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Cyclin-dependent kinase 7 (CDK7) is a master regulatory
kinase that drives cell cycle progression and stimulates
expression of oncogenes in a myriad of cancers. Inhibitors of
CDK7 (CDK7i) are currently in clinical trials; however, as with
many cancer therapies, patients will most likely experience
recurrent disease due to acquired resistance. Identifying targets
underlying CDK7i resistance will facilitate prospective devel-
opment of new therapies that can circumvent such resistance.
Here we utilized triple-negative breast cancer as a model to
discern mechanisms of resistance as it has been previously
shown to be highly responsive to CDK7 inhibitors. After
generating cell lines with acquired resistance, high-throughput
RNA sequencing revealed significant upregulation of genes
associated with efflux pumps and transforming growth factor-
beta (TGF-β) signaling pathways. Genetic silencing or phar-
macological inhibition of ABCG2, an efflux pump associated
with multidrug resistance, resensitized resistant cells to CDK7i,
indicating a reliance on these transporters. Expression of
activin A (INHBA), a member of the TGF-β family of ligands,
was also induced, whereas its intrinsic inhibitor, follistatin
(FST), was repressed. In resistant cells, increased phosphory-
lation of SMAD3, a downstream mediator, confirmed an in-
crease in activin signaling, and phosphorylated SMAD3 directly
bound the ABCG2 promoter regulatory region. Finally, phar-
macological inhibition of TGF-β/activin receptors or genetic
silencing of SMAD4, a transcriptional partner of SMAD3,
reversed the upregulation of ABCG2 in resistant cells and
phenocopied ABCG2 inhibition. This study reveals that
inhibiting the TGF-β/Activin-ABCG2 pathway is a potential
avenue for preventing or overcoming resistance to CDK7
inhibitors.

Cyclin-dependent kinases (CDKs) belong to the serine/
threonine phosphotransferase family, which are activated by
cyclins (1). They control progression through the cell cycle and
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ensure genome integrity (2). Over the last 2 decades, inhibitors
of the cyclin/cyclin-dependent kinase holoenzymes have been
utilized in many different neoplasms including patients with
breast cancer (3). Although these agents are efficacious in
reducing cell viability and growth, they have dose-limiting
toxicities and are frequently thwarted by therapeutic resis-
tance, necessitating safer and more efficacious alternatives (3).
Addressing this need, inhibitors of cyclin-dependent kinase 7
(CDK7) have recently entered clinical trials (https://
clinicaltrials.gov/ct2/show/NCT03134638, https://clinicaltrial
s.gov/ct2/show/NCT03134638, https://clinicaltrials.gov/ct2/sh
ow/NCT04247126, https://clinicaltrials.gov/ct2/show/NCT03
770494). CDK7 is a unique member of this family that con-
trols the transcription of cell identity genes as well as regulates
the activity of other CDKs (4). CDK7 interacts with its partner
proteins ménage-à-trois 1 (MAT1) and cyclin H to form the
cyclin-dependent kinase activating kinase complex (5). This
complex promotes cell cycle progression via the phosphory-
lation of the T-loop of CDKs 1, 2, 4, 6, 9, and 12, leading to
their activation and cell cycle progression (6). CDK7 also
phosphorylates the C-terminal domain of RNA polymerase II,
enabling transcription initiation (4). This stimulates the
expression of genes, including oncogenes, via the formation of
large DNA–protein complexes called super-enhancers (7, 8).
Given its dual roles, CDK7 is a target of interest for the
treatment of cancer. Compounds such as the prototypical
CDK7 inhibitor (CDK7i), THZ1, as well as those in clinical
trials (e.g., SY-1365 and CT7001), selectively inhibit CDK7
activity, leading to a reduction in tumor size and cancer
burden in mouse models of glioma, lung, leukemia, and breast
cancer (8–14). Despite this initial promise, it is likely that
many cancers will ultimately develop resistance to CDK7i,
making it imperative to prospectively identify signaling path-
ways that drive therapeutic resistance. These potential vul-
nerabilities could then be leveraged in the design of synergistic
or sequential therapies to prevent progression to resistance.

In this study, we focused on identifying mechanisms of
CDK7 inhibitor (CDK7i) resistance in triple-negative breast
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Activin promotes CDK7 inhibitor resistance
cancer (TNBC). TNBC is a highly aggressive subtype of breast
cancer that represents approximately 15% to 20% of breast
cancer diagnoses in the United States (15). Unlike the luminal
and HER2-enriched subtypes, TNBC lacks expression of the
receptors for estrogen and progesterone, as well as the human
epidermal growth factor 2 receptor. Thus, therapies targeted to
these oncogenic drivers are ineffective in TNBC, leaving pa-
tients with limited treatment options (16). The current stan-
dards of care for this disease involve cytotoxic chemotherapies,
including antimitotics such as paclitaxel and cyclophospha-
mide (17). Although these therapies are initially very effective
in reversing disease course, recurrent disease is common and
in many cases tumors become refractory to the initial che-
motherapies (18). Upon detection of metastatic disease, the
median patient survival is only 13 months (19). This highlights
the significant clinical unmet need to discern the molecular
mechanisms that drive these highly aggressive cancers with the
intent of identifying new therapeutic modalities.

Models of TNBC have been shown to be particularly
sensitive to CDK7 inhibitors (9, 17). These drugs are pro-
posed to disrupt super-enhancers that drive expression of
genes necessary for survival, called Achilles’ genes. By
dismantling these super-enhancers, CDK7is induce cell
death in vivo (7, 9, 11, 20). Despite the effectiveness of
CDK7i in preclinical models of TNBC and many other
cancers, human tumors are likely to experience resistance
owing to selective pressures leading to adaptive alternative
pathway activation or evolutionary changes (21). Proactively
identifying mechanisms of resistance should reveal novel
biomarkers of resistance and accelerate development of
combination approaches to prevent these processes (21, 22).
Herein, we elucidate a new pathway by which TNBC cells
acquire resistance to CDK7i through increasing signaling by
the transforming growth factor beta (TGF-β) family of li-
gands, particularly activin. This, in turn, promotes the
expression of efflux proteins, such as ABCG2. Supporting an
essential role for this pathway in maintaining resistance,
inhibiting ABCG2 or TGF-β/activin signaling resensitizes
resistant cells to CDK7i. This study elucidates a novel
mechanism of CDK7 inhibitor resistance that may inform
future studies discovering biomarkers of resistance and ap-
proaches to prevent its acquisition in human disease.
Results

Acquisition of CDK7i resistance in TNBC cells

TNBC cell lines have previously been reported to be sen-
sitive to CDK7 inhibition (9). To establish CDK7i resistant
lines, we treated sensitive/parental MDA-MB-468 and MDA-
MB-231 cells with the CDK7 inhibitor, THZ1, using stepwise
dose escalation. This resulted in resistant cell lines (MDA-MB-
468R and MDA-MB-231R) with IC50s that are 5 to 10 times
higher than their sensitive counterparts (Fig. 1A). To test
whether THZ1 resistance extends to other CDK7i, including
those that are currently being evaluated in clinical trials, we
treated MDA-MB-468 and MDA-MB-231-sensitive/parental
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and THZ1-resistant cells with increasing doses of THZ2, a
THZ1 analog (Fig. 1B), and SY-1365 (Fig. 1C). For both cell
lines, THZ1-resistant cells maintained resistance to THZ2, and
SY-1365 with �4 to 10× shifts in IC50s (Fig. 1D). To assess the
long-term consequence of THZ1 exposures, we used a colony
formation assay of sensitive/parental and resistant cells. Cells
were exposed to THZ1 for 72 h; equal numbers of viable cells
were then replated and maintained in drug-free media for
8 days. THZ1 caused a sustained reduction in cell growth/
colony formation in the sensitive cell lines even after removal
of the drug (Fig. 1E). However, the MDA-MB-231R and MDA-
MB-468R lines exhibited no response, affirming their sus-
tained resistance to THZ1.

CDK7i-resistant cells upregulate the expression of extracellular
transport genes

To investigate the mechanisms underlying CDK7i resis-
tance, we used RNA-Seq to identify transcriptomic differences
between vehicle (dimethyl sulfoxide [DMSO]) or THZ1-
treated cell lines that were sensitive or resistant to CDK7i.
As expected, Pearson correlation analysis of the gene expres-
sion profiles revealed that sensitive/parental cells exhibited
substantial transcriptomic shifts following exposure to THZ1.
In contrast, treatment with THZ1 had a minimal impact on
gene expression in resistant cells compared with their vehicle-
treated counterparts, again confirming resistance (Fig. 2, A and
B). Comparisons of the transcriptomes of vehicle-treated cell
lines revealed 3773 and 6597 upregulated transcripts in MDA-
MB-231R and MDA-MB-468R cells, respectively, compared
with their sensitive/parental counterparts (Fig. 2C and
Table S1). In addition, the MDA-MB-231R and MDA-MB-
468R cells shared 1480 upregulated transcripts (Fig. 2C). To
elucidate the underlying biological pathways contributing to
CDK7i, we performed Gene Ontology (GO) on the shared
genes (Fig. 2D). Transport, leukocyte activation, and secretion
were among the most enriched gene ontology pathways
(Fig. 2D). These pathways were also enriched when comparing
the upregulated genes individually in each resistant line. Ex-
amination of the individual genes within these networks un-
covered several that are involved in intracellular/extracellular
transport such as ABCG2, ABCC1, and TAP1 that are upre-
gulated with the acquisition of resistance. These data sug-
gested that drug transport may contribute to CDK7i resistance
in TNBC cells.

ABCG2 is upregulated in CDK7i-resistant cells and correlates
with worse overall survival in TNBC

We used the Kyoto Encyclopedia of Genes and Genomes
curated gene signature for ABC transporters (23) to conduct
Gene Set Enrichment Analysis (GSEA) on the individual
MDA-MB-468 and MDA-MB-231 gene lists from resistant
compared with sensitive/parental cells. This showed that
CDK7i-resistant cell lines were significantly enriched in the
expression of ABC transporter genes (Fig. 3, A and B).
ATP-binding cassette (ABC) transporters such as ABCG2
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Figure 1. Acquisition of CDK7i resistance in TNBC cells. CDK7 inhibitor–sensitive/parental TNBC cell lines MDA-MB-468 (468) and MDA-MB-231 (231) and
resistant MDA-MB-468 (468R) and MDA-MB-231 (231R) cells were treated with either vehicle or the following CDK7 inhibitors at increasing doses: (A) THZ1,
(B) THZ2, or (C) SY-1365 for 72 h and the relative cell number was assessed using crystal violet staining. For these experiments, the dose–response curves
were significantly different between the sensitive/parental lines compared with the isogenic resistant lines (p < 0.05). D, table of IC50s from the CDK7i dose–
response curves. E, sensitive/parental and resistant MDA-MB-468 cells were treated with dimethyl sulfoxide or 50 nM THZ1 for 72 h, whereas MDA-MB-231-
sensitive/parental and resistant MDA-MB-231 cells were treated with dimethyl sulfoxide or 75 nM THZ1. All cell lines were then replated and analyzed for
colony formation after 8 days of growth in drug-free, complete media. For all experiments, *p < 0.05. n = 3 to 4 experiments, each completed in triplicate.
Values are means ± SD.

Activin promotes CDK7 inhibitor resistance
are well-established mediators of resistance to cytotoxic
chemotherapies in breast cancer (24–26). Of the ABC
transporter genes, ABCG2 was the most highly induced gene
that was shared between the two CDK7i-resistant cell lines.
Of note, ABCG2 was first identified as Breast Cancer
Resistance Protein or BCRP (25); it is an efflux pump that
conveys multidrug resistance in this and other cancers. Over
200 substrates have been identified for ABCG2 that have
varied chemical structures. Hence, ABCG2 can confer
resistance to diverse and commonly utilized chemothera-
peutics such as etoposide, methotrexate, and doxorubicin
(27). Moreover, a recent report has revealed that enforced
overexpression of ABCG2 can induce resistance to THZ1 in
HEK293 cells, and in silico docking studies suggest that
THZ1 can directly bind to ABCG2 (28). We confirmed that
ABCG2 mRNA (Fig. 3C) and protein (Fig. 3D) were upre-
gulated in both MDA-MB-231R and MDA-MB-468R cells
compared with the CDK7i-sensitive/parental cells. To
determine if expression levels of ABCG2 are associated with
TNBC patient survival, we used Kaplan–Meier Plotter to
conduct a meta-analysis of several breast cancer gene
expression datasets (29). TNBC (basal) patients with high
ABCG2 expression had a reduced probability of overall
survival compared with those with low ABCG2 (Fig. 3E),
indicating that the ABCG2 efflux pump may negatively
impact outcomes of patients with this disease.
ABCG2 inhibition restores CDK7i responsiveness in resistant
TNBC cells

To determine if the increased expression of ABCG2
observed in CDK7i-resistant cells contributes to drug resis-
tance, we silenced its expression by transiently transfecting
siRNA to ABCG2 (siABCG2) or a nonsilencing (siNS) control
in the resistant lines (MDA-MB-468R or MDA-MB-231R)
(Fig. 4A). We then generated dose–response curves for
THZ1 (Fig. 4B). Silencing ABCG2 expression had no impact
on the response of sensitive/parental cells to THZ1. In
contrast, reducing ABCG2 expression in the resistant lines
shifted their THZ1 dose–response curve to the left, with the
J. Biol. Chem. (2021) 297(4) 101162 3
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Activin promotes CDK7 inhibitor resistance
IC50 for THZ1 shifting from 440 nM in the 468R control
(siNS) cells to 70 nM in the ABCG2 silenced cells and from
285 nM in the 231R control cells to 68 nM upon ABCG2
silencing. To determine if blocking AGCG2 activity could be
used as a pharmacological approach to restore THZ1 sensi-
tivity in resistant cells, we repeated these experiments using
pharmacological inhibitors of ABCG2, GF120918 (Elacridar)
(30), and Ko143 (31–33). Both ABCG2 inhibitors resensitized
the resistant cells to THZ1. This was manifested as a shift in
the THZ1 IC50 from 535 to 152 nM upon cotreatment with
GF120918 in the MDA-MB-468-resistant cells (Fig. 4C); a
similar leftward shift was observed in the MDA-MB-231-
resistant cells with the IC50 for THZ1 changing from 304 to
78 nM with GF120918 cotreatment (Fig. 4C). Similar results
were observed with a second, more selective ABCG2 inhibitor,
Ko143. The THZ1 IC50 for MDA-MB-468-resistant cells
shifted from 524 to 123 nM (Fig. 4D) and the THZ1 IC50 of the
MDA-MB-231-resistant cells shifted from 339 to 85 nM
(Fig. 4D). Hence, using genetic and pharmacological ap-
proaches, these data indicate that ABCG2 is necessary to
sustain acquired resistance to CDK7i in these models and
supports future assessment of clinically effective ABCG2 in-
hibitors in combination with CDK7i in patients.
EMT signature genes are upregulated in CDK7i-resistant TNBC
cells

We next sought to identify the mechanism(s) underlying the
induction of ABCG2 expression that occurs with CDK7i
4 J. Biol. Chem. (2021) 297(4) 101162
resistance. Identifying such mechanisms should facilitate
developing treatment approaches that prevent acquisition of
CDK7i resistance via ABCG2 upregulation. It is becoming
increasingly apparent that cellular plasticity, including epithe-
lial to mesenchymal transition (EMT), underlies chemothera-
peutic resistance in several cancer models. Hybrid epithelial/
mesenchymal states in human cancers has further demon-
strated the clinical relevance of EMT in these diseases (34–38).
In this regard, we observed gross morphological changes in the
resistant cell lines. They appeared more elongated than sensi-
tive/parental cells, suggesting an acquisition of mesenchymal
features (Fig. 5A). Of note, the expression of ABCG2 can be
induced by EMT but its regulation in the setting of CDK7i
resistance is unknown (39–41). We hypothesized that cells
undergo EMT in the process of becoming resistant to CDK7i
and that this may lead to ABCG2 induction. Indeed, gene set
enrichment analysis of the RNA-Seq data revealed significant
enrichment of EMT-related gene signatures in both MDA-MB-
468R and MDA-MB-231R cells (Fig. 5, B and C and Fig. S1).
Changes in the expression of selected EMT genes including
Snail (SNAI1), Slug (SNAI2), Fibronectin (FN1), and Integrin β4
(ITGB4) was confirmed (Fig. 5, D–G) in both the resistant
MDA-MB-468 and MDA-MB-231-resistant cells. The
increased gene expression was further translated into elevated
expression of the corresponding proteins that were examined
(SNAI1, ITGB4, and FN1, Fig. 5, H–J) (42–47). These data
indicate that the acquisition of CDK7i resistance and elevated
expression of ABCG2 is associated with the activation of an
EMT program in TNBC cells. Moreover, they align with prior
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studies demonstrating that EMT-associated transcription fac-
tors can induce the expression of the ABCG2 gene when they
are overexpressed (48).
TGF-β/activin signaling is upregulated and necessary for
maintaining CDK7i resistance

The transforming growth factor-beta (TGF-β) family of li-
gands, specifically TGF-β and activin, are widely known drivers
of EMT in breast cancer (49, 50) and have been reported to
promote resistance to cancer therapies (51, 52). Further
interrogation of the overlapping resistance gene set from the
RNA-Seq data by GSEA revealed that the TGF-β family
signaling pathway is upregulated in CDK7i-resistant cells
compared with their sensitive/parental counterparts (Fig. 6A
and Fig. S1). Moreover, the EMT genes/proteins evaluated in
Figure 5 (SNAI1, ITGB4, FN1, and SNAI2) are downstream
targets of TGF-β/activin signaling (53, 54). Although TGF-β1
ligand gene expression (TGFB1) was only significantly induced
in the RNA-Seq data for one of the resistant cell lines
compared with sensitive/parental cells, we noted a substantial
increase in the expression of INHBA (activin A) in both lines
(data not shown). Increased expression of INHBA mRNA and
protein in resistant compared with sensitive/parental was
confirmed (Fig. 6, B and C). Moreover, expression of follistatin
(FST), an intrinsic inhibitor of activin, was suppressed in
resistant cells (Fig. 6D). Like TGF-β, activin induces the ca-
nonical SMAD signaling pathway involving SMAD2/3 phos-
phorylation and activation of SMAD4 transcriptional activity
(55). We found that resistant cells have increased SMAD3
phosphorylation (p-SMAD3) compared with sensitive/parental
cells (Fig. 6E), further supporting activation of activin signaling
upon acquisition of resistance. In MDA-MB-468 cells, the
increase in SMAD3 phosphorylation was associated with an
increase in SMAD3 levels. This may be due to stabilization of
SMAD3 protein or increased transcription of the SMAD3 gene
in these cells with the acquisition of resistance but still dem-
onstrates that resistance involves an increase in the total
J. Biol. Chem. (2021) 297(4) 101162 5



Figure 4. ABCG2 inhibition restores CDK7i responsiveness in resistant TNBC cells. A, protein verification of siRNA-mediated silencing of ABCG2 in MDA-
MB-468R and MDA-MB-231R cells after 72 h. B, seventy-two–hour THZ1 dose–response curve in MDA-MB-468R and MDA-MB-231R cells initiated 48 h after
transfection. The siABCG2 curves are significantly different than the siNS curves according to a sum-of-squares F test with p-value <0.5. C, THZ1 dose–
response curves for MDA-MB-468 and MDA-MB-231-sensitive/parental and resistant cells that were cotreated with either vehicle or GF120918 (1.5 μM)
for 72 h. D, THZ1 dose–response curves for MDA-MB-468 and MDA-MB-231-sensitive/parental and resistant cells that were cotreated with vehicle or Ko143
(100 nM) for 72 h. The GF and Ko143 cotreatment curves are significantly different from their resistant curve counterparts treated with vehicle, according to
a sum-of-squares F test with a p-value <0.05.

Activin promotes CDK7 inhibitor resistance
activity of SMAD3 (Fig. 6F). Together, these data indicate that
TGF-β family signaling, particularly activin, is upregulated in
CDK7i-resistant cells and suggests that this pathway may be an
essential mechanism establishing resistance. There are
currently no small molecule inhibitors that can discriminate
between TGF-β and activin receptors (56). Thus, to determine
if signaling from this family of receptors is essential for the
phenotypes observed in CDK7i-resistant cells, we used
SB431542, an inhibitor of both TGF-β and activin receptors.
Treatment with a low dose of SB431542 (5.6 or 11 μM,
6 J. Biol. Chem. (2021) 297(4) 101162
respectively) had no significant effect on the THZ1
dose–response relationship in sensitive/parental MDA-MB-
231 or MDA-MB-468 cells. In contrast, in resistant cells,
blocking TGF-β/activin receptor activity with the SB com-
pound increased THZ1 responsiveness by shifting the dose–
response curve to the left compared with resistant cells
treated with THZ1 plus vehicle (Fig. 6G). The MDA-MB-468-
resistant cells shifted from an IC50 of 340 nM in the vehicle-
treated cells to 123 nM in the SB431542-treated cells
(Fig. 6G). The MDA-MB-231-resistant cells shifted from a



Figure 5. Epithelial to mesenchymal transition (EMT) signature genes are upregulated in CDK7i-resistant TNBC cells. A, phase contrast images of
sensitive/parental (MDA-MB-468 and MDA-MB-231) and resistant (MDA-MB-468R and MDA-MB-231R) cells. The scale bar represents 30 μm. B, Gene Set
Enrichment Analysis of upregulated genes associated with EMT (Hallmark v7.4) is shown for the MDA-MB-468R and C, MDA-MB-231R cells. D–G, quantitative
RT-PCR confirmation of the upregulation of SNAI1 (D), ITGB4 (E), FN1 (F), and SNAI2 (G) with the acquisition of CDK7i resistance. H–J, expression of EMT-
associated proteins SNAI1 (H), ITGB4 (I), and FN1 (J) in MDA-MB-468 and MDA-MB-231-sensitive/parental and CDK7i-resistant cells. Cell line data are the
results of three independent experiments. Bars are means ± SD. Protein results are expressed relative to the total protein. *p < 0.05.

Activin promotes CDK7 inhibitor resistance
THZ1 IC50 of 380 nM in the vehicle-treated cells to 130 nM in
the SB431542-treated cells (Fig. 6G). These data indicate that
blocking TGF-β/activin signaling resensitizes resistant TNBC
cell lines to CDK7i.
TGF-β/activin family signaling maintains expression of ABCG2
in CDK7i-resistant cells

Signaling by TGF-β has been reported to induce ABCG2
expression (39, 40), suggesting that the TGF-β/activin pathway
may underlie the upregulation of ABCG2 that occurs with
acquisition of CDK7i resistance. To determine if resistance to
CDK7i was due to increased canonical signaling by TGF-β/
activin that in turn elevates ABCG2 expression, we used siRNA
to suppress the expression of SMAD4 (Mothers Against
Decapentaplegic Homolog 4). SMAD4 is the downstream
transcription factor that integrates signaling from TGF-β/acti-
vin receptors (57–59). Transient transfection with siSMAD4
decreased SMAD4 mRNA and protein expression compared
with the nonsilencing control (Fig. 7, A and B). This resulted in
a significant reduction of ABCG2 mRNA and protein (Fig. 7, C
and D) expression in both resistant cell lines, indicating that
J. Biol. Chem. (2021) 297(4) 101162 7



Figure 6. TGF-β/activin signaling is upregulated and necessary for maintaining CDK7i resistance. A, Gene Set Enrichment Analysis showing the
enrichment of the TGF-β family signaling gene signature (79) in MDA-MB-468R and MDA-MB-231R cells compared with their respective sensitive/parental
cells. B, changes in the expression of activin A mRNA (INHBA) was confirmed in MDA-MB-468 and MDA-MB-231 cells. C, western blot analysis of INHBA
protein expression in resistant compared with sensitive/parental MDA-MB-468 cells. The larger-molecular-weight protein band for INHBA is the glycosylated
isoform. D, protein expression of the intrinsic inhibitor of activin, follistatin (FST) was reduced in resistant compared with sensitive/parental MDA-MB-468
and MDA-MB-231 cells. E, phosphorylation of SMAD3 is induced in resistant compared with sensitive/parental cells. F, western blot analysis of total SMAD3
expression in MDA-MB-468 and MDA-MB-231-sensitive/parental and resistant cells. G, resistant and sensitive/parental cells were treated with 11.2 μM
SB431542 for MDA-MB-468 or 5.6 μM SB431542 for MDA-MB-231 or vehicle for 48 h prior to generating 72-h THZ1 dose–response curves. The THZ1 dose–
response curves are significantly different when cotreated with the SB compound compared with vehicle in the resistant cells according to a sum-of-
squares F test with a p-value <0.05. These data are the results of three independent experiments. Bars are means ± SD. Protein expression is quanti-
fied relative to the total protein. *p < 0.05.
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Figure 7. TGF-β/activin signaling sustains expression of ABCG2 in CDK7i-resistant cells. A, quantitation of SMAD4 mRNA and B, protein expression in
MDA-MB-468 and MDA-MB-231 in resistant cells after siRNA-mediated silencing of SMAD4 with two different siRNAs, SMAD4-09 (S4-09) and SMAD4-10
(S4-10), or transfection with a nonsilencing control (siNS). Quantitation of SMAD4 protein expression relative to total protein for the experiments in
triplicate is shown in the lower panel. C, SMAD4 silencing reduces ABCG2 mRNA and D, protein expression in MDA-MB-468 and MDA-MB-231-resistant cells.
Quantitation of ABCG2 protein expression relative to total protein for the experiments in triplicate is shown in the lower panel. E, SB431542 (11.2 μM)
treatment of resistant MDA-MB-468 reduces ABCG2 protein expression. F, SB431542 (5.6 μM) treatment of resistant MDA-MB-231 cells reduces ABCG2
protein expression. Quantitation of ABCG2 protein expression relative to total protein for the experiments in triplicate is shown in the lower panel.
G, genome region depicting open chromatin as indicated by publicly available H3K27Ac ChIP-Seq data of the ABCG2 gene locus. The red rectangles show the
positions of the primers used in the ChIP-PCR. H, p-Smad3 ChIP-PCR of a predicted binding site in the ABCG2 promoter regulatory region in resistant MDA-
MB-468 and MDA-MB-231 cells. Error bars show the range of the p-SMAD3 binding as quantified by PCR from experimental duplicates. For all other data,
error bars are means ± SD. *p < 0.05
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sustained SMAD4 was necessary to maintain ABCG2 gene
expression in models of CDK7i acquired resistance. We then
used a pharmacological approach to further assess the interplay
between TGF-β/activin family signaling and ABCG2 expression
in CDK7i resistance. Treatment of MDA-MB-468R or MDA-
MB-231R cells with SB4321542 resulted in decreased ABCG2
protein expression (Fig. 7, E and F), affirming the importance of
TGF-β/activin signaling in upregulating ABCG2 levels in
resistant cells. To determine if TGF-β/activin signaling directly
regulates ABCG2 gene expression, we used publicly available
H3K27Ac chromatin immunoprecipitation (ChIP)-Seq data to
identify regions of the gene that are within open chromatin and
available to bind SMAD proteins (60). We identified a region of
the ABCG2 gene locus that was associated with the largest
H3K27Ac peak near the transcription start site (Fig. 7G). We
then queried this region for predicted consensus binding motifs
for SMAD2/SMAD3/SMAD4 using JASPER (Table S2) (61, 62)
and identified several potential SMAD-binding sites. SMAD4 is
the common DNA-binding partner of SMADs 2 and 3 (me-
diators of TGF-β/activin signaling) as well as SMADs 1, 5, and
8 (mediators of bone morphogenetic protein signaling). Thus,
to specifically test the potential for TGF-β/activin to control
ABCG2 expression, we assessed the binding of phosphorylated
SMAD3 to the ABCG2 locus rather than SMAD4. Chromatin
immunoprecipitation was conducted using an antibody for
phosphorylated SMAD3 followed by PCR with primers to this
region of the ABCG2 gene. This analysis revealed that phos-
phorylated SMAD3 binds to the ABCG2 gene in resistant
J. Biol. Chem. (2021) 297(4) 101162 9
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MDA-MB-468 and MDA-MB-231 TNBC cell lines (Fig. 7H).
Together these studies reveal that acquisition of CDK7i resis-
tance involves activation of TGF-β/activin signaling that then
leads to induction of the expression of the multidrug trans-
porter ABCG2 (Fig. 8). Of note, elements of this pathway can
be repressed with small molecule inhibitors to ABCG2 or
TGF-β/activin receptors, suggesting a therapeutic avenue for
preventing and/or reversing resistance to the novel class of
inhibitors that target CDK7.

Discussion

CDK7 inhibitors are promising new therapeutics that are
currently being evaluated in clinical trials, including those
focused on TNBC. Like most targeted cancer therapies,
resistance to this class of drugs is expected with long-term use.
In the current study, we prospectively discovered that acquired
resistance to CDK7 inhibitors can occur through adaptive
activation of TGF-β family signaling, particularly induction of
activin and repression of its intrinsic inhibitor, follistatin.
Increased canonical signaling through SMADs then induces
the expression of ABCG2 through direct binding of activated/
phosphorylated SMAD3 to the gene. ABCG2 is a multidrug
resistance protein that mediates resistance to several cytotoxic
chemotherapies (24–26, 40). Blocking ABCG2 expression or
activity in the current study demonstrates that it is necessary
to sustain resistance to CDK7i. More recently, ABCG2 has
been reported to induce resistance to CDK7i in MCF-7 cells
(28), which represent a different subtype of breast cancer
(21, 63–65). The mechanisms leading to ABCG2 upregulation
remained unknown until the discovery reported herein
revealing that induction of TGF-β/activin signaling in resistant
cells is necessary to sustain ABCG2 expression through ca-
nonical SMAD signaling.

We used two cell lines in this study that represent two
distinct subtypes of TNBC, mesenchymal stem–like (MSL,
Figure 8. A model of CDK7i resistance in TNBC cells. CDK7i resistance in TN
parental/sensitive TNBC cells. This leads to increased EMT and ABCB2 expressi
cells can be resensitized.
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MDA-MB-231) and basal-like 1 (BL1, MDA-MB-468). Of
note, acquired resistance in both subtypes involved the
acquisition of an EMT gene expression signature and a more
mesenchymal phenotype. This suggests that induction of EMT
may be a common mechanism of resistance that could span
cell lineages. Of note, TGF-β/activin signaling and EMT
induce properties of stem cells (66). We observed an increase
in the expression of Snail (Snai1) and Integrin β4 (ITGB4), two
mediators of TGF-β/activin signaling that promote stem cell
phenotypes (43, 53, 67, 68). Moreover, activin signaling has
also been shown to increase stem cell properties in develop-
ment and cancer (69–71). These data suggest that the devel-
opment of acquired resistance may involve the activation of
stem cell pathways. The CDK7 signaling pathway also plays a
role in maintaining stem cells. Genetic disruption of CDK7
causes premature aging owing to adult stem cell exhaustion,
whereas cyclin-dependent kinase activating kinase has been
shown to be required for pluripotency of murine embryonic
stem cells (5, 72). The studies presented herein did not directly
assess whether CDK7i resistance involves an enrichment of
cancer stem cells, which would require limiting dilution assays
in mouse models. However, they do suggest that development
of CDK7i resistance may overcome the requirement for CDK7
in maintaining stemness. Determining whether TGF-β and/or
activin can substitute for CDK7 signaling in controlling stem
cell properties will reveal how these pathways interact and
their specific contributions to cancer stem cells and disease
progression.

Although activin and TGF-β are distinct and have unique
functions, they also have many overlapping activities including
their ability to activate SMAD2/3 and induction of EMT, albeit
at differing potencies (69). RNA-Seq data revealed a �3- to 7-
fold induction of INHBA in the absence of similar changes in
the expression of genes encoding TGF-β ligands. Homodimers
of INHBA form activin A. Unlike TGF-β, the interaction of
BC can be driven by increased TGF-β/activin signaling compared with the
on. By inhibiting TGF-β/activin signaling or ABCG2 the CDK7i-resistant TNBC
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activin with its receptor can be prevented by follistatin binding.
We found that FST expression was repressed with the acqui-
sition of CDK7i resistance. Together, these data suggest that
activin signaling may underlie the acquisition of resistance in
these cell line models. However, we cannot rule out the pos-
sibility that signaling by TGF-β ligands may also be involved.
We found that SMAD3 phosphorylation, a target of both
activin and TGF-β signaling, is elevated in resistant cells and
that its partner, SMAD4, is necessary to maintain expression of
ABCG2 in resistant cells. Given the complexity of this family,
we used a small molecule inhibitor of both activin and TGF-β
receptors to block their activity and found that this partially
restored sensitivity to THZ1. The lack of selective inhibitors
for the activin and TGF-β receptors suggests that restoration
of CDK7i response in resistant tumors would likely involve
blockade of both receptors. Our studies also did not demon-
strate whether activation of TGF-β and/or activin receptors is
sufficient to induce resistance. Stimulation of the sensitive/
parental cells with TGF-β1 alone was unable to induce resis-
tance to THZ1 (data not shown); however this could be due to
several factors. Some of these include a potential requirement
for multiple TGF-β ligands, a need for an unknown but spe-
cific time frame of ligand activation to convey resistance, or
the activation of unrelated pathways that remain to be
discovered that collaborate with TGF-β ligands.

We focused on the role of ABCG2 in mediating resistance to
CDK7i because it was commonly highly upregulated in both
cell lines. However, many ABC transporter genes were induced
with the acquisition of resistance and TGF-β signaling can
increase the expression of multiple ABC transporters in other
models (73). Although inhibition of ABCG2 restored sensi-
tivity to THZ1, it is possible that the other transporters could
also contribute to resistance to various CDK7 inhibitors. These
transporters have differing degrees of target selectivity based
on the molecular composition of the targets. This may un-
derlie the distinct shifts in drug resistance that were observed
with the different CDK7 inhibitors used in this study, where
resistance to SY-1365 was less pronounced in the MDA-MB-
231R cells than the other inhibitors. In this case, maximal
resistance to SY-1365 may require upregulation of additional
ABC transporters. To avoid such resistance, the use of broad-
spectrum inhibitors of ABC transporters may be more effective
than those that target individual transporters. Alternatively,
the development of resistance to one CDK7i following the
upregulation of a subset of transporters may still allow some
degree of sensitivity to other, molecularly distinct CDK7is that
are not substrates for those efflux pumps.

Although we observed an upregulation of activin (INHBA)
gene expression with the acquisition of CDK7i resistance, the
specific mechanisms that lead to this induction are not yet
known. The CDK7i YKL-5-124 has recently been reported to
induce DNA double-strand breaks and genome instability in
small cell lung cancer (74). It is notable that double-strand
breaks or telomere dysfunction has been shown to induce
activin (INHBA) expression in variant human mammary
epithelial cells (75). We anticipate that the DNA damage that
has been reported for CDK7i in lung cancer cells may also
occur in breast cancer cells. If so, this could lead to the rapid
and sustained activation of INHBA expression observed with
CDK7 inhibition. This would suggest that CDK7 inhibitors
intrinsically induce their own resistance through a pathway
that involves DNA damage followed by increased activin
expression and signaling.

In summary, we have uncovered a mechanism of CDK7
inhibitor resistance involving activation of the TGF-β family
signaling pathway, particularly activin, that then induces the
expression of the ABCG2 multidrug resistance protein. We
further found that resistance can be pharmacologically
reversed using either inhibitors of ABCG2 or TGF-β/activin
receptors. Understanding mechanisms of resistance will be
essential for realizing the full utility of CDK7 inhibitors by
blocking the development of resistance through sequential or
combinatorial therapies. Our studies suggest two approaches
for ensuring responsiveness to CDK7i in TNBC.

Experimental procedures

Cell culture and reagents

The MDA-MB-231 and MDA-MB-468 cell lines were pur-
chased from ATCC between 2015 and 2018 and maintained as
directed. Cell lines were expanded, aliquoted, cryogenically
stored, and used within 12 passages after thaw. All cell lines
were tested for Mycoplasma pulmonis and Mycoplasma spp
using MycoAlertTM Plus Mycoplasma Detection Kit (Lonza,
LT07-703). CDK7i-resistant cell lines were developed by
treating the sensitive/parental cell lines with increasing doses
of THZ1 over a 2-month period to a final concentration of
250 nM THZ1. Cells were imaged at 40× magnification using
phase contrast on a Leica DMS200 microscope or Keyence
BZ-X810. THZ1 (ApexBio, A8882), THZ2 (ApexBio, A8717),
SY-1365 (MedChemExpress, HY-128587), Ko143 (Sigma,
K2144-1), SB431542 (Sigma, S4317), and GF120918 (Cellagen
Tech, C4312) were suspended in DMSO and then diluted in
media.

RNA silencing

Cells were seeded in a 10-cm plate at 1 × 106 cells and
reverse transfected with lipofectamine 2000 (30 μl) with
Dharmacon siRNAs (30 μl of 20 μM) targeting ABCG2
(L-009924-00-0005), SMAD4 (J-003902-09-0005 or J-003902-
10-0005), or a nontargeting control (D-001210-02-50). The
next day, the cells were replated in a 24-well plate at
40,000 cells/well. Two days after replating, cells were treated
with THZ1 (75 and 50 nM for MDA-MB-231 and MDA-MB-
468 cells, respectively) and collected 48 h post treatment for
gene silencing verification via quantitative real-time PCR and
Western blots.

Reverse transcription–polymerase chain reaction

Total RNA was isolated with Trizol Reagent (Invitrogen).
mRNA expression was measured as previously described (76).
ThermoFisher probes used were: ABCG2 (Hs01053790_m1),
SNAI1 (Hs00195591_m1), ITGB4 (Hs01103158_m1), SMAD4
(Hs00929647_m1), INHBA (Hs00170103_m1), FN1
J. Biol. Chem. (2021) 297(4) 101162 11
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(Hs00365052_m1), and SNAI2 (Hs00950344_m1). GAPDH
(Hs02786624_g1) was used for normalization in the RT-PCR
assays.
Dose–response curves

Cells were plated in a 24-well plate at 40,000 cells/well and
treated the following day with vehicle (DMSO), CDK7i, or
drug combinations of CDK7i with ABCG2 or TGF-β/activin
receptor inhibitors. After 72 h, cells were stained with 0.05%
crystal violet for quantitation. Absorbance of the crystal violet
was assessed at 590 nM using a Promega GloMax Explorer
plate reader.
RNA-Seq analysis

RNA was isolated using Trizol reagent followed by treat-
ment with DNAse I (DNA-free kit, Ambion) per manufac-
turer’s instructions. For RNA-Seq, sensitive and resistant
MDA-MB-231 and MDA-MB-468 cells were cultured in
complete RPMI media for 48 h. Library preparation,
sequencing, and analysis were completed by Novogene
Corporation Inc using the Illumina platform with paired-end,
150-bp reads mapped to hg19. Differential expression was
determined using the DESeq2 R package, where differentially
expressed genes were deemed significantly changed if the
Benjamini–Hochberg adjusted p-value was <0.05. The
threshold for differential expression was a corrected p-value of
0.05 and absolute fold change of 2. To assess repeatability and
cell line associations, the RNA-Seq gene lists were evaluated
using the square of the Pearson correlation coefficient of the
individual replicates.

GSEA (77) was used to assess the extent of enrichment of
ABC transporters (Kyoto Encyclopedia of Genes and Ge-
nomes) (23), EMT (Hallmark v7.4) (78), and TGF-β family
signaling pathways (79) with signatures obtained from the
GSEA portal molecular signatures database (78). GO (http://
www.geneontology.org/) was used to evaluate biological pro-
cesses that were altered with CDK7i resistance. GO pathways
with significantly overlapping genes were consolidated with
NaviGO (80) based upon similarity scores. Resnik similarity
scores >1.5 indicated high levels of similarity between
pathways.
Public database analyses

Overall survival was evaluated using KM Plotter (29) to
interrogate gene expression microarray data of 241 patients
with basal breast cancer, which comprises 80% of all TNBC
cases (81); patients were stratified based on the expression of
ABCG2 (AffymetrixID, 209735_at). The overall survival of
ABCG2 high- and low-expression groups was calculated with
the optimal cutoff of 136 (range = 2–812) and a patient pop-
ulation of low (n = 158) and high (n = 83). KM Plotter uses
patient data from a combination of data sets within The
Cancer Genome Atlas, the Gene Expression Omnibus, and the
European Genome-Phenome Archive. Patients were included
regardless of treatment history.
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Trypan blue viability assay and crystal violet staining

Viability was assessed with trypan blue exclusion as
described (82). For colony formation assays, cells were treated
with either vehicle (DMSO) or THZ1 (75 nM for MDA-MB-
231 and 50 nM for MDA-MB-468) for 3 days. Eight hundred
live cells were collected per well and then seeded in 24-well
plates with complete media in the absence of drug, with the
cell media replaced every 3 days. After 8 days, cells were
stained with 0.05% crystal violet. Acetic acid, 10%, was added
to the plates, and absorbance was read at 590 nm.

Protein quantitation

Abundance of specific proteins was quantified using West-
ern blot analysis as described (76) with the following primary
antibodies: ABCG2 (Cell Signaling, 4477S, 1:250), SMAD4
(Santa Cruz, sc-7966, 1:500), phosphorylated SMAD3 (Cell
Signaling, 9520S, 1:500), SMAD3 (Cell Signaling, 9523S,
1:500), fibronectin (Cell Signaling, 26836S, 1:500), SNAI1 (Cell
Signaling, C15D3, 1:500), ITGB4 (Cell Signaling, 14803S,
1:500), INHBA (Abcam, ab56057, 1:500), and FST (Santa Cruz,
sc365003, 1:500). The following secondary antibodies were
utilized to detect bound primary antibodies: IRDye 680RD or
800CW goat anti-rabbit or mouse IgM, 1:5000, LI-COR, 926-
32211, 926-68070, 926-68071. Images of Western blots probed
with the fluorescent secondary antibody were collected with a
LI-COR Odyssey Fc or CLx, and target proteins were quanti-
fied and normalized to total protein present. Total protein was
ascertained utilizing REVERT staining. Total protein staining
was used for normalization of Western blots aligning with
reports demonstrating that total protein staining is a more
accurate loading control than the use of housekeeping proteins
(83–85). Western blots were quantified using Image studio
v5.2.

Chromatin immunoprecipitation–PCR

Using JASPAR, SMAD2/SMAD3/SMAD4-binding sites
were predicted in the ABCG2 gene locus (hg:19,
Chr4:89146000-89148000). Using UCSC Genome browser
(http://genome.ucsc.edu), and publicly available H3K27Ac
data, we additionally overlapped transcriptionally active and
open DNA with the predicted binding sites (61, 62). An
antibody against phosphorylated SMAD3 (Cell Signaling,
9520S, 40 μg) was used to immunoprecipitate this region of
the ABCG2 gene. The ChIP-PCR protocol was completed as
described (82). Primers were made to the region hg:19,
Chr4:89147545-89147842 and were as follows: Left primer-
50 taaacctggggcaacaccta 3’; right primer- 50 catgcca-
gaattccttggtt 3’.

Statistical analyses

Unless otherwise stated, all data are presented as means ± SD
of three or more independent experiments that were each
performed with either triplicate or duplicate technical repli-
cates. Statistical significance was determined using a one or
two-tailed Student’s t test or sum-of-squares F test with a
p-value <0.05.

http://www.geneontology.org/
http://www.geneontology.org/
http://genome.ucsc.edu
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