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Abstract: Neurodegenerative diseases and depression are multifactorial disorders with a complex
and poorly understood physiopathology. Astrocytes play a key role in the functioning of neurons in
norm and pathology. Stress is an important factor for the development of brain disorders. Here, we
review data on the effects of stress on astrocyte function and evidence of the involvement of astrocyte
dysfunction in depression and Alzheimer’s disease (AD). Stressful life events are an important
risk factor for depression; meanwhile, depression is an important risk factor for AD. Clinical data
indicate atrophic changes in the same areas of the brain, the hippocampus and prefrontal cortex
(PFC), in both pathologies. These brain regions play a key role in regulating the stress response and
are most vulnerable to the action of glucocorticoids. PFC astrocytes are critically involved in the
development of depression. Stress alters astrocyte function and can result in pyroptotic death of not
only neurons, but also astrocytes. BDNF-TrkB system not only plays a key role in depression and
in normalizing the stress response, but also appears to be an important factor in the functioning of
astrocytes. Astrocytes, being a target for stress and glucocorticoids, are a promising target for the
treatment of stress-dependent depression and AD.

Keywords: stress; depression; neurodegeneration; Alzheimer’s disease; astrocytes; antidepressants;
brain derived neurotrophic factor; TrkB receptor

1. Introduction

According to Hans Selye, “stress is the nonspecific response of the body to any de-
mand” [1]. Stress is also defined as a state of threatened (or perceived as threatened)
internal dynamic balance (“homeostasis”) caused by external or internal stimuli (“stres-
sors”) [2]. To achieve homeostasis, the highly conservative regulatory neuroendocrine
system, the “stress system”, is activated through synchronized interaction between the
hypothalamic–pituitary–adrenal axis (HPAA) and the autonomic nervous system [2]. In
principle, stress is necessary to adapt to changing environmental or internal conditions and
increase the chance of survival. It is known that moderate stress is able to activate mental
and behavioral processes to find solutions to the challenges facing an individual. However,
excessive and/or prolonged stressors and the consequent chronic deregulation of the stress
system can lead to a wide range of chronic pathological conditions, including pathologies
of the cardiovascular, endocrine, immune and nervous systems. One of the stress-related
pathologies of the nervous system is depression (major depressive disorder). Currently,
depression is a most widespread mental disorder worldwide, which, according to World
Health Organization, affects approximately 280 million people in the world, or about 4.0%
of the population, including at least 5% of adults [3]. The incidence of depression increases
with age, so it is about 27% in the age group of 75–80 years, 33% in the age group of
81–85 years and reaches 46% in the age group of 91 years and older [4]. Considering that
the frequency of neurodegenerative diseases (in particular, dementia) also increases with
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age and that depression often manifests itself in dementia, it is possible that pathological
changes in the course of dementia are associated with the development of depression.

Depression, as a mental disorder, is characterized by two core symptoms, depressed
mood and loss of interest or pleasure in nearly all activities, and may be accompanied by
other symptoms such as cognitive impairments, sleep disturbance, psychomotor retardation
or agitation, feelings of worthlessness or excessive or inappropriate guilt [5]. Depression
significantly worsens the quality of life. A large percentage of suicides, especially among
young people, is associated with depression.

Figure 1 schematically shows the general sequence of events leading to the develop-
ment of chronic stress, depression and, ultimately, to the degeneration of nerve cells.
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chronic stress and depression.

Among the main factors leading to the development of chronic stress and depression,
the following should be noted:

1. Chronic pathologies of the nervous and cardiovascular systems, as well as oncologi-
cal diseases.

2. Social and psychological factors related to human living conditions and contacts with
surrounding members of society and the external environment.

3. Excessive and prolonged intake of various pharmaceutical preparations, as well as
toxic compounds from the external environment, the number of which increases with
the deterioration of the overall environmental situation in the world.

Alzheimer’s disease (AD) is the most common cause of dementia, which is estimated
to account for 60% to 80% of cases [6]. AD is considered one of the main causes of morbidity
and mortality among the elderly [7]. The prevalence of AD in Europe is estimated at 5.0%,
which is 3.3% in men and 7.1% in women [8]. AD is a slowly progressive brain pathology
that begins many years before the onset of symptoms. Clinical symptoms in early stages of
AD include difficulty remembering recent conversations, names, or events, which are often



Int. J. Mol. Sci. 2022, 23, 4999 3 of 26

accompanied by apathy and depression. In later stages of AD, symptoms include impaired
communication, disorientation, behavioral changes, and ultimately difficulty speaking,
swallowing, and walking [6]. AD is characterized by the accumulation of beta-amyloid
peptide (Aß) (amyloid plaques) in brain tissues and a destabilization of the cytoskeleton of
neurons caused by hyperphosphorylation of microtubule-associated Tau-protein. However,
the poor correlation between cognitive decline and amyloid plaques raises the question
of whether Aß accumulation actually causes neurodegeneration in AD. The formation
of neurofibrillary tangles of Tau correlates better with neurodegeneration and clinical
symptoms, and although Aß can initiate a cascade of events leading to neurodegeneration,
Tau hyperphosphorylation is assumed to be key in neurodegeneration in AD [9]. The vast
majority of cases of AD belong to a sporadic form (usually, late onset of symptoms). The
sporadic form of AD is associated with the interaction of genetic and environmental factors,
and aging is the main risk factor. Two main genetic risk factors for sporadic AD have been
identified. Firstly, the presence of the APOE4 allele encoding one of the three isoforms of
Apolipoprotein E (apoE2, apoE3 and apoE4), the main transporter of cholesterol in the
brain, which is synthesized and secreted by astrocytes [10], is the most significant risk
factor for sporadic AD [11]. Other genetic risk factors for sporadic AD are polymorphisms
and mutations in a number of genes expressed in microglia, in particular, polymorphism
in the TREM2 gene encoding transmembrane glycoprotein, which acts as a receptor on
the surface of microglia and perceives lipids that are exposed after cell damage [12]. The
familial form of AD (early onset) accounts for about 5% of cases of AD and is associated
with mutations in the genes encoding the precursor protein for Aß and presenilins 1 and
2, which leads to increased aggregation of Aß, but a small part of mutations in the gene
encoding presenilin 1 is not familial and occurs de novo [13].

The development of depression is accompanied by changes in the metabolism of nerve
and glial cells and an impairment of synaptic transmission between neurons. Prolonged
action of harmful factors can eventually lead to the degeneration of nerve cells in the
brain (Figure 1). Recent ideas about the functions of astrocytes assign them an extremely
important role both in the normal functioning of the brain and in the development of
brain pathologies [14,15]. In particular, astrocytes are a source of neurotrophic factors,
regulate synaptic transmission and neurotransmitter levels in the synaptic cleft [15–17], and
regulate neurogenesis in the adult hippocampus [17,18]. Thus, astrocytes are key actors in
the processes, the deregulation of which is considered as an important component of the
pathogenesis of depression. Depression is a frequent symptom of AD and may precede the
manifestation of AD symptoms. Stress is an important risk factor for depression [19,20],
while there are no direct data on whether stress is a risk factor for AD. The etiology
and mechanisms of development of both pathologies are obviously complex and unclear,
but the question arises whether there are common features in relation to astrocytes and
stress response. In this review, we briefly consider the central functions of astrocytes, the
involvement of stress in depression, and the relationship between depression and AD.
We review the data on atrophic changes in the brain in these pathologies and whether
they affect astrocytes. The review also examines the effects of stress on astrocyte function
in animal and in vitro models and the involvement of astrocytes in the development of
depression and AD.

2. The Role of Astrocytes in the Functioning of Neurons

For a long time, it was believed that the human brain contains about 100 billion
neurons and about one trillion glial cells (a ratio of 1:10). However, recent studies using
more advanced cell counting methods have shown that the number of glial cells in the
human brain is approximately equal to the number of neurons and ranges from 40 to
130 billion [21]. A characteristic feature of glial cells, both in the brain and on the periphery,
is the lack of the ability to generate and conduct nerve impulses [22]. There are three main
types of glial cells: astrocytes, microglia and myelin-producing cells (oligodendrocytes in
the central nervous system (CNS) and Schwann cells in the peripheral nervous system).
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Astrocytes and oligodendrocytes are the most common type of glial cells in the CNS. For
quite a long period of time, the main function of astrocytes was considered to be the
passive support of neurons that transmit nerve impulses, process and store information
in the brain. Currently, such views have been revised, and astrocytes are assigned an
important role both in the normal functioning of the CNS and in the development of
various pathologies [23–25].

In the brain, astrocytes are a structural component of the so-called tripartite synapse,
which includes, in addition to astrocytes, pre- and postsynaptic endings of neurons [26–28].
The morphological complexity of these cells should be particularly noted. Recent data
show that one mature rodent astrocyte covers from 20,000 to 80,000 µ3 of domain space
in the brain, and at the same time can interact with 300–600 neuronal dendrites [29].
Moreover, morphological studies found that mature astrocytes are able to interact with
many thousands of synapses and at the same time are able to unite with other astrocytes,
occupying unique spatial regions in the brain [30]. Figure 2 illustrates some functions of
astrocytes in the tripartite synapse.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 27 
 

 

of glial cells: astrocytes, microglia and myelin-producing cells (oligodendrocytes in the 
central nervous system (CNS) and Schwann cells in the peripheral nervous system). As-
trocytes and oligodendrocytes are the most common type of glial cells in the CNS. For 
quite a long period of time, the main function of astrocytes was considered to be the pas-
sive support of neurons that transmit nerve impulses, process and store information in 
the brain. Currently, such views have been revised, and astrocytes are assigned an im-
portant role both in the normal functioning of the CNS and in the development of various 
pathologies [23–25]. 

In the brain, astrocytes are a structural component of the so-called tripartite synapse, 
which includes, in addition to astrocytes, pre- and postsynaptic endings of neurons [26–
28]. The morphological complexity of these cells should be particularly noted. Recent data 
show that one mature rodent astrocyte covers from 20,000 to 80,000 μ3 of domain space in 
the brain, and at the same time can interact with 300–600 neuronal dendrites [29]. Moreo-
ver, morphological studies found that mature astrocytes are able to interact with many 
thousands of synapses and at the same time are able to unite with other astrocytes, occu-
pying unique spatial regions in the brain [30]. Figure 2 illustrates some functions of astro-
cytes in the tripartite synapse. 

 
Figure 2. Schematic representation of the structure of the tripartite synapse. 

The glutaminergic presynaptic neuron is shown as an example. The presynaptic ter-
minal and postsynaptic neuron with astrocyte processes surrounding the synapse are 
shown. Glutamate is released into the synaptic cleft and activates iGluR on the postsyn-
aptic membrane, facilitating further transmission of the nerve impulse. In addition, gluta-
mate can also exert its effect through metabotropic receptors (mGluR) localized on the 
presynaptic membrane. Astrocytes remove excess glutamate from the synaptic cleft using 
the EEAT membrane transporter. Astrocytes express numerous neurotrophic factors 
(NTFS) that act through the corresponding receptors. 

Figure 2. Schematic representation of the structure of the tripartite synapse.

The glutaminergic presynaptic neuron is shown as an example. The presynaptic termi-
nal and postsynaptic neuron with astrocyte processes surrounding the synapse are shown.
Glutamate is released into the synaptic cleft and activates iGluR on the postsynaptic mem-
brane, facilitating further transmission of the nerve impulse. In addition, glutamate can
also exert its effect through metabotropic receptors (mGluR) localized on the presynaptic
membrane. Astrocytes remove excess glutamate from the synaptic cleft using the EEAT
membrane transporter. Astrocytes express numerous neurotrophic factors (NTFS) that act
through the corresponding receptors.

Among the most important functions of astrocytes, in addition to the structural support
of neurons, the following should be noted:
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1. The elimination of neurotransmitters such as glutamate, gamma-aminobutyric acid,
dopamine, norepinephrine from the synaptic cleft during the transmission of a nerve
impulse using specific transporters. For glutamate, EEAT serves as a transporter [31].

2. The regulation of the concentration of potassium ions in the synaptic cleft using
specific inward K+ channels Kir 4.1. (for review see: [32]).

3. The expression and secretion of neurotrophic factors regulated the functioning and the
viability of neurons, such as BDNF (brain-derived neurotrophic factor), FGF (fibroblast
growth factor), NGF (nerve growth factor), GDNF (glial cell-derived neurotrophic
factor), etc. (for review, see [33]).

In addition, astrocytes modulate the functioning of surrounding neurons by releas-
ing gliotransmitters such as glutamate, ATP (adenosine triphosphate) and D-serine from
cells. Calcium ions play an important role in this process [34,35]. It has now been estab-
lished that astrocytes are also involved in the regulation of the neurogenesis in the adult
hippocampus [17,18].

The mechanisms by which astrocytes modulate neural homeostasis, synaptic plasticity
and memory are still poorly understood. It is known that astrocytes form intercellular
networks by interaction of connexin 30 (Cx30) and connexin 43 (Cx43) proteins of gap
junctions. In double-knockout mice with Cx30 and Cx43, sensorimotor disorders and a
complete lack of spatial learning and memory were revealed, which shows that astrocytic
connexins and an intact astroglial network in the brains of adult animals are important
for maintaining neural homeostasis, plasticity and memory formation [36]. In general,
astrocytes are key regulators of processes occurring in the nervous system, impairment
of which can be considered as important components of various pathologies of the CNS,
including AD and depression.

3. Stress and Depression

Depression is a complex neuropsychiatric disorder characterized by various neu-
ropathological and physiological symptoms [19]. The pathogenesis of depression remains
unclear, and several hypotheses have been proposed for the mechanisms of development
of this mental disorder [37]. In particular, the development of depression is explained by a
deficiency of serotonin or norepinephrine in the synaptic cleft (monoamine hypothesis), a
deficiency of neurotrophic factors in certain parts of the brain (neurotrophic hypothesis),
an impairment of neurogenesis in the adult hippocampus (in particular, associated with a
deficiency of neurotrophic factors and neuroinflammation), inflammatory processes (in-
flammatory/cytokine hypothesis) and the deregulation of the HPAA, leading to a long-term
abnormalities in the levels of stress hormones.

The hypothesis of the deregulation of the HPAA as a basis for the development of
depression is supported by clinical data on stressful events as a risk factor for depression,
on HPAA hyperactivation in patients with depression and normalization of the HPAA
with antidepressant therapy [19,37–39]. It is assumed that prolonged hyperactivation of
the HPAA due to chronic stress, inflammatory processes and/or genetic predisposition
may lead to an impairment of self-regulation of HPAA activity and a chronic increase in
peripheral and central levels of CRF (corticoliberin), ACTH (adenocorticotropic hormone)
and glucocorticoids (Figure 3). In turn, long-term elevated central and circulating levels of
stress hormones cause changes in the functioning of the brain, leading to the development
of depression. In particular, glucocorticoids effectively cross the blood–brain barrier (BBB),
having a significant impact on the functioning of the brain [40].
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Figure 3. The hypothalamic–pituitary–adrenal axis (HPAA). The hypothalamus and higher brain
centers such as the PFC, hippocampus and amygdala control HPAA activity. The release of CRF
(corticotrophin releasing factor, corticoliberin) from the paraventricular hypothalamic area stimulates
the release of adrenocorticotrophin hormone (ACTH) from the anterior pituitary, which, in turn,
stimulates the release of glucocorticoids (cortisol in humans, corticosterone in rodents) from the
adrenal cortex. The glucocorticoids secreted into the bloodstream, via glucocorticoid receptors (GR)
expressed in the brain and pituitary, suppress HPAA increased activity through a negative feedback
loop. The PFC and hippocampus play a key role in suppressing HPAA activity and express large
amounts of GR, which makes these brain regions particularly sensitive to the damaging effects of
glucocorticoids. Abbreviations: PFC = prefrontal cortex; Hip = hippocampus; Amy = Amygdala;
Pit = Pituitary; Hpt = hypothalamus.

Severe depression is often associated with hypercortisolemia, and glucocorticoid ther-
apy can cause symptoms of depression [41,42]. Patients with depression have elevated
levels of CRF in blood plasma, and increased expression of CRF was observed in postmorten
samples of patients with a long history of affective disorders [39]. Experimental data indi-
cate that an increase in circulating glucocorticoids and in brain CRF causes depressive-like
behavior in rodents [39,43]. CRF-producing neurons of the paraventricular nucleus of the
hypothalamus have projections not only into the median eminence of the hypothalamus,
from where CRF is released into the bloodstream, connecting the hypothalamus with the
pituitary gland, but also into various extrahypothalamic regions of the brain. It is assumed
that elevated levels of CRF, which plays the role of a neurotransmitter or neuromodulator,
are responsible for the development of depressive states in chronic HPAA hyperactiva-
tion [42]. In addition, in stress, CRF levels increase in the amygdala, and it is assumed
that this leads to an increase in CRF levels in the hippocampus; both the hippocampus
and the amygdala also contain significant populations of neurons synthesizing CRF [44].
In stress, CRF-producing amygdala neurons activate noradrenergic neurons of the locus
coeruleus (LC), which is the main source of noradrenaline in the brain. In turn, noradrener-
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gic neurons of the LC activate CRF-producing neurons of the paraventricular nucleus of
the hypothalamus, which leads to HPAA activation. Glucocorticoids inhibit the expression
of tyrosine hydroxylase in the LC [45]. Thus, chronic stress can lead to dysfunction of LC
neurons, resulting in persistent deregulation of the HPAA, changes in brain norepinephrine
and glucocorticoid levels and the development of depression [46].

There are accumulated data that allow us to consider the neurotrophin and stress
hypotheses of depression as two sides of the same coin. Excessive levels of glucocorticoids
or stress inhibit BDNF-mediated neuroplasticity in areas of the brain that process emotional
experiences, that is, in the hippocampus and prefrontal cortex (PFC), while BDNF-mediated
neuroplasticity increases in the nucleus accumbens (Nac), amygdala and ventral tegmental
area (VTA) involved in the management of reward pathways [47,48]. Stress reduces the
expression of BDNF and/or its high affinity receptor TrkB in the hippocampus and PFC,
while BDNF increases in the Nac, amygdala and VTA. A decrease in BDNF-TrkB signaling
causes the suppression of the functioning of neural networks in the hippocampus and PFC,
including loss of synapses, while an increase in BDNF-TrkB signaling increases the activity
of networks in the Nac, amygdala and VTA. The hippocampus and PFC are key regulators
of HPA activity, providing negative feedback by activating glucocorticoid receptors (GR)
expressed in these regions in large amounts [49]. It is assumed that depression is associated,
in particular, with the reduced expression or activity of GR due to chronic stress, which
leads to the deregulation of HPAA activity [38,48]. GR activity is regulated by BDNF-TrkB
signaling, which suggests the involvement of BDNF in the regulation of stress response [48].
Interestingly, astrocytic GR are more sensitive to stress than neuronal ones, and, moreover,
the development of depressive-like behavior in mice in the model of chronic social defeat
stress is associated with reduced expression of GR in PFC astrocytes. Moreover, the absence
of GR in astrocytes causes depressive behavior, but restoring of GR expression prevents
the depressive-like phenotype [50]. It was demonstrated that the loss of astrocytes (not
affecting neurons) in PFC is sufficient for the development of depressive-like behavior in
rats, which indicates their key role in the development of this pathology [51].

Along with the deregulation of the HPAA, the presence of chronic low-grade systemic
inflammation is associated with depression. A significant proportion of patients suffering
from depression have elevated circulating markers of inflammation, such as inflammatory
cytokines and C-reactive protein [52,53]. It is assumed that the desensitization of GR is an
important cause of both HPAA deregulation and activation of the immune system [37,41],
although there is no correlation between inflammation and glucocorticoid resistance in
patients [54]. It is well-known that inflammatory cytokines are HPAA activators at all levels
of the axis, and chronic inflammation may be the cause of HPAA deregulation. In addition,
inflammatory cytokines can cause desensitization of GR by stimulating the expression of its
inactive form [55]. There is evidence that peripheral inflammatory cytokines can activate
the HPAA at the level of the hypothalamus, acting through circumventricular organs or
vagus nerve afferents, or passing through the BBB when its functions are impaired [53]. An
important point is that systemic inflammation and circulating inflammatory cytokines can
cause neuroinflammation and even neurodegeneration by activating microglia [56].

Elevated brain levels of inflammatory cytokines lead to the development of depression,
causing changes in synaptic levels of neurotransmitters and suppressing hippocampal
neurogenesis [57]. There is evidence that chronic stress can disturb the integrity of the BBB,
increasing the intake of circulating inflammatory cytokines to the brain [58]. In addition,
although glucocorticoids exhibit well-known potent anti-inflammatory effects, their pro-
inflammatory activity is also demonstrated (in particular, stimulation of the production of
pro-inflammatory cytokines) [59]. In depression, pro-inflammatory effects may prevail with
a corresponding simultaneous increase in the levels of both glucocorticoids and inflamma-
tory cytokines [53]. Inflammatory cytokines can be produced by neurons, astrocytes and
microglia. Both acute and chronic stress can (depending on the type and intensity) cause an
increase in the levels of proinflammatory cytokines in the brain, and the central role in this
is assigned to microglia, activated in particular by norepinephrine and glucocorticoids [60].
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The stress-related activation of microglia and the subsequent neuroinflammation in
the hypothalamus is an important prerequisite for the development of glucocorticoid
resistance, HPAA deregulation and depression [61]. However, in stress, astrocytes can also
be a source of increased levels of proinflammatory cytokines in a number of brain regions,
including in the hippocampus. It has been shown that acute cold stress [62], acute stress
caused by complex stressors combining psychological and physical components (water
immersion with immobilization or “footshock stress”), causes an increase in levels of the
key proinflammatory cytokine IL-1b in astrocytes, but not in microglia and neurons [63].

Hence, PFC astrocytes are directly involved in mood regulation, and when their
functioning is disrupted due to stress, depressive states may arise. In addition, stress
can cause primary inflammatory response in astrocytes, which can also contribute to the
development of brain pathologies, such as depression.

4. Depression and AD

Clinical manifestations of AD include neuropsychiatric symptoms, which is a serious
problem with this disease. The most frequent (49%) neuropsychiatric symptom in AD is ap-
athy (i.e., loss of emotional reactivity and decreased motivation) [64], which is similar to one
of symptoms of depression. The symptoms of depression are diagnosed in approximately
40% of cases, along with other frequent symptoms such as aggression, anxiety and sleep
disorders [64,65]. Although the possibility of the effects of anti-AD pharmaceuticals on the
development of symptoms of depression should be taken into account [66], it is obvious that
neurodegeneration in AD causes disruption of the functioning of brain systems involved in
mood regulation, which can lead to the manifestation of symptoms of depression. However,
an important question is whether the development of depression may be a risk factor or
a prodromal AD condition. A recent meta-meta-analysis found a more than three-fold
increase in the risk of AD in clinically significant depression [56]. Interestingly, it was found
that the peak incidence of depressive disorders is observed in patients with AD several
years before and after the age of onset of dementia, which probably indicates the common
neurobiological basis for the development of these pathologies [67]. It is assumed that
HPAA deregulation, neuroinflammation and BDNF deficit in a number of brain regions
may be common for the development of depression and AD [68,69]. Inflammation plays
an important role in AD and manifests itself both in the form of neuroinflammation and
in elevated levels of inflammatory factors in the blood [70]. The deregulation profiles
of the HPAA in depression and AD have significant differences, consisting of constant
hypercortisolemia in depression and increased circadian peak of cortisol in mild–moderate
stages of AD [71]. Hypercotisolemia is observed in severe depression [72], while the risk
of dementia increases with severe depression [73]. It is not clear how differences in the
profiles of cortisol elevation in these pathologies are consistent with an increased risk of
AD in depression.

An intriguing question is whether antidepressants have an effect on the time of the
onset or progression of AD. The treatment of patients with mild-to-moderate AD with
selective serotonin reuptake inhibitors (SSRIs) for 9 months showed a delay in cognitive
performance decline [74]. These results are in line with another study, which showed that
the treatment of depressed patients with AD for 2 years with SSRIs delayed the decline
in cognitive functions and gray matter atrophy [75]. The treatment of depressed AD
patients with vortioxetine, an atypical antidepressant with multimodal activity, showed
an improvement in cognitive functions after 12 months compared to the control (subjects
treated with common antidepressants) [76]. The treatment of patients with depression and
mild cognitive impairment (MCI) with SSRIs for more than 4 years delayed the progression
of from MCI to AD by approximately 3 years compared to antidepressant-free patients or
compared with MCI patients without a history of depression [77]. In a Danish nationwide
study [78], it was found that, including all patients who received antidepressants, the
incidence of dementia was increased compared to the frequency among antidepressant-free
individuals. However, continued long-term treatment with antidepressants of all classes
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was associated with a decrease in the incidence of dementia and, in particular, AD. Thus,
the long-term use of SSRIs can improve the cognitive performance of depressed patients
with AD or slow cognitive decline and even delay the onset of AD. However, an important
disadvantage of antidepressants is that they may cause serious side effects and be a risk
factor for mortality in AD patients [79].

5. Astrocytes Atrophy in Depression and AD

Since astrocytes play a crucial role in the normal functioning of neurons, the question
arises whether astrocytes undergo changes during depression and AD and the conse-
quences of chronic stress. Astrocytes express receptors for all stress hormones and there-
fore are a target for them both in normal stress response and in conditions of impaired
self-regulation of HPAA activity. Neuroimaging data show that in depression there are
noticeable structural changes in a number of brain regions—first of all, a significant de-
crease in the volume of the closely interconnected medial PFC and hippocampus [14,16,80].
Apparently, such changes accompany a long-term and serious pathology, since a decrease
in the volume of the hippocampus is observed only in cases of depression lasting longer
than 2 years or in repeated episodes of the disease [81]. The interaction between the medial
PFC and hippocampus integrates motivation, attention, memory and the results of past
actions as the relevant circumstances change, which ensures adaptive behavior and mental
health [59].

Atrophy of these brain regions is considered as a significant predictor of the devel-
opment of clinical dementia [45,82,83]. Consequently, atrophy of the medial PFC and
hippocampus may be associated with pre-existing depression and/or with early stages of
dementia development. A decrease in the volume of these brain regions in patients with de-
pression may be associated with both a decrease in astrocyte density [84,85], and neuronal
atrophy [85,86] and a decrease in the number and functioning of synapses [80,87]. This
brings depression closer to neurodegenerative diseases. Data on the presence of changes in
the density of astrocytes and their sizes in various brain regions in depression are contra-
dictory [88]. However, in particular, a decrease in astrocyte density in the hippocampus in
patients with depression [84,89] or who received chronic treatment with glucocorticoids [89]
has been shown. It should be noted that there is a significant problem in the identification
of astrocytes, because astrocyte marker GFAP (glial fibrillary acidic protein) used in most
studies can identify not all, and sometimes only a small part of astrocytes in tissues [90],
which can lead to significant difficulties in assessing real differences in astrocyte density in
brain tissues in various pathological conditions. In addition, a decrease in GFAP expression
in astrocytes during depression can potentially lead to a decrease in the number of detected
GFAP-positive cells [85,88].

A recent study shows that a decrease in hippocampal volume is associated with sig-
nificant neurodegeneration in the CA1 region of the hippocampus at advanced stages of
AD [91]. Additionally, there are indications of astrocyte atrophy in patients with advanced
stages of AD [92]. Interestingly, astrocytes obtained from induced pluripotent stem cells
(IPSC) of patients not only with familial, but also with a sporadic form of AD (the only
patient studied), also showed features of atrophy in vitro in comparison with control astro-
cytes [93]. With regard to depression, a recent study using astrocytes differentiated from
IPSC of healthy and depressed donors (treated with SSRIs) did not reveal morphologi-
cal differences between cell lines, as well as significant differences in the expression of
astrocytic markers and astrocytic glutamate transporter (EAAT2), and in the transcriptome
profile [94]. There are still insufficient data on whether there is a correlation between
the clinical manifestations of sporadic AD or depression and atrophy or other changes
in astrocytes obtained from iPSC. However, it has already been shown that IPSC-derived
human astrocytes carrying APOE ε4/ε4 genotype are less efficient than those with APOE
ε3/ε3 in neuronal survival and synaptic integrity [95] and in the uptake and clearance of
Aβ [96]. Research in this direction may shed light on how genetic risk factors for AD affect
the functioning of astrocytes. Considering that the most significant genetic risk factor for
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sporadic AD is associated with the expression of isoforms of apolipoprotein E, the main
source of which in the brain are astrocytes, this could help to identify the influence on
the development of AD of the interaction of environmental factors, such as stress, with a
genetic predisposition to AD.

6. Astrocytes Atrophy and Death in Experimental Animal Models of Chronic Stress

In experimental models, chronic stress causes numerous changes in the brain and, in
particular, leads to pathological changes in neurons, such as dendrite spine and synaptic
loss [97,98]. It was shown that chronic unpredictable stress (CUS), which is a widely used
naturalistic model of depression, causes the hyperphosphorylation of Tau-protein in the
hippocampus and PFC of rats, the phenomenon critically involved in neurodegeneration
in AD [60]. Chronic restraint stress causes a selective decrease in the volume of the hip-
pocampus in rats [99]. Interestingly, in rats, acute stress increases the number of apoptotic
cells in the hippocampus, but CUS reduces this number. At the same time, both acute
and chronic stress reversibly inhibit proliferation, but not the migration, survival and
neuronal differentiation of new cells in the hippocampus [100]. Chronic pain–emotional
stress caused signs of neuron atrophy and reduced their number in the hippocampus of rats
via a non-apoptotic pathway [101]. This is consistent with the finding that chronic social
defeat stress led to the pyroptosis of neurons in the hippocampus of stressed mice [102].
Pyroptosis is a pathway of programmed inflammatory cell death regulated by specific
pro-inflammatory caspases and is characterized by the activation and release of potent
pro-inflammatory cytokines IL-1ß and IL-18 through newly formed membrane pores into
the extracellular space [103]. Pro-inflammatory caspases are activated from inactive pro-
caspases in a multimeric specialized structure termed inflammasome, in particular, NLRP3
(nucleotide-binding, leucine-rich repeat, pyrin domain containing 3) inflammasome [104].
Acute stress rapidly increases extracellular glutamate levels and, as a consequence, the
release of ATP from astrocytes (and, possibly, neurons) and an increase in the active form of
NLRP3 inflammasome in the rat hippocampus [105]. Extracellular ATP activates the P2X7
receptor, which reversibly forms channels permeable to hydrophilic solutes with a molecu-
lar weight of up to 900 Da, and stimulates the formation of active NLRP3 inflammasomes
and a subsequent release of pro-inflammatory cytokines (for review, see [106]). Blocking
of the P2X7 receptor reversed the depressive-like behavior in the CUS model, which in-
dicates its involvement in depression [105]. Microglial cells predominantly express P2X7
receptors, but astrocytes also possess P2X7 receptors and are involved in depressive-like
behavior caused by high-intensity stressors [107]. Consequently, astrocytes, being a source
of stress-induced extracellular ATP and carriers of the P2X7 receptor, are key participants
in stress-induced ATP-mediated neuroinflammation and depression.

Interestingly, in chronic social defeat stress, depressive-like behavior is associated with
low levels of ATP in the PFC, and conversely, blocking the release of ATP by astrocytes
induces this behavior, while the administration of ATP or stimulating endogenous ATP
release from astrocytes has an antidepressant-like effect [108]. This may indicate a decrease
in the functioning of astrocytes under chronic stress. The exact role of ATP and P2X7
receptors in stress and depression is not clear. In particular, it was found that acute and
chronic repeated immobilization stress reduces the expression of P2X7 receptors in the
hippocampus [109], which suggests that ATP-mediated neuroinflammation is a fairly
regulated process.

The experimental modeling of stress-induced depression also indicates the atrophy of
not only neurons, but also astrocytes in the chronic hyperactivation of the HPAA. Chronic
psychosocial stress leads to a decrease in the size of the hippocampus in tree shrews due
to a decrease in the density and size of astrocytes, and the clinically used antidepressant
fluoxetine prevents these changes [110]. In rats, chronic restrained stress induced astrocyte
atrophy in the PFC without decreasing in their number [111]. This study also indicates that
a decrease in the number of GFAP-positive cells may not reflect a decrease in the number
of astrocytes, but is caused by a decrease in GFAP expression in cells [111]. In the CUS
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paradigm, a predominant NLRP3-mediated pyroptotic death of astrocytes was observed in
the mouse hippocampus [112].

Therefore, chronic stress can cause the death of not only hippocampal neurons, but also
astrocytes, and the path of cell death is associated with the induction of neuroinflammation
due to the release of pro-inflammatory cytokines into the extracellular space.

7. Markers of Changes in Astrocytes Functions in Experimental Chronic Stress,
Depression and AD

Along with a decrease in astrocytes density, possibly occurring only in the most severe
cases of depression, there are data indicating changes in the functioning of astrocytes in
patients with mild depression. In the cortex, LC and hippocampus, transcriptomic analysis
revealed a depression-associated decrease in the expression of astrocyte-specific glutamine
synthetase and glutamate transporters, which are involved in glutamate-glutamine cy-
cle between neurons and astrocytes and play an important role in the functioning of
synapses [113–117]. Depression is also associated with the suppressed expression of astro-
cytic S100B [114], aquaporin 4 [85], as well as connexins 30 and 43 and the transcription
factor sox-9 regulating the expression of connexins [118–120].

As for the expression of glutamate synthetase in AD, a decrease in the expression of
this enzyme in the temporal cortex was found compared with controls [121]. Interestingly,
in contrast to depression, increased protein expression of aquaporin 4 in the frontal cortex
was found in AD [122], and hippocampal mRNA and protein expression of Cx43 (also
known as GJA1) was found up-regulated in AD [123–125]. It is possible that such opposite
differences in the expression of these astrocytic proteins between depression and AD are
associated with different levels of astrocyte atrophy and/or astrocyte activation, more
pronounced in AD, or reflect a compensatory mechanism in response to neurodegeneration
in AD.

The results obtained with patient tissues, indicating a change in the transcription
of genes involved in the regulation of astrocyte functions, are of very high value for
understanding the role of astrocytes in depression. However, it is obvious that such
data have serious limitations due to the difficulty of establishing causal relationships
between the detected changes and the disease and taking into account factors such as
individual differences, age and concomitant pathologies of patients. In this regard, the
use of experimental models plays an important role in the study of the mechanisms of
astrocytes involvement in the development of depression and AD.

In CUS, astrocyte dysfunctions were detected, such as the impairment of glutamate
transport and metabolism in the rat cerebral cortex [126]. CUS results in a decrease in
the expression of the glutamate transporter GLT-1 at mRNA and protein levels in the rat
hippocampus [127]. However, chronic immobilization stress increases GLT-1 expression in
the rat hippocampus [128,129], which may reflect the adaptation of animals to a repetitive
(predictable for animals) stressor.

Using the CUS model, a decrease in the expression of Cx43 and an impairment of
astrocytic intercellular contacts were detected in the rat PFC. The administration of selective
serotonin reuptake inhibitors (i.e., antidepressants) or a GR antagonist (mifepristone) pre-
vented or reversed these changes [130]. The prolonged administration of corticosterone to
mice also caused an antidepressant-reversible decrease in Cx43 expression in the hippocam-
pus [131]. It is important to note that the administration of glucocorticoids to experimental
animals does not fully reproduce the effect of stress, in particular, on the functioning of
synapses, and it is assumed that, under stress, there is a synergistic effect of glucocorticoids
and other stress hormones, such as CRF and norepinephrine [14,132].

In pathological brain conditions, astrocytes undergo a number of functional and mor-
phological changes, passing into a state called reactive astrocytes. Such astrocytes have
an increased thickness of processes and begin to express nestin, which is a marker of
nerve progenitor cells, and overexpress two other protein components of the astrocyte
cytoskeleton, GFAP and vimentin [133]. In AD, the transition of astrocytes to a reactive
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state is initiated by the activation of microglia and the formation of amyloid plaques and
tau-tangles. Reactive astrocytes contribute to the development of neuroinflammation by
releasing inflammatory cytokines, nitric oxide, ATP and reactive oxygen species (for review,
see [134]). Obviously, the reactive state of astrocytes develops during the progression of
AD. Moreover, if in the serious stages of AD, there is an increase in GFAP expression in
hippocampal dentate gyrus; then, in the early stages, there is a decrease in GFAP expres-
sion [135]. Remarkably, a similar situation occurs in depression and chronic stress when
there is a decrease in GFAP expression in the hippocampus and cortical areas [85,136,137],
suggesting a decrease in the functioning of astrocytes both in depression and in the early
stages of AD.

The increased expression of GFAP in the AD brain is reflected in the elevated levels
in the cerebrospinal fluid (CSF) [138]. In accordance with the involvement of reactive
astrocytes in a wide spectrum of brain pathologies, increased GFAP CSF levels were
detected in other types of dementia [138]. Interestingly, blood GFAP demonstrated a high
performance in distinguishing individuals with AD and with other forms of dementia (for
review, see [139]), and significantly outperformed CSF GFAP in detecting the activation of
astrocytes and Aβ pathology in the early stages of AD [140].

Surprisingly, despite a decrease in GFAP expression in the brain in depression, it
has recently been found that GFAP levels in both CSF [141] and blood [142] are also
elevated in depressed patients. Moreover, blood GFAP levels increased with the severity
of depression [142]. As mentioned above, chronic stress can cause not only the atrophy
of hippocampal astrocytes, but also pyroptosis. In this regard, it is unclear whether the
increase in the levels of the intracellular astrocytic protein GFAP in the blood and CSF is
a consequence of the death of astrocytes possibly occurring in AD and depression. On
the other hand, GFAP is present in the blood and CSF of healthy individuals [141,142].
This suggests that the release of GFAP into extracellular space, CSF, and, finally, into the
blood may be a normal process that increases in depression and AD, and that GFAP may
have extracellular functions. In this regard, it was found that another cytoskeletal protein,
vimentin, has many non-mechanical intra- and extracellular functions and, in particular,
promotes axonal growth and shows a neurorepairing effect (for review, see [143]).

In general, it seems that there is a significant similarity in the expression of the as-
trocytic marker GFAP in the brain and its levels in body fluids in depression and early
stages of AD. It would be useful to know if there is the same similarity for other astrocytic
biomarkers. In this regard, the data for the glycoprotein biomarker of neuroinflammation
YKL-40, expressed in various cell types and involved in survival, proliferation and dif-
ferentiation (see for references [144]), would be promising. In the human brain, YKL-40
immunoreactivity was found only in astrocytes, and the number of YKL-40-positive cells
increases in several neurodegenerative diseases, including AD [145]. YKL-40 levels in
CSF are also elevated in a number of neurodegenerative diseases, and in AD, YKL-40
levels are elevated already in the early preclinical stages (for review see [146]). It is not
yet known whether YKL-40 increases in depression and whether antidepressant therapy
affects its levels.

8. Effects of Stress Hormones on Astrocyte Function In Vitro

Despite the obvious limitations of in vitro studies, cell cultures are an extremely valu-
able tool for studying the role of astrocytes in the functioning of the brain, the development
of its pathologies and the effects of different treatments. The acute effects of glucocorticoids
on astrocytes function are currently the most well studied. Dexamethasone (a GR agonist
devoid of mineralocorticoid activity) has been shown to increase the levels of the gluta-
mate transporter GLT-1, but not GLAST (glutamate-aspartate transporter) in the cultures
of primary astrocytes derived from the rat brain cortex [147]. The acute administration
of corticosterone stimulated the expression of FGF-2 in rat cortical astrocytes [148–150].
At the same time, the expression of the neurotrophic factor NT-3 also increased, but the
expression of BDNF and NGF decreased [148]. Dexamethasone administration reduced
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the expression of insulin-like growth factor-1 (IGF-1) [151] and NGF, as well as S100B, in
astrocytes derived from the rat cerebral cortex, but stimulated the expression of FGF-2 in
astrocytes from the hippocampus [152,153] and cortex [154]. Dexamethasone reduced the
production of GDNF and increased the production of pro-inflammatory cytokine IL-2 in rat
cortical astrocytes, while fluoxetine normalized the production of IL-2 but not GDNF [155].
In the culture of the rat astrocytoma C6, which shows significant similarity with primary rat
astrocytes at late passages [156,157], dexamethasone reduced the expression of VEGF [158]
and IGF-1 [159], and the production of GDNF [160]. Therefore, glucocorticoids in both C6
cells and rat primary astrocytes in vitro are suppressors of the expression of a number of
key neurotrophic factors but stimulators of the inflammatory cytokines. Corticosterone
reduced the biosynthesis of Cx43 in the astrocytes of the rat cortex and hippocampus and
stimulated its biodegradation [161]. Prolonged exposure of dexamethasone in primary
mixed astrocytes–oligodendrocytes cultures obtained from cerebral cortex of the rat also re-
duced Cx43 levels [162]. In general, this is consistent with the effects on astrocytes obtained
in animal models of stress.

Interestingly, a transcriptomic analysis of the response of astrocytes obtained from
IPSC from non-depressed donors to acute or chronic administration of cortisol in vitro
revealed no changes in the expression of the above neurotrophic factors or their receptors,
connexins and glutamate transporters [94]. Both the acute and chronic administration
of cortisol reduced the expression of a number of proinflammatory cytokines in these
astrocytes, in contrast to the effect of dexamethasone on primary cortical rat astrocytes [155].
This discrepancy may be due to both significant differences between human and rodent
astrocytes [163,164], and insufficient maturity of astrocytes obtained from IPSC, since the
expression of astrocyte markers in them is similar to embryonic astrocytes [94]. Perhaps this
model most fully reflects the properties and susceptibility of astrocytes to various influences
during the early development of the human brain [94]. An analysis of 334 differentially
expressed genes under chronic cortisol action revealed the most pronounced changes in the
expression of genes associated with regulation of cell adhesion, tyrosine kinase signaling,
extracellular matrix organization, gliogenesis and positive regulation of cell death [94].

The effects of another stress hormone, CRF, on astrocyte functions have been less
studied. Activation of the low-affinity CRF receptor (CCR2) stimulated NGF production in
astrocytes derived from rat hippocampus [165]. CRF, acting via the high affinity receptor
CRHR1, increased, unlike glucocorticoids, the production of Cx43 in cultured astrocytes
and enhanced intercellular communication [166].

The effects of norepinephrine on astrocytes have also not been studied in detail yet.
However, recent investigations showed that norepinephrine reduced the expression of
the glutamate transporter GLT-1 in rat spinal cord astrocytes in vitro [167], but increased
mRNA expression and production of BDNF, NGF, GDNF, FGF-2 and anti-inflammatory
IL-6 in rat cortical astrocytes, acting via beta2-adrenergic receptors [168]. It was shown that
the activation of beta2-adrenergic receptors in astrocytoma C6 cells in vitro stimulated the
expression of NGF, and dexamethasone enhanced the agonist effect, showing a synergistic
effect [169]. In this regard, it can be expected that stress hormones can modulate the
influence of each other on the function of astrocytes. The combined effect of stress hormones
on astrocytes is close to what happens during the body’s response to stress. However,
these combined effects remain practically unexplored in cell culture models. It is obvious
that the acute effects of stress hormones can be radically different from chronic effects.
However, there is still insufficient information about the chronic effects of stress hormones
on astrocytes. In general, the currently available data on the effects of stress hormones on
astrocytes in vitro are in accordance with the data obtained in animal models and in the
study of tissues of patients with depression and AD.

9. Effects of Antidepressants on Astrocytes In Vitro

Studies using cell cultures show that clinically applied antidepressants have significant
effects on the functions of astrocytes. Selective serotonin reuptake inhibitors were found
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to stimulate glucose metabolism and expression of neurotrophic factors BDNF, VEGF
and VGF in mouse cortical astrocytes, but not FGF-2, GDNF and IGF-1, while tricyclic
antidepressants showed no effects [170]. However, the tricyclic antidepressant imipramine
stimulated the expression of GDNF [171] and BDNF [172] in rat cortical astrocytes. Another
tricyclic antidepressant, amitriptyline, also stimulated the expression of BDNF in rat cortical
astrocytes [173]. Both selective serotonin reuptake inhibitors (fluoxetine and paroxetine)
and tricyclic and tetracyclic antidepressants, but not haloperidol and diazepam, stimulated
the expression and secretion of GDNF by rat astrocytoma cells C6 [174]. However, in
another study, haloperidol, as well as atypical antipsychotics, also stimulated the secretion
of GDNF by C6 cells [175].

The expression of a number of neurotrophic factors, including GDNF and BDNF, is
under the control of the transcription factor CREB (cAMP responsive element binding
protein). Antidepressants of various classes, but not haloperidol, increased GDNF secretion
and activate CREB in C6 cells during acute and chronic (3 days) administration [176].
Amitriptyline, when administered acutely, increased the levels of CREB activation in C6
cells and astrocytes obtained from human embryos [177]. Interestingly, acute fluoxetine
stimulated the release of ATP from rat and mouse hippocampal astrocytes in vitro and sub-
sequently increased BDNF in astrocytes [178], while extracellular ATP transiently increased
activation of CREB and expression of BDNF in cultured rat cortical astrocytes [179]. Thus,
the administration of antidepressants stimulates the expression of key neurotrophic factors
in cultured astrocytes and C6 cells.

Data on the effect of antidepressants on connexins expression and the effectiveness
of intercellular contacts are quite contradictory. Fluoxetine increased Cx43 mRNA and
protein levels in human astrocytoma cells [180]. Amitriptyline stimulated the expression of
Cx43 and increased the efficiency of intercellular communication in cultured rat cortical
astrocytes [181]. However, a study of the effects of antidepressants of various classes on
mouse cortical astrocytes revealed the absence of a stimulating effect on the expression of
Cx43 and a decrease in the effectiveness of intercellular contacts, or the absence of an effect
for all antidepressants except paroxetine [182]. In this regard, the question of the effects of
antidepressants on the functionality of intercellular contacts in cultured astrocytes requires
further investigation.

Thus, cell culture models show that astrocytes are a target for antidepressants. Antide-
pressants regulate their functionality and, in particular, selectively stimulate the expression
of neurotrophic factors. However, it is currently not clear what their effects are on astrocyte
characteristics such as the functionality of neurotransmitter transporters and the expression
of inflammatory mediators. It is also unknown how and in what ways antidepressants can
modulate the effects of stress hormones on astrocytes.

10. Changes in the Levels of Neurotrophic Factors in the Brain in Depression and AD

A meta-analysis of studies of the levels of neurotrophic factors VEGF, GDNF, IGF-1
and IGF-2 in postmortem samples did not reveal their changes in AD [183]. Most of the
analyzed studies demonstrated increased NGF levels and decreased BDNF levels in the
hippocampus and neocortex (frontal cortex, temporal cortex and parietal cortex) [183].
Thus, in AD, there is a regulation of BDNF and NGF levels in the brain regions in which
atrophy or death of neurons and astrocytes occur. In some of the studies, it was shown that
there is an increase in the levels of immature NGF, but the pro-form of NGF that can cause
apoptotic death of neurons through binding to p75 receptors [184]. It is unknown whether
the mature or pro-form of BDNF decreases in AD, but it has been reported that both forms
of BDNF decreased in the parietal cortex of AD patients [185]. The data suggest that AD is
associated with a relatively selective alteration in the levels of brain neurotrophic factors,
mainly expressed in a decrease in hippocampal and cortical BDNF levels.

Numerous experimental studies show that, in animal models, chronic stress results in
a decrease in BDNF levels mainly in the hippocampus and PFC (see references in [186,187]).
Despite the well-established role of BDNF in the development of depression and the
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effects of antidepressants [186,187], there are little data on changes in the levels of this
neurotrophin in the brain of depressed patients. It was found that BDNF levels were
reduced both in the PFC and in the hippocampus of suicide victims [188]. In another study,
BDNF levels in PFC in elderly people with a history of depression did not significantly
differ from BDNF levels in people without a history of depression, but it was found that
BDNF was lower in the group of depressed elderly people with dementia than in patients
with dementia and without depression [189]. Regarding the effect of antidepressants on
BDNF in depression, elevated levels of BDNF in the hippocampus were found in patients
with depression treated with antidepressants compared to non-treated patients [190]. This
indicates that antidepressants increase BDNF levels in the hippocampus, but it is unknown
how this compares with BDNF levels in healthy individuals. Another study found no
significant differences in BDNF levels in the brain between healthy individuals and patients
with untreated depression, but treatment with antidepressants significantly increased the
level of BDNF in the parietal cortex [191]. Thus, there are indications that antidepressant
treatment increases BDNF in the brain in patients with depression. However, there are
still no data on the association of diagnosed depression with a decrease in the levels of
brain BDNF, which may reflect a lesser extent of possible changes in the levels of BDNF in
depression compared with AD. There are also no data on whether and to what extent brain
BDNF levels change in severe and prolonged depression.

11. The Role of BDNF in the Morphogenesis and Functioning of Astrocytes

It is well-known that BDNF is the most important neurotrophic factor involved in
the differentiation of CNS cells and their further functioning, including the morphological
maturation of neurons and glia, and the formation of active synaptic contacts [192]. There
are two types of receptors for BDNF that are expressed on the cells of the nervous system,
including astrocytes p75 and TrkB. The p75 receptor participates in the regulation of glial
cell proliferation and their response to various injuries [193]. Interestingly, astrocytes
predominantly express a truncated form of the receptor (TrkB-T1), devoid of tyrosine
kinase activity (Figure 4) [194,195].

It was shown that BDNF increased the viability of astrocytes by preventing their apop-
tosis caused by serum deprivation, and the anti-apoptotic effect of BDNF was prevented
by a specific antagonist TrkB ANA-12 [195]. At the same time, BDNF induced activation
of ERK, Akt and Src in astrocytes. Blocking of the ERK and Akt pathways canceled the
protection of BDNF. In addition, BDNF protected astrocytes from death induced by of
3-nitropropionic acid (3-NP). This effect was also blocked by ANA-12, ERK and Src in-
hibitors. The conditioned medium of astrocytes treated with BDNF completely protected
the neurons from 3-NP induced apoptosis [195]. This indicates that the neuroprotective
effects of BDNF may involve indirect action via astrocytes.

Holt et al. [194] established the important role of the BDNF-TrkB-T1 signaling in
the morphological maturation of astrocytes. The authors showed that mouse astrocytes
in vitro express high levels of the BDNF receptor, TrkB, with almost exclusive expression
of its truncated isoform, TrkB-T1 (90%). Moreover, the maximum level of expression was
observed during the morphological maturation of astrocytes. It has been demonstrated that
the morphological complexity of astrocytes increases in the presence of BDNF and depends
on its signaling via TrkB-T1. The inactivation of TrkB-T1 in mice led to the appearance of
morphologically immature astrocytes with significantly reduced cell volume, as well as to
the impaired expression of a number of genes (Kir4.1, Aqp4, Glt1) characteristic of mature
astrocytes and related to their functioning. Moreover, astrocytes with TrkB-T1 knocked out
did not support normal synaptogenesis in neurons. These data indicate a significant role of
the BDNF-TrkB-T1 system in the morphological maturation of astrocytes, a critical process
for the development of CNS.
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In a recently published paper [196], the authors demonstrated direct binding of typical
antidepressants and ketamine (rapid antidepressant effect), with TRKB receptors, which
led to their synaptic localization and effective activation. Mutations in the receptor site
responsible for binding antidepressants eliminated both cellular and behavioral effects of
antidepressants in vitro and in vivo. Thus, the authors proved that at least some effects
of antidepressants can be carried out through direct regulation of activation of the BDNF-
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effects of antidepressants.

12. Possible Ways of Influencing Astrocytes Functions as Approaches to the Treatment
of Depression and AD

As mentioned above, depression is one of the most common mental illnesses. By
nature, depression is an extremely heterogeneous disease. Molecular and genetic factors,
as well as environmental factors, contribute to its development. Unfortunately, there are
no reliable biomarkers for diagnosing and predicting the course of various subtypes of
depressive disorders [197]. This seems to be one of the reasons for the lack of positive effects
from the use of approved therapeutic drugs in about 30% of patients with depression. Given
the prevalence and severity of this disease, principally, new antidepressants are urgently
needed. At the same time, the focus should be on identifying the triggers of this widespread
and inherently heterogeneous disease. It seems impossible to find a single effective drug
for the treatment of depression. However, considering that the deregulation of the stress
system and reduced GR signaling are closely related to neuroinflammation, which is deeply
involved in depression, much attention is currently being paid to the development of
neuroimmune drugs for the treatment of mood disorders (for review, see [198]). It is
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noteworthy that one of the promising targets for the treatment of depression, the P2X7
receptor [198], is involved in astrocyte-mediated neuroinflammation, and is also considered
a promising target for the treatment of AD [199]. Antidepressants increase the release
of ATP suppressed in chronic stress by astrocytes and their production of neurotrophic
factors, which supports the idea that the search for ways to normalize the functions of
astrocytes may be promising for the treatment of depression and AD. Although the role
of the BDNF-TrkB system in the pathophysiology of depression and AD is not completely
clear, its involvement, at least in depression, is currently beyond doubt and is considered a
promising target for the treatment of these pathologies [186,192,196,200,201]. Astrocytes
seem to be not only a source of neurotrophic factors, but also a target for them, especially
for BDNF, which could be used to normalize the functioning of astrocytes in depression and
AD. However, the delivery of BDNF to the brain is associated with a complex of difficulties.
Does the peripherally administered BDNF penetrate into the brain, and to what extent
is this a debatable question [202,203]? In addition, if BDNF crosses the BBB by itself or
with the help of carriers, an indiscriminate and uncontrolled increase in BDNF levels in the
brain may initiate serious side effects, for example, epileptic activity [203,204]. One of the
most promising alternative approaches may be the development of compounds capable
of crossing the BBB and stimulating endogenous expression of BDNF and/or TrkB or
enhancing of TrkB signaling in the brain, similar to what antidepressants and, possibly, short
non-corticotropic fragments of the stress hormone ACTH and their analogues do [205–208].
Remarkably, antidepressants demonstrate a highly selective increase BDNF levels only in
certain areas of the brain [209]. Another promising approach, in our opinion, is associated
with the use of short peptide mimetics of BDNF, which are able to activate TrkB receptors
demonstrating a pronounced antidepressant effects [210]. Taking into account the fact
that there are direct interactions between the signaling pathways of glucocorticoids and
BDNF [48], the normalization of BDNF-TrkB signaling in the hippocampus and PFC could
lead to the normalization of HPAA activity, deregulated in depression and AD.

13. Conclusions

Clinical and experimental data suggest that stressful events are an important risk
factor for depression. In turn, depression is not only a frequent symptom of AD, but can
also be an important risk factor for AD. This suggests that stress response disorders may
underlie both depression and AD. Clinical data indicate atrophic changes in the same areas
of the brain, the hippocampus and PFC, in both pathologies. These same brain regions
play a key role in regulating the stress response and are most vulnerable to the action
of glucocorticoids due to the high expression of GR. The levels of GR in PFC astrocytes
are critically important for the development of depression. There is clinical evidence that
not only neurons, but also astrocytes undergo atrophy in depression and AD, although
precise conclusions are difficult due to methodological problems in identifying astrocytes.
Animal models demonstrate that chronic stress leads not only to atrophy, but also to the
pyroptotic death of both neurons and astrocytes in the PFC. Clinical data indicate a decrease
in the functioning of astrocytes in both in depression and AD. In animal and cell culture
models, stress and glucocorticoids significantly alter the functions of astrocytes, including
the expression of neurotrophic factors and glutamate transporters. Astrocytes are key
players in stress-induced ATP-mediated neuroinflammation and depression. Clinical data
show that AD is mainly associated with a decrease in BDNF levels in the hippocampus and
a number of areas of the cerebral cortex. The BDNF-TrkB system not only plays a key role
in depression and in normalizing the stress response, but also appears to be an important
factor in the functioning of astrocytes. This suggests that compounds capable of stimulating
the production of endogenous BDNF or the activation of TrkB-receptors in the PFC and
hippocampus may be potentially useful for the treatment or prevention of depression and
AD via protection of astrocytes. Conventional antidepressants and ketamine have this
ability to stimulate the BDNF-TrkB system. It is not yet known whether ketamine can
delay the development of AD. However, long-term treatment with SSRI antidepressants
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is associated with a reduced rate of AD and a delay in the onset of AD symptoms. This
supports the idea that the overlapping neurobiological bases of depression and AD might
provide common ways to treat or prevent these pathologies. Progress in understanding
the development, progression and treatment of depression and AD, as well as resistance
to stress factors, is possible with the identification and decoding of genetic and especially
epigenetic changes in the human genome that contribute to their course [211,212].
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