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Small intestinal neuroendocrine tumors (SI-NETs) remain the most common subset in gas-
trointestinal neuroendocrine tumors and featured by aggressiveness. However, the molec-
ular feature of SI-NETs remains largely unclear with key genes and pathways yet to be iden-
tified. The gene expression profile GSE65286 was retrieved for analysis. Artificial neural
networks (ANNs) were constructed for the hub genes network models. A total of 613 differ-
entially expressed genes (DEGs) were identified between normal (N) and primary tumor (T)
groups, whereas 61 DEGs were identified between T and liver metastases (LM) groups. The
top Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for the DEGs of N versus
T were fat digestion and absorption pathway. For T versus LM the top KEGG pathways were
complement and coagulation. In gene set enrichment analysis (GSEA), five gene sets, in-
cluding Notch signaling, inflammatory response, coagulation, KRAS signaling, and allograft
rejection were significantly enriched in the T group. The hub genes in the DEGs of T versus
LM included albumin, fibrinogen gamma chain, alpha 2-HS glycoprotein, transferrin and GC,
vitamin D binding protein. A distinct correlational alteration of hub genes was observed be-
tween T and LM groups. In ANN analysis, ALB and TF were the top predictors of metastasis.
Moreover, the expression of ALB≤ showed the highest support to T whereas ALB>15.97
supports LM. TF≤7.54 showed the highest negative correlation to the T. This bioinformat-
ics analysis provided insights on potential key pathways and genes networks involved in
SI-NETs and established an ANN-based hub gene model for metastatic prediction.

Introduction
Neuroendocrine tumors (NETs) were initially described by Oberndofer using karzinoid (carcinoid) in
1907 and mostly arise from the neuroendocrine cells with the ability to generate hormonal-related pep-
tides [1,2]. Small intestinal neuroendocrine tumors (SI-NETs), the most common subset in gastrointesti-
nal neuroendocrine tumors, are featured by aggressiveness and therapy-resistance [1,3]. During the last
three decades, the incidence of SI-NETs has annually increased by 3.8% [4]. In fact, the age-adjusted in-
cidence of NETs (over 30 years old) in digestive system has dramatically increased by 720%, with 225%
increasing in ileal part and 460% in small intestinal [4]. However, the five-year survival rate surprisingly
remains unchanged [4].

Of note, SI-NET patients commonly are diagnosed as advanced stage at initial presentation due to indo-
lent unnoticeable clinical course [1]. Numerous terms have been associated with the prognosis of SI-NET,
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Figure 1. Identification of DEGs in primary tumors (T) versus normal (N) group, as well as T versus liver metastases (LM)

group

(A) The heat map of DEGs in T versus N group; (B) the heat map of DEGs in T versus LM group; (C) the volcano plot of DEGs in T

versus N group; (D) the volcano plot of DEGs in T versus LM group.

including age, carcinoid heart diseases, lymph node metastases, liver tumor load, peritoneal carcinomatosis, and tu-
mor cell proliferation (WHO grade) [2,5,6]. Moreover, the somatostatin analogs treatment has significantly improved
the tumor progression in well-differentiated metastatic midgut NETs [7].

Despite the fact that therapeutic progressions have been made, the overall clinical benefits of SI-NETs remain far
from satisfactory. Reasonably, simplified therapeutic management of SI-NETs does not fully capture the full biologi-
cal picture. In fact, molecular characterization of SI-NETs would contribute to the development of novel therapeutic
strategies. Interestingly, frameshift mutation of CDKN1B (encoding p27) was found in 7.8% SI-NETs patients, indi-
cating the role of cell cycle dysregulation involved [8]. In addition, nine miRNAs were found differentially expressed
during tumor progression (miR-96, -182, -183, 196a, -200a, -31, -129-5p, -133a, and -215) [9]. Moreover, a subset
of SI-NETs clustered by transcriptome files was characterized by longer survival and higher expression of SSTR2,
whereas shorter survival was associated with higher grade or gain of chromosome 14 [5]. However, the molecular
picture of SI-NETs remains largely unclear.

In the present study, the gene expression profile GSE65286, deposited by Andersson co-workers, was analyzed using
bioinformatics strategy [5], followed by functional enrichment analysis of differentially expressed genes (DEGs) and
the identification of key genes and pathways.

Materials and methods
Gene expression profile
The gene expression profile GSE65286, containing 10 primary tumors (T), 10 normal small intestine mucosa (N), 2
lymph nodes metastases (LN), 21 tumor with liver metastases samples (LM), was retrieved from the Gene Expression
Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) [5,10]. All the RNA was retrieved from the fresh-frozen samples
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Figure 2. GO and KEGG results of DEGs in T versus N and T versus LM groups

(A) GO enrichments of DEGs in T versus N group; (B) KEGG pathways of DEGs in T versus N group; (C) GO enrichments of DEGs

in T versus LM group; (D) KEGG pathways of DEGs in T versus LM group.

using the miRNeasy Mini Kit (Qiagen) and synthesized and labeled following the One-Color Microarray-Based Gene
Expression Analysis protocol (v5.7). Next, the Whole Human Genome Microarrays (GPL4133, G4112F, ID: 014850,
Agilent Technologies) were used for hybridization. The scanning process was performed using Agilent Microarray
Scanner G2565BA (Agilent Technologies) and the results were processed by Feature extraction version 10.7.1.1 (Ag-
ilent Technologies) with normalization [5].

Identification of DEGs and functional enrichment
Identification of DEGs was performed by the GEO2R analytical tool [11]. The cut-off values of DEGs were defined
by the adj. P-value<0.05 (Benjamini and Hochberg’s False discovery rate, FDR,) and |log2 fold change (logFC)|>2.
The Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontologies (GO), including biological processes
(BP), cellular components (CC) and molecular functions (MF), were annotated by R package ClusterProfiler and the
Database for Annotation, Visualization and Integrated Discovery (DAVID) [12–14].

Gene set enrichment analysis
The gene set enrichment analysis (GSEA) was performed using the Broad Institute GSEA software (http://software.
broadinstitute.org/gsea/index.jsp) [15] with the annotation file “hallmark gene sets” and default cutoff values
(P-value<0.05).
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Figure 3. GSEA of primary tumors (T) versus liver metastases (LM) groups

(A–E) Significantly enriched pathways in T group; (F) significantly enriched pathway in LM group.

Construction of protein–protein interaction networks
The protein–protein interaction (PPI) networks were established by the DEGs interactions generated by the Search
Tool for the Retrieval of Interacting Genes/Proteins (STRING http://www.string-db.org/). The minimum required
interaction score was set as medium confidence (0.400). Active interaction sources included textmining, experiments,
databases, co-expression, neighborhood, gene fusion and co-occurrence. The results were visualized via the Cytoscape
software (version 3.6.0) [16,17]. Hub genes were defined by the top 10 genes with highest degree values. The Molecular
Complex Detection (MCODE) was used to subset the PPI networks [18].

Artificial neural networks for hub gene network models
Artificial neural networks (ANNs) are characterized by non-linear mathematical models with highly parameterized
input for the description of complex systems [19–21]. Unlike conventional linear regression models, ANNs are fea-
tured by “black boxes” powerful algorithms [21]. In fact, ANNs generate challenging networks that could approximate
outcomes with minimal errors, however, with abstract interpretations [19–21]. In the present study, ANNs were used
to predict the metastasis status of SI-NETs with the input (I1–I5) of previously identified hub genes (ALB, FGG,
AHSG, TF, and GC) and the output was the metastasis status (O1, 0 = non metastasis, 1 = metastasis). The hidden
process in the complex mathematical models was illustrated by H1–H5 (the number of hidden units is selected based
on the best calculated accuracy). All the hidden nodes further led to the output (O1). All the bias factors were repre-
sented by bias nodes (B1, B2) similar to the intercept term in a linear model. All the relative importance of hub genes
and the metastasis were identified using the Garson’s algorithm in the NeuralNetTool package (version 1.5.1) in R
software [22].
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Figure 4. PPI networks of DEGs in T versus N group

The degree of each node was reflected by the color and the size. The higher the degree, the darker and bigger the node is.

Results
Identification of DEGs
Given GSE65286 only contained 2 LN samples, the comparison only performed in N (n = 10) versus T (n = 10) and
T (n = 10) versus LM (n = 21). A total of 613 DEGs were identified between N and T, with 301 down-regulated and
312 up-regulated. Sixty-one DEGs were identified between T and LM, with 44 down-regulated and 17 up-regulated
(Figure 1A–D).

GO and KEGG enrichments
For DEGs between N and T, digestion (P-value = 8.09E−13), apical plasma membrane (P-value = 3.11E−07), and
metal ion transmembrane transporter activity (P-value = 3.00E−05) were the top significantly enriched terms in
BP, CC, and MF, respectively (Figure 2A). In terms of pathway, fat digestion and absorption, protein digestion and
absorption as well as maturity onset diabetes of the young were the top enriched pathways in KEGG (Figure 2B). For
DEGs between T and LM, antimicrobial humoral response (P-value = 5.41E−05), blood microparticle (P-value =
1.75E−12), and BMP binding (P-value = 0.000501) were the top significantly enriched terms in BP, CC, and MF,
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Table 1 The MCODE with significantly enriched pathways

Cluster
ID Nodes Edges Node IDs KEGG pathways P-value

PPI TvsN 1 11 55 P2RY2, OXTR, EDN2, LPAR5, NTS,
TAC1, CCK, GCG, EDN3, CASR, F2

hsa04080: neuroactive ligand–receptor
interaction

0.009186

2 28 84 APOA4, MGST1, XPNPEP2, GSTA1,
APOC2, ABCG5, CYP2S1, ACE2, MME,
MEP1A, MEP1B, ADCY2, SHBG, DPP4,
GSTA5, GSTA2, FABP2, CYP2B6, MTTP,
CYP2C18, APOC3, CXCL13, CCL25,
OPRK1, APOB, APOA1, SSTR2, GSTA3

hsa00980: metabolism of xenobiotics by
cytochrome P450

1.90E−07

hsa04975: fat digestion and absorption 2.20E−07

hsa00982: drug metabolism –
cytochrome P450

3.71E−06

hsa05204: chemical carcinogenesis 8.30E−06

hsa04974: protein digestion and
absorption

1.33E−05

hsa00480: glutathione metabolism 3.02E–05

hsa04977: vitamin digestion and
absorption

0.002802

hsa00830: retinol metabolism 0.022278

hsa03320: PPAR signaling pathway 0.024271

3 5 9 MUC17, GALNT6, MUC13, MUC2,
GALNT7

hsa00512: mucin type O-glycan
biosynthesis

0.008993

PPI T vsLM 1 9 32 APOA2, FGG, HP, AHSG, ALB, HRG, TF,
GC, RBP4

– –

2 3 3 MUC17, DEFA5, DEFA6 – –

3 3 3 RSPO1, RSPO2, RSPO3 – –

The MCODE was an embedded algorithm in the Cytoscape software (version 3.6.0); T: tumor; N: normal; LM: liver metastases. Node IDs:
represent each gene symbol.

respectively (Figure 2C). However, the complement and coagulation cascades was the only significantly enriched
KEGG pathway between T and LM (Figure 2D).

GSEA
In GSEA, there were five gene sets significantly enriched in the tumor group and one gene set in the liver metas-
tasis group, whereas no significantly enriched gene set between normal and tumor groups. In the liver metasta-
sis group, only spermatogenesis was significantly enriched (P-value = 0.018, enrichment score (ES) = −0.39). In
the tumor group, the five gene sets included Notch signaling (P-value<0.001, ES = 0.61), inflammatory response
(P-value<0.001, ES = 0.58), coagulation (P-value = 0.035, ES = 0.57), KRAS signaling (P-value = 0.04, ES = 0.46),
and allograft rejection (P-value = 0.041, ES = 60) (Figure 3).

PPI networks construction
The PPI networks in T versus N group (PPI-TvsN) contained 395 nodes with 1046 edges whereas the PPI networks
constructed in T versus LM (PPI-TvsLM) contained 36 nodes with 76 edges (Figures 4 and 5). Top three subsets were
identified by MCODE in Both PPI networks with significantly enriched pathways (Table 1). The hub genes in the
PPI-TvsN included coagulation factor II, thrombin (F2), glucagon (GCG), neurotensin (NTS), cystic fibrosis trans-
membrane conductance regulator (CFTR) and apolipoprotein B (APOB) (Table 2). The hub genes in the PPI-TvsLM
included albumin (ALB), fibrinogen gamma chain (FGG), alpha 2-HS glycoprotein (AHSG), transferrin (TF), and
GC, vitamin D binding protein (GC) (Table 2).

Correlations of hub genes
Next, the pairwise correlation of hub genes in both PPI networks was analyzed respectively in each phenotype (Figure
6A–D). Remarkably, the highest correlation observed between GCG and NTS (cor = 0.86) in N group was altered in
T group, with the correlation between NTS and APOB as the highest one (cor = 0.87). Meanwhile, the correlation of
CFTR and APOB, as well as CFTR and GCG, CFTR and NTS were increased distinctly (Figure 6A,B). Noteworthy,
the correlation of hub genes between T and LM displayed a dramatic positive change (Figure 6C,D). In fact, given

6 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Table 2 Hub genes in PPI networks of tumor versus normal groups and tumor versus liver metastases groups

Gene symbol Gene name Degree

PPI T versus N F2 Coagulation factor II, thrombin 42

GCG Glucagon 36

NTS Neurotensin 32

CFTR Cystic fibrosis transmembrane conductance regulator 30

APOB Apolipoprotein B 27

PPI T versus LM ALB Albumin 21

FGG Fibrinogen gamma chain 11

AHSG Alpha 2-HS glycoprotein 11

TF Transferrin 10

GC GC, vitamin D binding protein 10

T: tumor; N: normal; LM: liver metastases; degree: represents the connection between each two genes.

Figure 5. PPI networks of DEGs in T versus LM group

The degree of each node was reflected by the color and the size.

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

7



Bioscience Reports (2020) 40 BSR20193860
https://doi.org/10.1042/BSR20193860

Figure 6. Hub gene correlations

(A,B) The pairwise correlations of hub genes identified by DEGs in T versus N groups; (C,D) the pairwise correlations of hub genes

identified by DEGs in T versus LM groups.

the distinct correlational alterations of hub genes between T and LM groups, these hub genes were chosen for further
ANN analysis.

ANN for hub genes models
Increasingly values of AI have been recognized in association with prediction models and data interpretation. There-
fore, ANN analysis was introduced to build a model of hub genes using Garson’s algorithm. Specifically, the weights
of hub genes in this model are more analogous to the coefficients of linear model, given the fact that large number
of adjustable weights could lead to nonlinear effects with challenging interpretation. The relative importance of each
node was represented by the combined effects of weight. In fact, the relative importance of each hub gene was deter-
mined by dissecting the model weights and reflected by a value ranging from 0 to 1 via the R package, NeuralNetTool.
Of note, ALB and TF were the most important predictors of metastasis (Figure 7A). Next, the hub genes were input
for the construction of neural network (Figure 7B). In this network, five neurons were identified in hidden layer. The
output layer, O1, referred to tumor status (primary or metastasis). Black lines showed positive weighted connections

8 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 7. ANN models for hub genes in T versus LM groups

(A) Relative importance of hub genes to metastasis status; (B) ANN interpretation diagram of hub genes to metastasis outcome;

positive correlation was indicated by black while negative correlation was indicated by grey lines with the relative significance

of each weight in proportion to the line thickness; (C) heat map of categorized expression of hub genes in association with all

selected patients. The patients number were shown at the horizontal line whereas the categorized feature at the left vertical line

(gene expression); the positive feature weight was marked by green and the negative by red.

while grey showed negative connections. Bias terms were displayed using an independent neuros, B1 and B2, serving
as the intercept of a linear model. Moreover, to visualize the correlation between categorized features and all cases,
a facetted heat map was illustrated for the feature weights between primary tumor and metastasis groups. Intrigu-
ingly, the expression of ALB≤7.44 showed the highest support to the primary tumor whereas 10.64<ALB≤15.97 and
ALB>15.97 both supports the metastasis (Figure 7C). Meanwhile, TF≤7.54 showed the highest negative correlation
to the primary tumor (Figure 7C). In addition, FGG≤2.32 supports the primary tumor whereas 6.42<FGG≤11.36
and FGG>11.36 showed supports for metastasis (Figure 7C).
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Discussion
The present study identified potential pathways and genes associated with the tumorigenesis and metastasis in
SI-NETs by re-analyzing the gene expression profile of GSE65286. Compared with the original study by Andersson
et al. [5], the present study focused on the DEGs in tumor process with multiple bioinformatics strategies, includ-
ing GSEA and ANN. Intriguingly, Notch signaling (P-value<0.001, ES = 0.61) was the top enriched gene sets in
T compared with N group. Commonly, Notch1 signaling is absent from NETs and its significant tumor suppressor
role has been confirmed [23]. In fact, Notch signaling pathway has been identified as a key regulator for the neuroen-
docrine differentiation in gastrointestinal carcinoid tumors by inducing the Notch effector hairy and enhancer of split
1 (Hes1) and reducing the achaete–scute complex homolog-like 1 (Asc11/hASH1) [24]. Furthermore, overexpression
of Notch signaling also significantly reduced serotonin concentration and corresponding serotonin-reactive cells as
well as the expression of tryptophan hydroxylase 1 [24].

Noteworthy, the hub genes from the DEGs between N and T groups (F2, GCG, NTS, CFTR, and APOB) displayed
marked correlational alterations (Figure 6A,B), which further highlighted the potential mechanistic insights. In fact,
CFTR has been involved in the modulation of neurosecretory activity of the pulmonary neuroendocrine cell and
neuroepithelial bodies O2 sensor functions [25]. The role of CFTR in SI-NETs remains to be disclosed. Interestingly,
our study indicated that the correlations of CFTR with the other four hub genes were markedly increased in T compare
to N group (Figure 6A,B). Reasonably presume that the aberration of CFTR could be key in the tumorigenesis of
SI-NETs via the simultaneous interaction with F2, GCG, NTS, and APOB.

Meanwhile, the hub genes from the DEGs between T and LM groups (ALB, FGG, AHSG, TF, and GC) also showed
marked alterations in the correlations, indicating potential mechanisms involved in the tumor metastasis. Given the
close correlations in-between the hub genes (ALB, FGG, AHSG, TF, and GC), the present study further employed
non-linear mathematical models to delineate the network with ANN algorithms. In fact, the implications of ANN
strategy in genetic mechanism remain sparse due to the challenging interpretations and fundamental difference be-
tween conventional explanatory models. Nonetheless, ANN is featured by approximating outcomes using powerful
description of complex system with minimal errors [19–21]. In fact, the heat map of categorized features facilitates
the ANN-based prediction makings. The ANN network models can be insightful evidences for the ultimate decision
process. However, given the complex fitting algorithms in ANN-based prediction models, potential over-fitting was
not discussed in the present study.

Limitations of the present study included the quality of normal control samples. In fact, the normal intestinal
mucosal samples were retrieved from the resected samples of 10 colorectal cancer patients [5]. Of note, Andersson
et al. also proposed that normal intestinal mucosal may not be the optimal control for primary tumors in SINET
due to lack of sufficient endocrine cell [5]. Moreover, the lack of experimental mechanistic validation for hub gene
correlations and ANN analysis also limited the power of the results.

Conclusion
This bioinformatics analysis provided insights on potential key pathways and genes networks involved in SI-NETs
and established an ANN-based hub gene model for metastatic prediction.
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