data in every field of science. Therefore, to completely
describe the place of information theory analyses in sci-
entific research, it is necessary to emphasize the crucial
step of model building as the step following information
theory analyses. Information theory is only capable of
eliminating some possible explanations for data, not iden-
tifying the one true explanation. Unlike the information
theory analyses discussed above, model building is highly
system dependent. Furthermore, we are aware of no
studies that both perform an information theory analysis
and then build a model using the results of that analysis
for guidance. Thus, in this article it will be possible only to
provide general suggestions about model building tech-
niques to use following an information theory analysis.

A first general step to guide model building intuition is
to examine the probability distribution to which the infor-
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mation theory analysis was applied. If, for instance, the
mutual information was calculated between the firing rate
of a neuron and a stimulus, the probability distribution can
provide information about whether the neuron became
more active when the stimulus was on or if it became less
active. If, for instance, the transfer entropy was calculated
between the firing rates of two neurons, the probability
distribution can often determine if the relationship is ex-
citatory or inhibitory. Unfortunately, simply examining the
probability distribution can reveal complex nonlinear rela-
tionships, especially when more than two variables are
involved. Furthermore, automated methods to perform
these types of assessments throughout entire data sets
are difficult to create.

Beyond the simple step of examining the probability
distribution, we believe it is often best to perform some
type of Bayesian analysis (Friston et al., 2003; Koller and
Friedman, 2009; Kruschke, 2015). This process involves
creating a model and fitting it to the data to obtain model
parameters. For instance, if neural connectivity was as-
sessed with transfer entropy, it would probably be best to
assume the neurons exist in a network with certain types
of excitatory and inhibitory interactions. The existence of
a connection between any two neurons could be deter-
mined by the existence of a significant transfer entropy
result between those neurons. Then, the results of the
Bayesian analysis would describe the type of connection
that exists between each pair of connected neurons in
terms of the assumed model structure. Similar models
could be constructed to explain encoding relationships
between stimuli and neural activity, relationships between
neural activity and behavior, and complex interactions
between neural signals such as neural computations.

If the general process we are discussing for analyzing
real neuroscience data is to perform an information theory
analysis and then build a model, then the demonstration
models shown below can be thought of as something
similar to this process in reverse. For these demonstra-
tions, the true model that generated the data is known, so
we will be able to see how various features of the models
correspond to features of the information theoretic re-
sults. In a real analysis, one could perform the information
theory analysis first, then construct a model that is based
on the information theory analysis, and fit the data, for
instance.

Demonstration models

To demonstrate the utility of information theory analy-
ses, we developed several models that primarily use
Izhikevich neurons because they are easy to implement,
are computationally efficient, and have been widely used
in the literature (Izhikevich, 2003, 2007). We wish to em-
phasize that these models (or simulations) are used here
only as a means to produce data very similar to real neural
data for demonstration purposes. The purpose of analyz-
ing data from these simulations is not to test novel scien-
tific hypotheses; rather, these simulations are used purely
for demonstration purposes. For all models, we attempted
to use a realistic number of observations and number of
experiments. In all cases, we generated and analyzed 20
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models, which is roughly similar to conducting experi-
ments with 20 neural recordings. Also, for all models, we
used the equal counts method of binning the data to
maximize the entropy of underlying variables and, when
neuron spikes are concerned, we examine the information
in terms of spike counts (i.e., rate coding). For all models,
we include the necessary software to generate and ana-
lyze the data used in this article (see Software).

Small network models of Izhikevich neurons

We used two simple models of individual neurons to
produce small networks of neurons (Izhikevich, 2007). We
used a model of a regular spiking (RS) neuron that could
produce excitatory connections to other neurons, as well
as a model of a fast spiking interneuron (FSI) that could
produce inhibitory connections to other neurons. These
networks allowed us to examine various small circuits and
stimulus encoding behaviors. These networks involved
one to four neurons, some subset of which were stimu-
lated and/or interconnected. For excitatory neurons in
these networks, we used a model governed by the follow-
ing equations [Eqgns. 8.5 and 8.6 in Izhikevich (2007)]:

Cg—‘; =k(v—-v)(v-—v)—u-+l (27)
u _
o =abv —v) - u] (28)
at

if V= Vyearo thenv <~ c, u<—u + d (29)

In Egns. 27, 28, 29, v represents the membrane potential,
u represents the recovery current, C represents the mem-
brane capacitance, v, represents the resting potential, v,
represents the instantaneous threshold potential, v,
represents the maximum spiking voltage, k and b are
parameters related to the neuron’s rheobase and input
resistance, a represents the recovery time constant, ¢
represents the post-action potential voltage reset value,
and d represents the net current flow activated during an
action potential. One particular combination of parame-
ters has been shown to produce spiking behavior similar
to regular spiking neurons (Izhikevich, 2007) (Table 5). In
our simulations, we used parameters identical to those
discussed in Izhikevich (2007). A similar model has been
shown to produce behavior similar to fast spiking in-
terneurons (Izhikevich, 2007) (Egns. 30, 31, 32, 33):

Cg—‘; =k(v—-v)\v-—v)—u-+l (30)
W — aluw) - ul (31)
at

if V= Vyearo thenv < ¢ (32)
= <
Uw =0 v <V, (33)

U =b(v —v)® v=y,

With the exception of k, we used parameters identical to
those discussed in Izhikevich (2007) (Table 6). We altered
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Table 5. Regular spiking neuron model parameters.

Reviews 21 of 40

Table 7. Connectivity weights in small network models.

Parameter Regular spiking
C 100
v, -60
v, -40
Vpeak 35
0.7
b -2
a 0.03
c =50
d 100

Table 6. Fast spiking interneuron model parameters.

Parameter Fast spiking interneuron
(o} 20
v, -55
Vi -40
Vpeak 25
3.5
b 0.025
a 0.2
c -45
Vp -55

the value of k from 1 to 3.5 to make the neuron more
responsive. We felt that this change was appropriate
because the purpose of these models was to demonstrate
the information theory analyses.

We simulated inputs from stimuli and presynaptic ac-
tion potentials using different types of current pulses.
Current was injected into neurons from a stimulus using a
depolarizing square pulse. Current injected (removed) via
an excitatory (inhibitory) connection between neurons
was modeled using a positive (negative) gamma function.
In all cases, this gamma function had a mean of 30 ms
and a standard deviation of 20 ms. The magnitude of the
current injected or removed from a connection was con-
stant throughout each simulation in all cases except for
the model of sensory habituation. The specific weights for
each simulation are listed in Table 7. The models were run
using time bins of 0.1 ms. Membrane noise was created
using a custom 1/f noise generator to produce spontane-
ous firing. This noise generator produced Gaussian noise
and then filtering the noise in frequency space to produce
the appropriate 1/f noise spectrum. It then transformed
the noise back to a time-varying signal using an inverse
Fourier transform.

Large network models of Izhikevich neurons

In addition to small networks of neurons, we used a
large 1000-neuron Izhikevich network to examine the be-
havior of large groups of neurons (Izhikevich, 2003). We
used parameters identical to those in the original publica-
tion with the exception that we altered the connectivity to
be distance dependent and we altered the synaptic
weights to produce the same total weights found in the
original network. We placed the neurons at random loca-
tions on a two-dimensional square (1 spatial unit by 1
spatial unit) with periodic boundary conditions (i.e., a
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Figure Synapse location Weight (max pA)
11 E1 to E2 200
12 E1 to E2 200
E1to 1 200
11 to E2 0 to -150
14 E1 to E3 200
15 E1to 1 50
E2 to I1 50
E1 to E3 200
E2 to E3 200
11 to E3 -250
Background inhibition -100
16 11 to E1 -30
12 to E1 -30
Background excitation 0 or 200
17 E1 to E3 100
E2 to E3 100

torus). The likelihood p.,,(n that two neurons would be
connected decreased exponentially with distance () such
that at a distance of 0.05 spatial units, the likelihood for
two neurons to be connected was 0.5 (Egn. 34):

Peon() = 0.513e7051% (34)

In the original network (Izhikevich, 2003), each neuron
was equally likely to connect to all others, and the con-
nection weights were uniformly distribution between 0
and 0.5 for connections from excitatory neurons and be-
tween -1 and 0 for connections from inhibitory neurons.
To compensate for lost connections due to spatial con-
nectivity in our model, we increased the synaptic weights
such that the total weights from excitatory and inhibitory
neurons considered individually were identical to the orig-
inal version of the model. The network was stimulated
using a square pulse applied to the 40 excitatory neurons
closest to a line in the network (i.e., a ring around the
torus). In the case of two stimulation simulations, neurons
near two parallel lines in the network were stimulated.
Each stimulus had a magnitude of 50 and had a duration
of 100 ms, with a 1000-ms interstimulus interval.

Canonical models

In addition to various networks of Izhikevich neurons,
we also employed several models of canonical neurosci-
ence experiments (Bear et al., 2007).

First, using the individual Izhikevich neuron models, we
constructed a simulation of sensory habituation in Aplysia
(Castellucci et al., 1970). This model contained a sensory
neuron and a motor neuron, both modeled as RS neurons.
The sensory neuron received stimulus pulses and made
an excitatory connection on the motor neuron. However,
the strength of the current that passed through the model
synapse decreased with repeated stimuli. Specifically, the
weight of the connection decayed following an exponen-
tial function such that the first spike delivered a maximum
current of 200 pA, while the last spike delivered a maxi-
mum current of 30 pA. This weakening synapse effectively
modeled decreased gill and siphon withdrawal reflexes
with repeated stimulation in Aplysia. Spike counts were
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binned at 50 ms for information theory analyses of data
from these simulations.

Second, we built a simple probabilistic model of center-
surround retinal ganglion cells (Kuffler, 1953). These neu-
rons fired preferentially when a light stimulus was applied
near the location of the cell but showed decreased firing
further from the cell location (ON-center). 300 neurons
were placed randomly throughout a two-dimensional
square plane (1 unit by 1 unit) with periodic boundary
conditions (i.e., a torus). The radius of the ON-region field
was 0.1 units, and the outer radius of the OFF-region was
0.3 units. Therefore, cells often had overlapping receptive
fields. 400 light dot stimulations were randomly applied
throughout the plane. The probability to spike for each
neuron was such that it had a background firing rate of 30
Hz, while stimuli in the center region produced firing rates
of 100 Hz and stimuli in the surround region produced
firing rates of 1 Hz. Spike counts were binned at 25 ms for
information theory analyses of data from these simula-
tions.

Third, we constructed a simple probabilistic model of
direction-selective motor cortex neurons in primates
(Georgopoulos et al.,, 1982). In this model, a primate
moved a cursor on a two-dimensional plane from a center
location to one of eight equally spaced locations sur-
rounding the center. The firing of these neurons was
modulated such that certain directions of movement were
preceded by elevated or depressed firing. The time profile
of this change in firing rate was modeled using a Gaussian
distribution with a mean of 100 ms before movement
onset and a standard deviation of 100 ms. The respon-
siveness of the neurons was controlled linearly by a pa-
rameter r such that highly responsive neurons (r = 1)
would show a doubled firing rate for the preferred direc-
tion, while unresponsive neurons (r = 0) would show no
change in firing rate based on direction of movement. The
probability for a neuron to spike was set such that the
neuron had a background firing rate of 50 Hz. Thus, a
maximally responsive neuron produce a maximum firing
rate of 100 Hz or a minimum firing rate of 0 Hz ~100 ms
before movement onset based on the direction of motion.
20 highly responsive neurons and 100 neurons with ran-
domly selected responsiveness were used, and 150 di-
rection trials were conducted. Spike counts were binned
at 25 ms for information theory analyses of data from
these simulations.

Finally, we constructed a probabilistic model of place
cells in the hippocampus (O’Keefe and Dostrovsky, 1971).
This model used a random walk to approximate an animal
exploring a square cage. Neurons in the model preferen-
tially fired when the animal was located in certain regions
of the cage (place field). The place field of each neuron
was randomly selected, and 200 neurons were used in
each model. The probability for a neuron to spike was
modulated in space using a two-dimensional Gaussian
function centered on the place field for that neuron and
with a standard deviation of 0.15 spatial units. The prob-
ability to spike was set such that when the animal was
located at the center of a neuron’s place field, the firing
rate was set to 100 Hz and each neuron had a back-
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ground firing rate of 20 Hz. The animal was allowed to
explore the cage for 200 s. Spike counts were binned at
100 ms for information theory analyses of data from these
simulations.

Software

To facilitate the use of information theory analyses in
neuroscience, we have created a MATLAB software pack-
age (the Neuroscience Information Theory Toolbox) to
carry out the analyses discussed in this tutorial article
Extended Data. The software uses standard MATLAB
functionality throughout, so once the user’s data are ren-
dered as MATLAB variables, the remainder of the analysis
can be conducted entirely in MATLAB. Our overall goal
was to create software that functioned like any other basic
MATLAB functions. In short, if you know how to manipu-
late matrices and use built-in functions in MATLAB, you
will be able to quickly use this software. The analysis
software is thoroughly documented within each function
similar to built-in MATLAB functions, and overall guidance
is supplied via a README file. Numerous simple demon-
strations are included in addition to the software to gen-
erate the data and perform information theory analyses
for all of the simulations discussed in this article. These
simple demonstrations serve to highlight the coding nec-
essary to implement various parameters and settings
associated with different analyses. Furthermore, the soft-
ware is capable of performing significance testing using
both the real data and predefined null models (see Signif-
icance Testing), though this functionality was not em-
ployed in the simulations presented herein. Finally, basic
functions are provided so the user can build more com-
plicated analysis software to suit their needs, as well as
macro-style functions that can be quickly and easily used
to perform information theory analyses.

In fact, the generality of the software means that the
software can be used to analyze data from disciplines
other than neuroscience. We chose to use the word “neu-
roscience” in the name of the software package to high-
light its intended role, but it can just as easily be applied
to data from economics, physics, computer science, or
sociology as it can to data from neuroscience.

While we feel our software package fills a valuable role
in the field, we wish to emphasize that other excellent
information theory software packages exist and that these
packages may be more useful depending on the desired
application (Ince et al., 2010; Quiroga and Panzeri, 2013;
Lizier, 2014; Szabo, 2014; Moore et al., 2017). We ex-
plored 10 other available software packages and docu-
mented their important features to aid readers in
comparing software options (Table 8). We found that
many of these other packages are focused on a narrower
type of analysis. Several software packages have been
introduced to calculate transfer entropy (Ito et al., 2011;
Lindner et al., 2011; Montalto et al., 2014; Pastore et al.,
2016), often with the emphasis on estimating neural con-
nectivity. Also, several software packages have focused
on estimating entropy and mutual information using more
advanced techniques (e.g., binless and kernel estimation
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Table 8. Information theory analysis software package comparisons.
Dynamic information Advanced probability
capabilities? (ensemble distribution estimation
Software Information methods from multiple ~ Significance methods and/or bias
package measures Data types trials) testing? correction Language
Neuroscience Information Entropy, mutual information, transfer  Discrete and continuous Yes Yes No MATLAB
Theory Toolbox entropy, partial information
decomposition, information
transmission, conditional variants
JIDT (Lizier, 2014) Entropy, mutual information, transfer Discrete and continuous Yes Yes Yes JAVA (with Python
entropy, information storage, and MATLAB
conditional variants functionality)
Inform (Moore et al., 2017) Entropy, Mutual Information, Transfer Discrete Yes Not directly No C (with Python
Entropy functionality)
Transfer Entropy Toolbox Transfer entropy Spike trains only No Not directly No MATLAB
(Ito et al., 2011)
Trentool (Lindner et al., 2011) Transfer entropy Primarily continuous Yes Yes Yes MATLAB
MuTE (Montalto et al., 2014) Transfer entropy Primarily continuous No Yes Yes MATLAB
ToolConnect (Pastore et al., 2016) Entropy, transfer entropy Spike trains only No Yes No C++
STAToolkit (Goldberg et al., 2009) Entropy, mutual information Spike trains only Not directly Yes Yes MATLAB
PyEntropy (Ince et al., 2009) Entropy, mutual information Discrete and continuous Not directly Not directly Yes Python
Information Breakdown Toolbox Entropy, mutual information, Discrete and continuous  Not directly Not directly  Yes MATLAB
(Magri et al., 2009) breakdown information
ITE Toolbox (Szabo, 2014) Entropy, mutual information Discrete and Continuous Not directly Not directly  Yes MATLAB and
Python
dit (dit-contributors, 2018) Entropy, mutual information, and Discrete Not directly Not directly No Python

many more

We examined ten other information theory software packages and recorded important features for users. Many packages are either focused on transfer en-
tropy alone or entropy and mutual information calculations. Many packages include advanced estimation and bias correction techniques, unlike the neurosci-

ence information theory toolbox.

techniques, as well as bias correction) than those pre-
sented herein to address problems surrounding continu-
ous data and binning (Goldberg et al., 2009; Ince et al.,
2009; Magri et al., 2009; Lindner et al., 2011; Lizier, 2014).
In total, these software packages are capable of providing
superior analyses of certain types of data, though their
underlying assumptions (e.g., Gaussian distributed data in
some cases) must be carefully weighed. Furthermore, it
should be noted that, to the best of our knowledge, no
such advanced estimation techniques have been ex-
tended to the partial information decomposition. We
intentionally chose to not include bias correction algo-
rithms in our software because of the presence of
significance testing algorithms. We feel this aligns bet-
ter with the introductory goals of this paper and typical
neuroscience experiments where two values are com-
pared while the absolute value of the result is frequently
less important.

We attempted to perform computation speed compar-
isons with all of the software packages listed in Table 8.
Unfortunately, we were only able to perform comparisons
of identical analyses using the JIDT Toolbox (Lizier, 2014;
10 times faster than the Neuroscience Information Theory
Toolbox) and the Transfer Entropy Toolbox (Ito et al.,
2011; 100 times faster than the Information Theory Tool-
box). This speed performance was not surprising given
the focus of the Neuroscience Information Theory Tool-
box on flexibility and standard MATLAB functionality. We
were unable to test the other packages for two main
reasons. First, several packages require the use of more
advanced probability estimation techniques that are not
available in the Neuroscience Information Theory Toolbox
(Lindner et al., 2011; Montalto et al., 2014; Szabo, 2014).
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As a result, these packages took significantly longer to
perform a given information theory calculation, but this
was not a fair comparison due to the additional calcula-
tions performed by the other software package. Second,
several software packages could not be made to run on
our machines or required programming languages with
which we are not familiar (Goldberg et al., 2009; Ince et al.,
2009; Magri et al., 2009; Pastore et al., 2016; Moore et al.,
2017; dit-contributors, 2018). Obviously, our inability to
test the software may be a larger reflection on our pro-
gramming abilities (or our lack of available time to devote
to learning new languages) than on the quality of the
software itself. However, we feel these are still relevant
details for readers who may find themselves in similar
positions. We anticipate that many of these software
packages are orders of magnitude faster than the Neuro-
science Information Theory Toolbox based on the lan-
guages in which they are written or their use of mex files
in MATLAB.

In summation, we highly recommend that the interested
reader pursue these other software packages if his or her
research question better aligns with the goals of another
software package. While many different software pack-
ages exist, we found that most of them differ in subtle but
important ways regarding functionality, data types, pur-
pose, and programming language. For instance, the dit
toolbox lacks methods for handling experimental data,
but it maintains a very large set of available information
measures for discrete probability distributions (Dit-
contributors, 2018). For the purposes of analyzing exper-
imental data in a neuroscience context, we found the JIDT
software package to be very helpful (Lizier, 2014). It pos-
sesses almost all of the information measured discussed
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Figure 10. Single neuron stimulus encoding is captured in a variety of situations. A, Stimulus on versus stimulus off. B, Strong
stimulus versus weak stimulus. C, Stimulus delay. D, Nonlinearly filtered stimulus. 1, Explanatory diagrams. 2, Neuron firing rates were
modified by the application of a depolarizing square pulse. Blue lines: spikes; A2 and B2 involved the application of a strong stimulus
and a zero or weak stimulus, respectively. C2 involved a delay between the application of the stimulus and it being received by the
neuron. D2 involved a nonlinear filter of the stimulus that weakened the strongest applied stimulus and strengthened the weakest
applied stimulus. 3, Stimulus encoding through time as measured by mutual information between the spike count of the neuron and
the stimulus state [(A3 and C3): on/off (B3): strong/weak (D3): weak/medium/strong, dots: mean, error bars: standard deviation across
models (n = 20)]. In all cases, large amounts of mutual information were observed between the spike count and the stimulus state
during the stimulus, but not otherwise (accounting for the delay in C).

here, data can be analyzed via an intuitive GUI, it can
implement more complicated information estimation
techniques, and, though it is written in JAVA, implemen-
tation in MATLAB is straightforward in most respects.
JIDT does have some issues with importing/organizing
data from MATLAB, different information measures, and
interpretation of time-dependent information measures,
but we would probably recommend it for most users as
the next software to use after the Neuroscience Informa-
tion Theory Toolbox. At the very least, we hope that this
paper and our software package provide the reader with a
useful introduction to information theory and information
theoretic analyses of neuroscience data.

Software accessibility
The MATLAB software used in this tutorial is part of the
Extended Data.
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Results

Single neuron stimulus encoding

To demonstrate a possible use for mutual information
(Egn. 16), we will first examine stimulus encoding by an
individual neuron (Fig. 10). In these examples, we de-
scribe various scenarios where information theory can be
used to identify neurons that encode a stimulus (or some
other variable). Note that similar techniques could be used
to identify other signals that encode a stimulus. In the
simplest case (Fig. 10A), a square wave current pulse was
applied to the neuron (Fig. 10A2). The spike count during
the pulse (e.g., 500-1000 ms, Fig. 10A2) was compared
using mutual information to the spike count during a
period with no pulse (e.g., 1500-2000 ms, Fig. 10A2). One
variable was the stimulus state (on versus off) and the
other variable was the spike count in 50-ms bins, which
was then binned into two equal count bins. As expected,
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Figure 11. Information transmission between neuron peaks at the onset of transmission. A, An excitatory neuron (E1) received a
stimulus and then sent current to a second excitatory neuron (E2). B, Both E1 and E2 spiked during the stimulus, though E1 started
spiking earlier. C, Mutual information between E2 and the stimulus state (on/off). E2 encoded the spiking state throughout the
stimulus. D, Transfer entropy from E1 to E2 peaked immediately following the onset of the stimulus and was nonzero before, during,
and after the stimulus. This elevated transfer entropy was due to the constant existence of the connection. E, Information transmission
from E1 to E2 about the stimulus state (on/off) peaked at the onset of the stimulus, was nonzero throughout the stimulus, but was
near zero otherwise. [For all information plots, dots: mean, error bars: standard deviation across models (n = 20)].

very little mutual information was observed before the
start of the stimulus (Fig. 10A3, 0 ms). No information was
observed during this time period because there was no
difference in firing rate between the stimulus on and off
time periods (for instance, compare ~400 ms and ~1400
ms in Fig. 10A2). Then, during the stimulus, the spike
count of the neuron provided a great deal of information
about the stimulus state (compare ~600 ms and ~1600
ms in Fig. 10A2). Finally, when the stimulus ended, the
mutual information dropped to near zero (compare ~1100
ms and ~2100 ms in Fig. 10A2).

A similar pattern was observed when two stimuli were
applied to a neuron (Fig. 10B7). In this example, the two
stimulus states were strong and weak (Fig. 10B2), but the
spike count variable maintained a similar structure. Here,
the mutual information increased during the stimulus (Fig.
10B3), but the increase was not as strong as in the
previous example because the spike counts of the neuron
were not able to differentiate the two stimuli states as
accurately.

When a delay in the stimulus was used (Fig. 10C),
patterns of spiking and mutual information that were sim-
ilar to Fig. 10A were observed, except that the spiking and
mutual information were delayed. Finally, even when a
nonlinear filter was applied to three stimuli (Fig. 10D),
mutual information was still able to detect encoding of the
stimulus by the neuron (Fig. 10D3).
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Please note that we intentionally used a strong stimulus
in this example (and many subsequent examples) to make
the interactions readily apparent. They are so strong in
fact that in the examples with two stimuli, it would likely be
possible to observe a significant difference in spike rate
between the stimuli with a simple t test (see Fig. 5).
However, real data are not likely to produce such strong
effects, information theory allows for the quantification of
the effect sizes, and information theory easily allows for
the analysis of cases with more than two stimuli.

Two-neuron information transmission

The simple one-neuron simulations shown in Fig. 10
above can easily be expanded to two neurons to demon-
strate information transmission (Fig. 11). These examples
demonstrate how information theory can be used to iden-
tify connected neurons and the variables about which
they communicate. Note that similar analyses could be
used to identify communication between other signals. In
this simulation, a single excitatory neuron (E1) is stimu-
lated by a square wave depolarizing pulse and makes a
synapse on a second excitatory neuron (E2; Fig. 11A). As
can be seen in an example spike raster, both E1 and E2
spiked more frequently during the stimulation, and a slight
delay was observed for E2 relative to E1 (Fig. 11B). As
expected from the example spike raster, E2 still encodes
the stimulus by firing more frequently when the stimulus
was on in comparison to when it was off (Fig. 11C, mutual
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information between spike count in 25-ms bins and stim-
ulus state (on versus off)).

Next, we examined the amount of information carried
by the synapse using transfer entropy (Fig. 11D). In this
case, transfer entropy measures the amount of informa-
tion that the spike count of E1 provides about the spike
count of E2 in the next time bin beyond the information
provided by the spike count of E2 in the past (Eqn. 19). It
does not directly take account of the stimulus. Because
the neurons are always connected, and individual back-
ground spikes in E1 can influence E2, a steady nonzero
transfer entropy was observed for time periods when the
stimulation was never applied (i.e., before the stimulus
turned on and after the stimulus turned off). However,
immediately following the onset of the stimulus, a large
peak in the transfer entropy was observed because the
spiking state of E1 just as the stimulus began largely
affected the state of E2 in a way that could not be
predicted based on the past state of E2 alone. While the
stimulus was on, the past state of E2 provided a great
deal of information about its future state because the
stimulus was constant. Therefore, the transfer entropy
value returned to its nonzero background level for the
remainder of the stimulus. A similar peak near the end of
the stimulus was not observed because E2 returned to its
background low firing rate, which was not distinguishable
between stimulus on and stimulus off trials. Therefore, the
future state of E2 had low entropy, so transfer entropy
was also low.

Finally, we used the information transmission (Eqn. 25)
to measure the amount of information about the stimulus
transmitted from the spike count of E1 to the spike count
of E2 (Fig. 11E). Information transmission was near zero
during the periods when the stimulus was never on, unlike
transfer entropy. Similar to transfer entropy, a large peak
was observed in the information transmission immedi-
ately after the stimulus began. This indicates that the
synapse was carrying a large amount of information
about whether the stimulus was on or off as the firing
rate of E2 was increasing dramatically. However, once
the firing rate increased, the information transmission
decreased to a low nonzero value. As with transfer
entropy, the information transmission was low during
this period because the past state of E2 provided a
great deal of information about the state of the stimu-
lus. However, unlike transfer entropy, the information
transmission was zero during time periods when the
stimulus was never on because no information about
the stimulus was transmitted during this time.

Inhibition modulated encoding

The impact of inhibition on encoding can be demon-
strated by adding an inhibitory neuron to the circuit de-
scribed in Fig. 11 and examining similar spike count
encoding. This example demonstrates how information
theory can be used to study the influence of excitation
and inhibition on information encoding. By adding an
inhibitory neuron (I1) after E1 and varying the strength of
its synapse on E2 (Fig. 12A), various encoding strategies
were observed. First, when increasing the strength of the
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inhibitory synapse, a minimum in stimulus encoding by E2
was observed (Fig. 12B, mutual information between E2
spike count in 50-ms bins and stimulus state (on versus
off). This behavior can be better understood by examining
example spike rasters from a weak inhibition model (Fig.
12D17), a medium inhibition model (Fig. 12E7), and a
strong inhibition model (Fig. 12F7). The weak inhibition
model produced elevated firing in E2 during the stimulus,
thus producing encoding (ON encoding; Fig. 12D2). The
strong inhibition model produced depressed firing in E2
during the stimulus, also producing encoding (OFF en-
coding; Fig. 12F2). When the inhibition was correctly bal-
anced, the firing rate of E2 was generally unchanged by
the stimulus, producing little encoding (Fig. 12E2). How-
ever, in all inhibition cases, higher encoding was observed
by 11 and E2 jointly in comparison to E1 (Figs. 12C, D3,
E3, and F3). In this case, the joint encoding was measured
by calculating the mutual information between the stimu-
lus state and the joint state of the spike counts of the I1
and E2 neurons (Eqn. 17). This result is especially note-
worthy because |1 and E2 only receive information about
the stimulus via E1. This result highlights the importance
of the encoding power gained by increasing the number
of encoders, especially in a noisy system of neurons.

Information transmission and encoding in a large
network

To move beyond simple circuits of a few neurons, we
examined a large 1000-neuron network model (Izhikevich,
20083; Fig. 13). This example demonstrates how information
theory can be used to identify information encoding and
transmission in larger networks. Excitatory (800) and
inhibitory (200) neurons were randomly arranged on a
2-dimensional plane with periodic boundary conditions and
preferentially connected to other nearby neurons (Fig. 13A).
A small number of excitatory neurons (40) near the center
line of the plane were stimulated with a depolarizing square
pulse similar to previous simulations. Immediately after the
pulse, a wave of activity propagated outward from the center
line of the plane (Fig. 13B). As expected this wave of activity
carried information about whether the stimulus had been
applied or not [Fig. 13C, mutual information between stim-
ulus state (on versus off) and spike count in 5-ms bins].
Furthermore, elevated transfer entropy was observed within
the wave and directed outward as the wave moved outward
from the center line (Fig. 13D, neuron spike counts in 5-ms
bins).

The result that transfer entropy is changing as the wave
of activity spreads through the network demonstrates the
difference between physical (or structural) connectivity
and functional or effective connectivity (Sporns, 2007,
2013). In this example, the underlying physical connectiv-
ity of the network did not change at any point in the
simulation, but the transfer entropy (which measures
functional or effective connectivity) did change. As an
analogy, physical connectivity tells you where the pipes
are in the house, while functional connectivity tells you
where the water flows. When there is little activity in the
network, it is possible for physically connected neurons to
not produce significant amounts of transfer entropy if the
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Figure 12. Inhibition can modulate stimulus encoding modalities. A, Excitatory neuron E1 received stimulus current and sent current to
inhibitory neuron 11 and excitatory neuron E2. Neuron I1 also inhibited neuron E2. B, Average mutual information during stimulus between
the spike count of E2 and the stimulus state (on/off) as a function of inhibition current from I1 to E2. Note the local maxima in encoding for
low inhibition and high inhibition. Also, note that mutual information is able to detect both firing rate increases and decreases, though firing
rate decreases provide less information. C, Average mutual information during stimulus between the stimulus state (on/off) as a function of
inhibition current from I1 to E2 for E1 alone and for 11 and E2 jointly. Note that I1 and E2 jointing encoded the stimulus state for all inhibition
levels better than E1 alone, despite the fact that only E1 received the stimulus current. D, Weak inhibition. E, Medium inhibition. F, Strong
inhibition. (1) Example spike rasters. (2) Mutual information between the stimulus state (on/off) and neuron E2. (3) Mutual information
between the stimulus state (on/off) and E1 alone or 11 and E2 jointly. In D, neuron E2 encoded the stimulus state by increasing firing during
the stimulus on state. In E, the inhibition and excitation balanced to render neuron E2’s firing rate unchanged by the stimulus. In F, neuron
E2 encoded the stimulus state by decreasing firing during the stimulus on state. [For all information plots, dots: mean, error bars: standard

deviation across models (n = 20)].

driving neuron is not active. However, once the driving
neuron becomes active, it is possible to detect signifi-
cant transfer entropy. The crucial difference between
these two types of connectivity is of vital importance
and has been widely discussed in the literature (Sporns,

May/June 2018, 5(3) e0052-18.2018

2007, 2013; Bullmore and Sporns, 2009; Friston, 2011;
Schoélvinck et al., 2013). Therefore, this distinction should
be considered in an analysis of this type. Obviously, both
physical and functional connectivity are interesting and
important. However, this example demonstrates that
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Figure 13. Activity waves carry stimulus information and transmit information. A, Example 1000 neuron Izhikevich network on a 2-D surface
with periodic boundary conditions and distance dependent connectivity. 40 neurons near the center line were stimulated. Only connections
from stimulated neurons are shown to improve clarity (gray lines). B, Example spike raster sorted by distance from the x = 0.5 line. Following
the application of the stimulus, a wave of activity propagated outwards from the center. C, Average mutual information across all models
(n = 20) between the stimulus state (on/off) and the neurons as a function of neuron position. Note that the encoding spreads outwards
from the center line of the network. D, Example transfer entropy between neurons as a function of time from stimulus. The nonstimulus
neurons are sorted by distance from the line x = 0.5. Note that transfer entropy first appears from stimulated neurons to nearby
nonstimulated neurons (5-10 ms), then appears from nearby nonstimulated neurons to more distant neurons (10-15 ms).

transfer entropy is a measure of functional or effective
connectivity, not physical connectivity.

Small circuit example: unique information

To examine converging information flows and com-
putation, we created a small network similar to that
described in Fig. 11, except that a second excitatory
neuron driven by a different stimulus was added (Fig.

May/June 2018, 5(3) e0052-18.2018

14A). This example demonstrates how unique informa-
tion can be used to identify information transmission in
a system with multiple neurons and possible connections. In
this case, because the second stimulated neuron (E2) did
not make a synapse on E3, stimulus B did not influence the
activity of E3 (Fig. 14B). When the partial information decom-
position was applied to these data with the states of the two
stimuli as the X variables and the spike count of E3 in 25-ms
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Figure 14. Unique information represents encoding about one stimulus in a joint set. A, Excitatory neuron E1 received input current
from stimulus A, while excitatory neuron E2 received input current from stimulus B. Only E1 sent current to excitatory neuron E3. B,
Example spike raster with stimuli. As expected, stimulus A caused neuron E1 to fire, which caused neuron ES3 to fire. C-F, PID values
between the spike count of E3 and the stimuli states (on/off). Neuron E3 encoded only the state of stimulus A, so E3 uniquely encoded
stimulus A. [For all information plots, dots: mean, error bars: standard deviation across models (n = 20)].

bins as the Y, only unique information about stimulus A was
present in E3 (Fig. 14C-F). This is expected because no
information about stimulus B was present in the spiking
activity of E3.

Small circuit example: synergy

To create a similar small model circuit that produced high
synergy, we added an inhibitory neuron (1) and constant
weak background inhibition (Fig. 15A). This example dem-
onstrates how information theory can be used to identify and
quantify a complex interaction among several neurons. The
behavior of this system was similar to an XOR logic gate in
that E3 showed elevated spiking when only one of the stimuli
was on, but not both (Fig. 15B). We then applied the partial
information decomposition analysis with the stimuli as the X
variables and the spike count of E3 in 25-ms bins as the Y
variable (Fig. 15C—F). As expected, we found large amounts
of synergy because the spiking activity of E3 provides
information about the activity of both stimuli together,
but it does not provide information about either stimu-
lus alone. Put another way, the state of each stimulus in
isolation does not determine the spiking activity of ES3.
Rather, only simultaneous knowledge of both stimuli
will determine the state of E3.

Small circuit examples: synergy and redundancy

The interplay between inhibition and excitation can in-
fluence the presence of both synergy and redundancy, as
shown by small circuit models with two stimulated inhib-
itory neurons, background excitation, and a postsynaptic
excitatory neuron (Fig. 16A7 and B7). This example dem-
onstrates how information theory can be used to differ-
entiate between different connectivity structures among
neurons across different scales. When background exci-
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tation was present to increase the background firing rate
of the excitatory neuron, the influence of the stimuli was
shown via the reduction in spiking behavior (Fig. 16A2).
The behavior of this circuit is similar to a NOR logic gate
because the spiking activity of E1 is elevated only when
neither stimulus A nor B is on. Similar reductions in firing
rate were not observed when the background excitation
was not present (Fig. 16B2). We then applied the partial
information decomposition analysis with the stimuli as the
X variables and the spike count of E1 in 25-ms bins as the
Y variable (Fig. 16C-F). When the background excitation
was on, both synergy and redundancy were observed,
but when the background excitation was off, all infor-
mation values were near zero. This second result makes
sense because E1 provided little information about the
stimuli either alone or jointly when the background
excitation was off. When the background excitation
was on, E1 provided some information about both stim-
uli individually, but also some information about their
joint state, resulting in synergy and redundancy. Said
another way, it requires simultaneous information about
stimuli to know if E1 had high spiking activity, but if
either stimuli was on, it would be known that the spiking
activity of E1 would be low.

In the previous two stimuli examples, the stimuli were
independent. However, if the stimuli are dependent,
additional changes in synergy and redundancy can be
observed (Fig. 17). This example demonstrates how infor-
mation theory can be used to analyze the effects of
varying stimuli on a system of neurons. This simulation
contained three excitatory neurons, two of which received
stimuli and then made synapses on the third excitatory
neuron (E3; Fig. 17A). The relationship between the stimuli
was modulated by a parameter a (Fig. 17B) such that
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Figure 15. Synergy represents encoding simultaneous information about both stimuli. A, Neuron E3 received excitatory inputs from
neurons E1 and E2, both of which received stimulation. Neurons E1 and E2 also sent current to inhibitory neuron 11, which inhibited
E3. Neuron E3 also received constant background inhibition from other neurons. B, Example spike rasters. Neurons E1 and E2 fired
when their respective stimulus is applied. Note that neuron E3 only fired when either E1 or E2 was active, but not both due to inhibition
from I11. C-F, PID values between the spike count of E3 and the stimuli states (on/off). Neuron E3 showed sustained synergy because
it encoded information about the simultaneous states of stimuli A and B. [For all information plots, dots: mean, error bars: standard

deviation across models (n = 20)].

a < 0 implied anticorrelation between the stimuli and
a > 0 implied correlation between the stimuli. In the
uncorrelated case, E3 produced elevated spiking activity
when either stimuli was on, similar to an OR logic gate
(Fig. 17C). We applied the partial information decompo-
sition analysis with the stimuli as the X variables and the
spike count of E3 in 25-ms bins as the Y variable using a
variety of a values (Fig. 17D,E). When the stimuli were
anticorrelated, E3 always showed elevated spiking activ-
ity, so it provided no information about the stimuli (Fig.
17D1 and E7). When the stimuli were uncorrelated, redun-
dant and synergistic information was observed in the
system (Fig. 17D2 and E2) similar to the behavior seen in
Fig. 16. When the stimuli were correlated, only redundant
information was observed in the system (Fig. 17D3 and
E3). In this case, the stimuli provided the same informa-
tion about the spiking state of E3 because the stimuli
behaved identically (see Pica et al. (2017) for a recent
further possible refinements of redundancy). As the cor-
relation tuning factor was changed, the synergy was
found to peak near an uncorrelated system, while redun-
dancy peaked when the stimuli were most correlated (Fig.
17D4 and E4).

Synergy, redundancy, and unique information in a
large network

We modified the large 1000-neuron network shown in
Fig. 13 to be stimulated at two points to demonstrate
synergy, redundancy, and unique information in a large
network (Fig. 18A). This example demonstrates how in-
formation theory can be used to analyze complex encod-
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ing of multiple stimuli in a large network of neurons. As
expected, stimulation of the network produced activity
waves that traveled outward from the stimulation sites
(Fig. 18B). We applied the partial information decomposi-
tion analysis with the stimuli as the X variables and the
spike count of a neuron in 5-ms bins as the Y variable (Fig.
18C-F). We examined the information values as a func-
tion of time after the stimulus and the location of the
neuron in the network. We observed synergy and re-
dundancy where the activity waves collided (near x =
0 and x = 0.5; Fig. 18E,F). We observed unique infor-
mation for each stimulus near the location in the net-
work where that stimulus was applied (either x = 0.25 or
x = 0.75; Fig. 18C,D).

Aplysia stimulus response habituation

In the previous demonstrations, we considered various
neural circuits and models designed specifically to dem-
onstrate applications of various information theory mea-
sures. We now turn to four simulations designed to
connect with canonical experiments in neuroscience to
demonstrate the role information theory can play in these
different contexts.

First, we examined a simple model of sensory habitu-
ation in Aplysia (Castellucci et al., 1970; Bear et al., 2007).
The gill and siphon of the sea snail Aplysia are highly
sensitive and will withdraw when touched. However, if the
gill and siphon are repeatedly stimulated, the withdrawal
reflex decreases in strength (i.e., the sensory response is
habituated). The neural circuitry underlying this reflex is
relatively simple. A sensory neuron responds to stimula-
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Figure 16. Varying background activity can produce NOR-Gate like activity and modulate redundancy and synergy. A1,B1, Inhibitory
neurons 11 and 12 received unique stimuli and inhibited neuron E1. In A1, neuron E1 also received background constant excitation,
but not in B1. A2,B2, Example spike rasters. In A2, the background excitation made E1 perform a NOR operation (E1 fired when
neither A nor B is on). C-F, PID values between the spike count of E1 and the stimuli states (on/off). Neuron E1 showed sustained
synergy and redundancy with the background excitation on, but little encoding with background excitation off. Synergy and
redundancy were observed because the encoding provided simultaneous information about both stimuli for some cases, but not all
cases. [For all information plots, dots: mean, error bars: standard deviation across models (n = 20)].

tion of the gill and siphon. This sensory neuron then
makes a synapse on a motor neuron that controls the
withdrawal muscle. It has been shown (Castellucci et al.,
1970; Bear et al., 2007) that the habituation process is due
to changes in the synapse between the sensory neuron
and the motor neuron.

To model sensory habituation, we used a circuit that
was very similar to the circuit shown in Fig. 11, except that
the excitatory connection from the stimulated neuron
(Sensory (S) Neuron) to the postsynaptic neuron (Motor
(M) Neuron) decreased in strength with repeated stimula-
tion via an exponential decay (Fig. 19A). This circuit and
changing synaptic strength produced decreasing motor
neuron response to the stimulus with successive stimu-
lation of the sensory neuron (Fig. 19B). As expected, when
the mutual information between the stimulus (on versus
off) and the spike count of the neurons in 50-ms bins was
calculated, the sensory neuron encoded the stimulus very
well (Fig. 19C), but the motor neuron also encoded the
stimulus, though to a smaller degree (Fig. 19D). However,
when the mutual information between the spike count of
each neuron and the trial number (e.g., early trial versus
late trial) was assessed, we found no trial number encod-

May/June 2018, 5(3) e0052-18.2018

ing by the sensory neuron (Fig. 19E), but the motor neuron
did weakly encode the trial number (Fig. 19F). This result
is because the sensory neuron does not change behavior
through the stimulation trials, so it cannot encode trial
number. Conversely, the motor neuron does exhibit al-
tered behavior with successive trials, so it does encode
the trial number. The use of information theory in this
analysis clearly identified the sensory and motor neurons,
quantified the different amount of stimulus encoding, and
identified changing motor neuron behavior with repeated
stimulation.

Center-surround retinal ganglion cells

The second canonical neuroscience experiment we
simulated was the center-surround receptive fields of
retinal ganglion cells (Kuffler, 1953; Bear et al., 2007).
These retinal ganglion cells exhibit elevated firing when a
light stimulation is applied near the center of the receptive
field, but exhibit decreased firing when the light stimula-
tion is applied slightly farther away from the center of the
receptive field (i.e., a so-called ON-center cell). When a
light stimulus is applied far from the center of the recep-
tive field, no change in the firing of the cell is observed.
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Figure 17. Input correlation affects synergy and redundancy. A, Excitatory neurons E1 and E2 received stimuli and sent current to
neuron E3. B, The correlation between the stimuli can be modulated by the parameter a (@ = —0.25 implies anticorrelation, a = 0
implies uncorrelated, and a = 0.25 implies correlation). C, Example spike raster in the uncorrelated case (all four stimuli combinations
are equally likely). Note that the correlation affected the number of times each stimuli pattern is observed, but not the spiking activity
that resulted from a given stimulation pattern. PID redundancy (D) and synergy (E) between neuron E3 spike count and the stimuli
state. 1, Anticorrelated stimuli. 2, Uncorrelated stimuli. 3, Correlated stimuli. 4, Average information value during stimulation as a
function of correlation parameter a. In the anticorrelated case, neuron E3 did not encode the stimuli. In the uncorrelated case, both
synergy and redundancy were present. In the correlated case, only redundancy was present. [For all information plots, dots: mean,

error bars: standard deviation across models (n = 20)].

Thus, the receptive field of these cells is a circular region
with elevated firing surrounded by an annular region with
depressed firing. This type of cell is capable of providing
information about the location of a light stimulus. Further-
more, two cells of this type are capable of encoding the
light stimulus location in complex ways that are depen-
dent on the relative positions of their receptive fields.

To model this system, we randomly placed 300 neurons
in a two-dimensional square plane (1 unit by 1 unit).
Periodic boundary conditions were used to remove edge
effects. An example neuron’s receptive field is shown in
Fig. 20A along with three example stimuli in Fig. 20B. By
calculating the mutual information between a neuron’s
spike count in 25-ms bins and the location of the stimuli
(discretized by dividing the plane into 16 equal sized
squares), we found that the neurons encoded the location
of the stimuli (Fig. 20C).

Next, we applied the partial information decomposi-
tion analysis with the spike count of pairs of neurons as
the X variables and the location of the light stimulus as
the Y variable (Fig. 20D,E). As expected, when the two
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cells’ receptive fields were located near each other,
high redundancy and low unique information were pres-
ent. This is expected, because pairs of neurons close
together would exhibit similar responses to stimuli.
Conversely, lower redundancy and higher unique infor-
mation were observed when the cells’ receptive fields
were far apart (Fig. 20D). When the cells’ receptive
fields were far apart, they exhibited different responses
to stimuli, so they provided more unique information
about the stimuli locations. As a result, the redundancy
decreased (recall that the mutual information for each
neuron alone about the stimulus location was relatively
constant; see Egn. 21). The synergy between neuron
pairs was highest when the cells’ receptive fields were
close together (Fig. 20D). Also, note that the magnitude
of the synergy was much higher than the magnitude of
the redundancy. This indicates that two neurons always
provide a large boost in encoding (synergy) when con-
sidered together relative to being considered alone
regardless of their relative positions. In this example,
information theory identified and quantified stimulus
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Figure 18. PID reveals redundant and synergistic encoding at activity wave collision points. A, Example 1000 neuron Izhikevich
network on a 2-D surface with periodic boundary conditions and distance dependent connectivity. 40 neurons near the line x = 0.25
(x = 0.75) received stimulus A (B). Only connections from stimulated neurons are shown to improve clarity (gray lines). B, Example
spike rasters sorted by x position. Following the application of stimulus, a wave of activity propagated outwards from the stimulation
points. (No stimulus spike rasters not shown.) C,D, Average PID values across all models (n = 20) between the spike count of each
neuron and the stimuli states (on/off) as a function of location. Neurons closest to the stimulation lines showed large amounts of
unique encoding for the corresponding stimulus (C and D). Neurons between the stimulus locations (where the activity waves collided)
showed high levels of synergy and redundancy (E and F).

May/June 2018, 5(3) e0052-18.2018 eNeuro.org



eMeuro

Reviews 34 of 40

A Stimulus Response Habituation B Example Spike Rasters
N | A
. Connection Stre,ngth First Trial - M Neuron
stim Ny Decreases with [ [ I T
Repeated Stimulation SN
— euron
[ \ \ \ [ MMCAORTOATON Y PTAN
Sensory /\ Mlotor e
Neuron Neuron
S Neuron
[ [ \ A NTABE
Last Trial M Neuron
[ | \ I I
-200 0 200 400 600 800 1000 1200 1400 1600
Time (ms)
C S Stim Encoding D W stimEncoding E s Trial Encoding F M Trial Encoding
1.2 Stimulation On/Off 12 Stimulation On/Off 1.2 Stimulation On/Off 1.2 Stimulation On/Off
z z 2 0
5 1 000¢poo000 5 1 s 1 5 1
c c c c
S 08 S 08 S 08 S 08
(0] (0] © (0]
E o6 E o6 + £ o6 £ o6
£ £ TITIIIN g £
= 04 = 04 = 04 = 04
5 5 ¢ § g
502 5 02 ¢ 5 o2 5 o2 ¢++¢¢¢¢++¢¢
olecee ‘... oleeee YY) 0............‘..... 0.... (X X J
-200 0 200 400 600 -200 0 200 400 600 -200 0 200 400 600 -200 0 200 400 600
Time (ms) Time (ms) Time (ms) Time (ms)

Figure 19. Habituated motor neuron encodes stimulus type and number. A, A sensory neuron (S) was stimulated and sent current to
a motor neuron (M). The strength of the synapse weakened with repeated stimulation of S. B, Example spike rasters. In the first trial,
stimulation of the sensory neuron caused elevated spiking of the sensory neuron and the motor neuron. However, by the last trial,
stimulation of the sensory neuron caused elevated spiking of only the sensory neuron. C,D, Mutual information between a neuron’s
spike count and the stimulus state. The weakening synapse caused weaker encoding by the motor neuron, though it did still encode
the stimulus. E,F, Mutual information between a neuron’s spike count and the trial number (e.g., early/late). Because the motor
neuron’s activity changed with trial, the motor neuron encoded the trial number. [For all information plots, dots: mean, error bars:

standard deviation across models (n = 20)].

encoding by the neurons and how encoding performed
by pairs of neurons interacts with the physical separa-
tion between their receptive fields.

Movement direction and motor cortex neurons

The third canonical neuroscience system we examined
was movement direction encoding by motor cortex neu-
rons (Georgopoulos et al., 1982; Bear et al., 2007). In a
relatively simple task, a monkey is trained to move a
cursor from a central hold position to one of eight target
positions circularly arranged around the center position. It
has been shown (Georgopoulos et al., 1982; Bear et al.,
2007) that some neurons in the primary motor cortex
exhibit increased or decreased firing shortly before the
monkey begins moving the cursor based on the desired
direction of motion. Cells exhibit certain preferred di-
rections for which their firing will increase. Movements
opposite to the preferred direction cause decreased
firing.

To simulate the behavior of these cells, we used a
similar model task where an animal was required to move
a cursor in one of eight randomly chosen directions (Fig.
21A). We used model cells that increased or decreased
(with varying degrees of responsiveness, r) their firing
based on their randomly assigned preferred direction of
motion and the actual direction of motion (Fig. 21B). As
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expected, highly responsive neurons showed high mutual
information between the direction of motion and the spike
count of the neuron in 25-ms bins, while unresponsive
neurons did not (Fig. 21C,D).

Next, we applied the partial information decomposition
analysis with the spiking activity of pairs of neurons
(sorted using relative preferred direction) as the X vari-
ables and the location of the direction of motion as the Y
variable (Fig. 21E-H). High redundancy was observed
when the preferred directions for the neurons were paral-
lel or antiparallel (Fig. 21E), while high unique information
was observed when the preferred directions were perpen-
dicular (Fig. 21F,G). This result is intuitive because neu-
rons with parallel or antiparallel preferred directions best
encode the same directions of motion. This is because
neurons can best distinguish movements in their pre-
ferred direction from the opposite direction. However,
neurons with perpendicular preferred directions best en-
code different movement directions. High synergy was
observed at all relative angles (Fig. 21H). Thus, pairs of
direction encoders provided a sizable boost (synergy)
when considered together beyond their individual en-
coding. In this example, information theory identified
direction encoding and how the encoding performed by
pairs of neurons interacts with neuron preferred firing
direction.
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(), or do not change the firing of the neuron. B, Example spike rasters for the stimuli and receptive field shown in A. Stim 1 occurred
in the center of the receptive field and increased firing. Stim 2 occurred in the periphery of the receptive field and decreased firing.
Stim 3 occurred outside the receptive field and did not affect firing. C, Mutual information between the stimulus location and the spike
count of an example neuron from each model [receptive field in A; dots: mean, error bars: standard deviation across models (n =
20)] D, PID values between neuron spike counts and the location of the stimulus for pairs of neurons as a function of the distance
between the centers of the receptive fields of the neurons. [For all information plots, dots: mean, error bars: standard deviation across
models (n = 20)]. Note that redundancy was maximized for overlapping receptive fields, unique information peaked for neighboring
place fields, and synergy peaked for concentric receptive fields. Furthermore, synergy values were substantially higher than

redundancy indicating that synergy dominates joint encoding in this system.

Place cells

For our last canonical experiment, we examined
a simulation of hippocampal place cells (O’Keefe and
Dostrovsky, 1971; Bear et al., 2007). These neurons pref-
erentially fire when an animal is located at a certain point
in an environment (so-called “place field”).

To simulate these cells, we used a model animal that
performed a random walk through a 2-dimensional
plane with periodic boundary conditions to remove
edge effects (Fig. 22A). Based on the random walk, the
animal spent more time in certain parts of the environ-
ment than others (Fig. 22B). Each place cell was ran-
domly assigned a certain location (place field) for which
it would fire preferentially (Fig. 22C). By calculating the
mutual information between the spike count of a neuron
in 100-ms bins and location of the animal (discretized
by dividing the plane into 16 equal-sized squares), we
found that place cells encoded more information about
the location of the animal than cells that did not pref-
erentially fire based on the location of the animal (Fig.
22D).
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Finally, we applied the partial information decomposition
analysis with the spiking activity of pairs of neurons as the X
variables and the location of the animal as the Y variable (Fig.
22F). As we might expect, when the place fields for both
neurons were close together, high redundancy and low
unique information resulted. However, when the place fields
were far apart, the redundancy decreased and the unique
information increased. The synergy between the neurons
was relatively high regardless of the relative location of the
neurons. In this example, information theory identified place
cells and how the encoding performed by pairs of neurons
interacts with neuron place fields.

Discussion

Key points

In this article, we reviewed basic information theory mea-
sures and the logistics of applying those measures to data
generated by neuroscience experiments. We examined exam-
ple analyses of 13 simulations of neural spiking data using the
freely available Matlab Neuroscience Information Theory Tool-
box. These demonstrations highlighted several noteworthy fea-
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Figure 21. Model primary motor cortex neurons jointly encode movement direction. A, Possible directions of motion. B, Example firing
rate profiles for a strong direction encoder (B1) and a weak direction encoder (B2). C, Maximum mutual information between the
direction of motion and the spike count of a neuron as a function of the strength of neuron response to direction. D, Example mutual
information between the direction of motion and the spike count of the neuron for the corresponding examples from (B). E-H, PID
values between the spike count of pairs of neurons and the direction of motion as a function of the difference in preferred firing
angle between the neurons for only strong encoders (r = 1). Note, elevated redundancy was observed for parallel and antiparallel
preferred firing angles, while elevated unique information was observed for perpendicular preferred firing angles. Synergy was
relatively constant for all angle differences. [For all information plots, dots: mean, error bars: standard deviation across models

(n = 20)].

tures of information theory analyses. Mutual information can be
used to measure the encoding of stimulus and behavioral
information by individual neurons. Transfer entropy and in-
formation transmission can be used to measure information
flow between neurons. The partial information decompo-
sition can be used to break down encoding by two
variables into redundant, unique, and synergistic parts.
Finally, the precise interpretation of an information the-
ory analysis is dependent on the assignment of vari-
ables (e.g., time delay, bin size, converging or diverging
schemes with the partial information decomposition,
etc.).
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Alternative methods and limitations

As we discussed in above, information theory pos-
sesses several distinct advantages over alternative anal-
ysis methods. Information theory is model independent, it
can be applied to any mixture of data types, it is capable
of detecting linear and nonlinear interactions, it is multi-
variate, and it produces results in general units, which
facilitates size effect comparisons.

We would like to emphasize something quite remarkable
about information theory. Nowhere in our definitions did we
assume any particular structure to the data. We did not
assume the data were linearly related or that the data fol-
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Figure 22. Joint encoding by model place cells is distance dependent. A, A model animal was allowed to randomly walk on a 2-D
surface with periodic boundary conditions. B, Example animal linger time as a function of position. C, An example place cell shows
elevated firing when the animal was near its place field (white circle). D, Place cells encoded the location of the animal better than
nonplace cells that did not respond to location. (Thin bars: min to max range, thick bars: interquartile range, rank-sum test, p < 0.001.)
E, PID values between neuron spike counts and the location of the animal for pairs of neurons as a function of the distance between
the centers of the place fields of the neurons. [For all information plots, dots: mean, error bars: standard deviation across models
(n = 20)]. Note that redundancy was maximized for overlapping place fields, unique information peaked for neighboring place fields,
and synergy was elevated regardless of the relative positions of the neurons.

lowed some canonical distribution (e.g., normal, Poisson, or
exponential), unlike correlation, Bayesian analyses, t tests,
and many other measures of interactions between variables.
We are not fitting the data to some model. The model-free
nature of information theory analysis makes it a flexible tool,
which is especially valuable when the underlying rules gov-
erning the system are not known.

While the various features of information theory are
certainly advantageous in many circumstances, limita-
tions to information theory analyses do exist and other
methods may be preferable in certain scenarios. For
instance, in their most basic form discussed in this intro-
ductory article, information theory analyses require dis-
cretized data. Thus, continuous data must be discretized
(see Probability Distributions and Initial Analysis Steps),
which requires assumptions about the number of bins
and/or bin size and which can induce bias and affect the
results. In other words, using three bins instead of four will
produce different results, especially in terms of informa-
tion values (see Daw et al. (2003) for a review of discret-
ization methods and their impacts on data analyses from
a more general perspective). Several more advanced
methods have been developed, some of which are imple-
mented in other software packages, to overcome these
problems in certain cases (Nemenman et al., 2002; Gold-
berg et al., 2009; Ince et al., 2009; Magri et al., 2009; Ito
et al.,, 2011; Lindner et al., 2011; Pastore et al., 2016).
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Furthermore, even with the basic analysis methods pre-
sented herein, statistical testing methods exist to reduce
the appearance of false-positive information theory re-
sults caused by discretization and bias effects (see Sig-
nificance Testing). Still, these issues must be considered
when choosing the appropriate analysis technique.

In connection with issues surrounding data discretiza-
tion, the amount of data required to perform an informa-
tion theory analysis can be large, especially in systems
with many discrete states and/or many variables. For
instance, in a system with three variables that each have
four discrete states, there will be 64 unique joint states,
requiring at least (but preferably much more than) 64 joint
observations to analyze. Depending on the experiment, it
may be possible to gather this many observations or it
may be possible to analyze variables with fewer discrete
states. Statistical testing methods will reduce the appear-
ance of false-positive results based on too little data, but
this feature of information theory analyses must be con-
sidered because it can limit the ability of the analysis to
detect true-positives.

It goes without saying that there are numerous alternative
methods for analyzing neuroscience data. Basic correlation
measures are used throughout neuroscience and science in
general, though these methods often assume the underlying
data are linear, so these methods are not model indepen-
dent. Cross-correlation is widely used in the analysis of
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neural spiking data (Bonifazi et al., 2009; Ito et al., 2014) to
assess functional connections between pairs of neurons
(i.e., neuron A tends to spike just before neuron B spikes).
These analyses are similar in design to transfer entropy
analyses (Ito et al., 2011; Timme et al., 2014b). However,
cross-correlation is model dependent, unlike transfer en-
tropy. Granger causality has been widely used to assess
causal interactions between both continuous and discrete
neural signals (Granger, 1969; Ding et al., 2006; Nakhnikian
et al., 2014), though underlying assumptions about the anal-
ysis (e.g., Gaussian distributed data) must be thoroughly
evaluated. Additionally, neural encoding is frequently as-
sessed by applying statistical tests to neural signal obser-
vations under two conditions (e.g., stimulus on versus off or
behavior A versus B). Roughly speaking, this method is akin
to saying a neuron encodes X if the neuron spikes a lot for X,
but spikes very little for not X. This method is relatively
straightforward, but it requires a system with only two states
(e.g., stimulus on and off), it is difficult to compare across
systems or neurons (i.e., does the neuron encode stimulus A
better than stimulus B?), and it requires the selection of the
correct statistical test given the distribution of the neural
data. An information theory analysis of such a system does
not have these requirements. Finally, multivariate interac-
tions, which can be analyzed with the partial information
decomposition, are difficult to analyze with linear methods.

We wish to emphasize that while these other model-
dependent methods lack the flexibility of information the-
ory because it is model independent, the model-
dependent methods are frequently able to leverage the
assumptions tied to the underlying model to achieve
greater power with less data. Additionally, linear analysis
methods typically require far less computation time.
Therefore, linear or model-dependent methods can be
very useful in analyses of neural data, and frequently it is
helpful to start an analysis with a simple linear method.

As we discussed in above, it is important to emphasize that
information theory analyses do not produce models that de-
scribe how the data were generated. Because the creation of
such models is a primary goal of science, it is important to note
that information theory analyses can be used as powerful
guides to building complex models that can describe neuro-
science data (though see James and Crutchfield (2017) for
further discussion). We believe that Bayesian analyses repre-
sent the preferred method for building such models (Friston
et al., 2003; Koller and Friedman, 2009; Kruschke, 2015),
though many other model-fitting procedures (i.e., regression
analyses) exist (Zar, 2010). Of course, a researcher may choose
to simply apply some type of model fitting without first applying
an information theory analysis, but doing so leaves open the
possibility that some type of interaction exists in the data that is
not captured by the model. Each researcher should careful
weigh whether this is a relevant concern for his or her experi-
mental questions.

Possible neuroscience applications

While the demonstrations we employed throughout this
introductory tutorial were focused on neural spiking,
clearly many other types of data are used widely in neu-
roscience. We chose to focus on neural spiking data due
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to our expertise with it. However, we wish to emphasize
that nearly identical analyses could easily be performed
with BOLD signal data from fMRI studies, fluorescence
data from calcium imaging studies, or voltage signals
from extracellular, EEG, or MEG studies. Certainly, sam-
pling constraints (e.g., slower time resolution in fMRI and
calcium imaging) or other pre-processing steps (e.g., ini-
tial power spectrum decomposition in EEG) would alter
the results of the analyses or the precise details of how
they were applied, but the distribution of voltage values,
BOLD signals, or fluorescence signals across trials or time
can just as easily be discretized as spike counts using the
methods discussed above (see Probability Distributions
and Initial Analysis Steps).

Indeed, even other types of data that are conceptually
different from the various measures of neural activity dis-
cussed above can be easily treated with these information
theory tools. Information theory is currently used in ge-
netics (Vinga, 2013; Ignac et al., 2014; Smouse et al.,
2015), but studies could be performed linking genetics
and neuroscience. For instance, it is possible to examine
how neural activity, neural responses to stimuli, or animal
behavior relate to genetic information by examining model
animals with certain genetic differences. Furthermore, us-
ing the partial information decomposition, it is possible to
ask whether certain genes work synergistically, uniquely,
or redundantly to predict certain effects in organisms. In
short, the limiting factor in information theory analyses is
not the information theory analysis itself, it is the research-
er’s ability to gather the right type of data to address his
or her experimental question.
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