
RESEARCH PAPER

Adduct annotation in liquid chromatography/high-resolution mass
spectrometry to enhance compound identification

Received: 3 August 2020 /Revised: 21 September 2020 /Accepted: 19 October 2020

Abstract
Annotation and interpretation of full scan electrospray mass spectra of metabolites is complicated by the presence of a wide
variety of ions. Not only protonated, deprotonated, and neutral loss ions but also sodium, potassium, and ammonium adducts as
well as oligomers are frequently observed. This diversity challenges automatic annotation and is often poorly addressed by
current annotation tools. In many cases, annotation is integrated in metabolomics workflows and is based on specific chromato-
graphic peak-picking tools. We introduce mzAdan, a nonchromatography-based multipurpose standalone application that was
developed for the annotation and exploration of convolved high-resolution ESI-MS spectra. The tool annotates single or multiple
accurate mass spectra using a customizable adduct annotation list and outputs a list of [M+H]+ candidates. MzAdan was first
tested with a collection of 408 analytes acquired with flow injection analysis. This resulted in 402 correct [M+H]+ identifications
and, with combinations of sodium, ammonium, and potassium adducts and water and ammonia losses within a tolerance of
10 mmu, explained close to 50% of the total ion current. False positives were monitored with mass accuracy and bias as well as
chromatographic behavior which led to the identification of adducts with calcium instead of the expected potassium. MzAdan
was then integrated in a workflow with XCMS for the untargeted LC-MS data analysis of a 52 metabolite standard mix and a
human urine sample. The results were benchmarked against three other annotation tools, CAMERA, findMAIN, and CliqueMS:
findMAIN and mzAdan consistently produced higher numbers of [M+H]+ candidates compared with CliqueMS and CAMERA,
especially with co-eluting metabolites. Detection of low-intensity ions and correct grouping were found to be essential for
annotation performance.
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Introduction

Mass spect rometry (MS) and hyphenated l iquid
chromatography-mass spectrometry (LC-MS) are widely used

for qualitative and quantitative analyses in many applications,
including metabolomics, pharmaceutical development, foren-
sics, doping control, and proteomics. Ionization of the sample
molecules is a critical step and is often achieved using
electrospray ionization (ESI) since it is sensitive, straightfor-
ward, and amenable to polar molecules. Although analyte ions
are frequently formed by the addition or removal of protons to
generate [M+H]+ ions in positive mode and [M−H]− ions in
negative mode, many other ionization processes are known,
so even the spectrum of a single analyte may contain many
different species [1]. The presence of numerous related spe-
cies has many consequences. Spectral interpretation is more
complicated since the “true” molecular ions, i.e., [M+H]+,
may be hard to determine or even absent. Data acquisition
can be impacted, for example in data-dependent analysis
(DDA) where species selected for fragmentation may be re-
dundant and/or refractory, so valuable time is spent collecting
useless data. Furthermore, targeted multiple reaction
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monitoring (MRM) quantitation may seem immune to these
effects, but sensitivity can suffer if the signal is distributed
between many species. Reproducibility, method develop-
ment, and transfer may also be affected if the observed species
change in unpredictable, compound-dependent ways. Finally,
the analysis of more complex samples by LC-MS can produce
thousands of features, represented as pairs of a retention time
(RT) and a mass/charge value (m/z), that in fact correspond to
a much smaller number of actual analytes [1]. Thus, there is a
need to analyze individual mass spectra to identify the ions
present (annotation) and determine the molecular weights of
the underlying analytes.

Automation is essential for the number of spectra collected
in large LC-MS–based studies such as in metabolomics but is
also valuable in real-time for DDA and to reduce errors in the
analysis of individual spectra, e.g., collected by flow injection
analysis (FIA). Although there are numerous software tools
for chromatographic feature detection, including the freely
available XCMS [2], mzMine2 [3], andMS-Dial [4], automat-
ic annotation is still challenging. For example, Li et al. [5]
reported that these packages could generate tens of thousands
of signals in mixtures of a thousand metabolites, greatly
overestimating the number of real metabolites. These methods
utilize chromatographic data to group-related spectral peaks
prior to annotation and are highly dependent on the peak-
picking parameters since missing important low-intensity
peaks, or misassigning the groups, will lead to errors.
Manual optimization is a time-consuming and complicated
iterative process, especially for inexperienced users, so auto-
matic parameter selection tools have been created for XCMS
including Isotopologue Parameter Optimization (IPO) [6] and
AutoTuner [7].

Numerous “all-in-one” software packages or frameworks
have been released to fully exploit MS1 data, including the
widely used XCMS–CAMERA [8]. Although continued sup-
port has been provided [9], CAMERA’s decade-old approach
to feature grouping and annotation has shown limitations for
complex sample analysis, which has led to the development of
additional software solutions, including FindMAIN [10] and
CliqueMS [11]. FindMAIN uses a weighted scoring system to
improve the annotation of ambiguous mass spectra, while
CliqueMS implements a unique feature grouping algorithm
based on a similarity network.More recently, a machine learn-
ing approach for predicting in-source patterns, retention time,
and intensity using the chemical structure of compounds was
published [12]. This tool aims to improve the assignment of
MS signals and decrease the false discovery rate but, while
promising, showed a major drawback as new models must be
trained for different analytical workflows. From the nearly
200 freely available tools used in metabolomics data process-
ing [8], only a few chromatographic peak detection methods
have been benchmarked; rigorous evaluation and cross-
comparison of current software solutions is still lacking

[13–15]. Furthermore, most current solutions are modules in-
tegrated into rigid untargeted analysis pipelines or depend on
the outputs of specific peak-picking tools. Thus, there is still a
need for a flexible and platform-independent tool that could
extensively annotate MS data.

Here, we introduce mzAdan, a nonchromatography-based
multipurpose desktop application for the annotation and ex-
ploration of convoluted high-resolution ESI-MS data from
low molecular weight compounds, including metabolites.
We validate mzAdan’s annotation approach on hundreds of
FIA mass spectra corresponding to 408 analytes and an LC-
MS mixture of 52 standard compounds. We then incorporate
mzAdan in an untargeted data analysis workflow with XCMS
and benchmark its performance against three other annotation
tools, CAMERA, findMAIN, and CliqueMS. Additionally,
we investigate the influence of several XCMS parameters on
the detection of low-abundance features from standard ioniza-
tion products, examine their impact on the performance of
each annotation tool, and investigate their limitations.

Material and method

Data acquisition and processing

Flow injection analysis dataset (UNIGE-FIA-MS)

The UNIGE-FIA-MS dataset is the basis of a spectral library
described in detail [16]. This library is composed of more than
500 high-resolution mass spectra of metabolite standards from
the Human Metabolome Database (HMDB). Data were ac-
quired on a quadrupole time-of-flight (TripleTOF 5600,
Sciex, Concord, ON) in FIA mode. Of the hundreds of mass
spectra produced, 408 contained the standard protonated
forms (intensity ≥ 1% and 500 cps) and were selected for
further analysis (see Electronic supplementary material
(ESM) Table S1).

The raw data were processed in PeakView (v.2.2, Sciex),
where full scans were averaged over about 10 spectra (250 ms
accumulation time/spectra), background was subtracted, and
the peaks were centroided. Every mass spectrum was ulti-
mately exported as a Mascot generic format file (mgf) using
an in-house PeakView plugin.

Liquid chromatography dataset (UNIGE-LC-MS)

The UNIGE-LC-MS mixture consists of 52 metabolite stan-
dards (ESM Table S2) from the HMDB. Data were acquired
on an UltiMate 3000 RSLC chromatography system (Dionex,
Sunnyvale, CA, USA) coupled to a TripleTOF 6600 (Sciex,
Concord, ON, Canada) in positive ionization mode SWATH-
MS. Mobile phase A was 5 mM ammonium formate in water
with pH adjusted to 3.0 by the addition of formic acid, and
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mobile phase B was 5 mM ammonium formate in methanol.
The gradient was 0–1 min 5%B, 1–21min 5–95% B, and 21–
25 min 95% B with a flow rate of 300 μL/min. The injection
volume was of 1.6 μL.

The raw data were processed with PeakView (v2.2, Sciex)
and extracted ion chromatograms (EIC) generated for the 52
protonated forms. Spectra were averaged over the full width at
half maximum (FWHM) of the chromatographic peaks, and
background ions were subtracted from regions preceding and
following the peak. These spectra were then centroided and
exported as individual mgf files.

The Analyst raw data file (wiff) was additionally processed
and converted to the mzXML open data format with
MSConvert (v.3.0.18) [17] to allow analysis with XCMS.
MS1 data were centroided using the vendor peak-picking al-
gorithm option, and MS2 data were discarded. Lastly, the
whole LC-MS run was converted and exported as a single
mzXML file.

Pooled human urine sample

A pooled human urine sample (collected anonymously) was
analyzed on an UltiMate 3000 RSLC chromatography system
(Dionex, Sunnyvale, CA, USA) with an Xselect column HSS
T3 XP (2.5 μm, 2.1 mm i.d. × 150 mm,Waters, Milford, MA,
USA) coupled to a TripleTOF 5600 (Sciex, Concord, ON,
Canada) in positive mode SWATH-MS. Mobile phase A
was 5 mM ammonium formate in water with pH adjusted to
3.0 by the addition of formic acid, and mobile phase B was
methanol. The gradient was 0–1 min 5% B, 1–16 min 5–85%
B, and 16–17min 85%B at a flow rate of 300μL/min. Prior to
analysis, the urine sample was diluted twice with mobile
phase A and 5 μL was injected. The column temperature
was kept at 40 °C, and the samples were cooled at 6 °C. For
MS acquisition, a single TOF MS acquisition fromm/z 100 to
600 was followed by 20 MS/MS experiments with variable
Q1 windows from m/z 50 to 600 with a cycle time of 691 ms.
The collision energy spread was set at 40 ± 30 eV, the ion
spray voltage was 5000 V, the declustering potential was ±
80 V, and the source temperature was at 450 °C. The curtain
gas was set at 25, gas 1 at 30, and gas 2 at 40.

A total of 35 metabolites were identified with high confi-
dence using the MasterView (v.1.1, Sciex) candidate search
functionality, with the AMML spectral library described pre-
viously [16], and were chosen for further analysis (ESM
Table S3). For all of these, the mass error was less than
5 ppm and the combined score (formula finder score, library
score, retention time score) above 60. In addition, each com-
pound was found in at least one previous urine analysis, ide-
ally classified in HMDB as a urine metabolite, and had a high-
quality MS/MS match, a retention time deviation below 20%,
and a signal-to-noise ratio of above 50.

MzAdan annotation software

MzAdan is a cross-platform (Windows, MacOS, Linux) Java
desktop application for the annotation of high-resolution full
scan mass spectra acquired in positive and negative modes but
currently focused on singly charged positive ions. The graph-
ical interface allows quick access to fully customizable and
well-described parameters, including various filters (m/z, in-
tensity, and deisotoping) and multiple annotation sets (ad-
ducts, neutral losses, isotopes, oligomers). The application
uses two main Java libraries: JmzReader (v.1.2.1) [18] for
parsing standard open-source mass spectrometry data formats
and JgraphT (v.1.2.0, https://jgrapht.org/) for the annotation
based on graph data structures. Additionally, several MzAdan
classes were inspired by MzJava [19]. MzAdan can process
spectral files in the mgf format and can produce three types of
outputs: two tables containing annotations and [M+H]+

candidates, as well as the graph itself. The software is
available online (https://github.com/sib-pig/mzAdan) with a
tutorial detailing the tool interface, settings, and outputs.

Generation of reference annotations

For reference, mass spectra of the analytes from the UNIGE-
LC-MS dataset and pooled urine sample (52 and 35, respec-
tively) were manually annotated using PeakView and a set of
13 annotations, including adducts and neutral losses (ESM
Table S4). Only monoisotopic peaks with intensities above
1% and 500 cps were considered.

Evaluation of mzAdan annotation approach and untargeted
workflow

Annotation of the UNIGE-FIA-MS and UNIGE-LC-MS
datasets was performed using MzAdan with default parame-
ters: an absolute intensity threshold of 500 cps and 1% relative
intensity, an intensity range of 1 to 100% for the deisotoping
filter, and the monoisotopic validation enabled. The default
annotation set, consisting of three adducts (ammonium, sodi-
um, and potassium), two neutral losses (ammonia and water),
and dimers and trimers, was used with an absolute tolerance of
10 mmu. MzAdan also considers combinations of mass dif-
ferences resulting in a much higher number of possible forms.
Lastly, only positive mode data were considered.

Evaluation of XCMS–CAMERA feature detection and grouping
performance

Chromatographic feature detection for the 52 standard com-
pounds mixture was achieved using the XCMS R package
(v3.8.1) with the optimized parameters for UPLC/TripleTOF
systems (method = centWave, ppm = 15, mzdiff = 0.01,
peakwidth = c(5, 20), prefilter = c(3, 100), and snthresh = 6).
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CAMERA was then used for chromatographic deconvolution
through retention time–based feature grouping using the
groupFWHM function with default parameters.

Automated optimization of XCMS parameters was per-
formed with the Isotopologue Parameter Optimization tool
(v.1.14.0). Optimization was performed twice: without (IPO
1) and with (IPO 2) consideration of the XCMS prefilters
option (ESM Table S5).

Comparative analysis of XCMS-based annotation software

The performances of several XCMS-based annotation tools,
including CAMERA (v 1.42.0), findMAIN (v.1.2), and
CliqueMS (v.1.0.1), were benchmarked on the both the 52
and the 35 metabolites contained in the standard mixture and
the urine sample, respectively. The XCMSR package (v3.8.1)
was used for peak finding with its parameters set to the rec-
ommended values for HPLC–HRMS systems. The influence
of low-abundance features on analyte detection and annota-
tion quality was assessed by varying the S/N from 1 to 24.
Furthermore, the “prefilters” option was either enabled and set
to its default values or entirely disabled. Lastly, a set of 12
common annotations ([M+Na+K-H]+ was excluded) was cre-
ated for each software tool to allow for their direct compari-
son. The parameters and annotation sets used are detailed in
Tables S6 to S13 (see ESM). Additionally, since mzAdan was
not designed to process XCMS output, a Python script was
written to automatically export the pseudo-spectra to mgf
files.

Results and discussion

Ion processes and general considerations

In ESI, analyte ions are often formed by the addition or re-
moval of protons to generate [M+H]+ ions in positive mode
and [M−H]− ions in negative mode, but a variety of other
common ion source processes are known, including the (1)
addition of different charged species, for example NH4

+, Na+,
and K+ in positive mode and CO2H

− and CH3CO2H
− in neg-

ative mode; (2) loss of small stable neutral molecules such as
H2O, CO2, and NH3; and (3) formation of multimers such as
[2M+H]+, [2M+Na]+, and [3M+H]+. However, reactions of
ions with co-eluting analytes and background ions (solvents,
contaminants) have also been reported, and these processes
can occur individually or in combination, generating more
complex species.

The general approach to annotation is to examine pairs of
ions and determine if the mass difference corresponds to a
known adduct or fragment. For example, a mass delta of
21.9819 corresponds to the difference between [M+H]+ and
[M+Na]+, i.e., Na-H, and establishes a relationship between

the ions. However, we have frequently noted the presence of
singly charged ions apparently corresponding to the addition
of several charged species which we ascribe to the replace-
ment of labile protons by species such as Na and K, with
subsequent addition of a single charged species, e.g., [M-H+
Na]H+, [M-2H+2Na]H+, etc. The generic form of these ions is
[M+nNa-(n − 1)H]+ with each member differing by 21.9819,
and we note that the first member of this series (n = 1) cannot
be distinguished from [M+Na]+. When n is greater than one,
the adduct species can differ so, for example, [M+Na+K-H]+

is also possible with forms containing K differing by 37.9559.
Although forms with Na and K are the most common, other
species are also found. For example, as indicated below, we
have observed ions including Ca, but since Ca has two
charges, there is no need for the additional charged species,
i.e., [M-H+Ca]+ is also possible and differs from [M+H]+ by
Ca-2H which is 37.9464, a difference of 9.5 mmu from the
potassium form. As multimers will often have more labile
protons, the number of possible replacement forms will in-
crease for larger multimers.

These observations emphasize the difficulty of generating a
definite list of mass deltas since the actual forms will depend
on the nature of the analyte (number of labile protons, func-
tional group stability), its concentration, the available charged
species (Na+, K+, Ca2+), background ions, and co-eluting spe-
cies. To avoid using a large comprehensive list and increase
the chances of random matches, we use a minimal list and
examine the deltas from all detected ions, i.e., we trace paths
through the spectrum.

Examining mass differences is most effective if the peaks
are formed from the same analyte, and hence, there is a ten-
dency to rely on chromatographic processing to extract spectra
that are assumed to be pure. However, co-elution is inevitable
so elution times and chromatographic profiles may be unreli-
able in complex samples or with noisy peaks. Thus, an effi-
cient algorithm must handle mixed spectra. Although mass
accuracy is very reliable and consistent within the same spec-
trum, the presence of analytes that are related or have similar
masses may result in ions being incorrectly linked. Our ap-
proach is to look for [M+H]+ candidates within a spectrum
based on the mass values and to validate the selection chro-
matographically if needed. We also retain low-intensity peaks
since these may be critical in building the ion paths. These
concepts are illustrated in the following sections.

mzAdan annotation tool

As discussed above, protonated analyte ions provide informa-
tive elemental formulae and are essential for reliable com-
pound identification via spectral library matching or de novo
interpretation. In metabolomics, a variety of “open-source”
annotation software is currently available for untargeted anal-
ysis of LC-MS data, but many are either packaged as all-in-
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one solutions (e.g., XCMS–CAMERA and MS-DIAL) or are
explicitly designed to be used with specific chromatography
processing tools or frameworks, such as XCMS and
MzMine2. A new annotation tool, called mzAdan, was creat-
ed to of fe r a more f lex ib le , p la t form-agnos t ic ,
chromatography-independent solution that is capable of pro-
cessing complex mixed mass spectra. MzAdan is a
graph-based tool that is intended to process batches of
high-resolution mass spectra, explore convoluted anno-
tation networks, and identify protonated analytes using a
ranking system based on explained total ion current
(TIC) and peak mass relationships. The tool was also
designed to be quickly incorporated in LC-MS
untargeted workflows for the analysis of small molecu-
lar weight compounds, including metabolites.

The annotation algorithm initially considers every spectral
peak as a putative [M+H]+ candidate and parses the mass
spectrum in search of m/z shifts corresponding to known an-
notations. Unlike other approaches, mzAdan uses annotation
sets containing a few frequently observed mass shifts but con-
siders combinations which allows the formation of deep an-
notation networks. These sets are fully customizable and con-
tain by default the mass deltas of three common LC-MS ad-
ducts (NH3, Na, K) as well as two neutral losses (–H2O, –
NH3). Multiply charged ions are not considered since these
are less likely for low molecular weight analytes and can lead
to errors. The annotation process is repeated until the whole
mass spectrum has been parsed and a graph is created where
the nodes are peaks, and the edges connecting the nodes cor-
respond to the annotations. Specifically, mzAdan uses weight-
ed, directed graphs to store information, such as the
quality (mass error) and the direction of the annotations.
Generally, the graph contains groups of interconnected
peaks (clusters) which are inspected by a ranking algo-
rithm in order to identify the most likely [M+H]+ can-
didates based on the TIC explained and peak connectiv-
ity. In each cluster, the ranking algorithm considers
each peak and sums the intensity of all peaks related
through one or more annotations. Finally, the best rank-
ing candidates, those with the highest explained TIC,
are recorded for every cluster generated. If multiple can-
didates are proposed for a single cluster, which can
happen if their explained TIC fraction is identical, their
connectivity can be used to discard the less likely pro-
tonated form. In addition, a set of three informative
indexes is generated for each candidate: the cluster
global connectivity (CGC), cluster intensity coverage
(CIC), and cluster count coverage (CCC). CGC corre-
sponds to the number of ions contained in the cluster,
while CIC and CCC represent the percentage of the
spectrum TIC and peak count explained by these ions.
The higher the index values, the more likely a candidate
is to be corresponding to a real analyte.

Illustration and evaluation of mzAdan annotation and
clustering strategy

For the UNIGE-LC-MS data (Fig. 1), many peaks elute close
to the void volume with minimal separation and several are
chemically related, e.g., amino acids, creatinine, and creatine
(ESMTable S2). The region between 1.3 and 1.4 min contains
5 analytes and is used to illustrate the annotation challenges
outlined above and the mzAdan approach.

Figure 2a shows the UNIGE-LC-MS background–
subtracted spectrum of L-proline from a full width half maxi-
mumwindow centered at RT = 1.35 min after deisotoping and
thresholding. Because of chromatogram crowding, even this
simple processing results in a spectrum containing nineteenm/
z values from at least three compounds which have been an-
notated and colored.

Figure 2b shows the graph generated by mzAdan using a
10-mmu tolerance window and the default annotation set of
three adducts (NH3, Na, K) and two neutral losses (H2O and
NH3), as well as dimers and trimers. The nodes correspond to
m/z values (nominal values used for legibility) that are linked
by arrows indicating parent–child relationships such as [M+
H]+→ [M+Na]+. The singleton ion is ignored since there is no
additional evidence of its identity, but it is likely a [M+H]+

from a background compound or low concentration analytes.
For clusters of two ions, annotation usually identifies the [M+
H]+, except for a delta mass of 17.0274 which can be [M+
H]+→ [M+NH4]

+ or [M+H]+→ [M+H-NH3]
+ (an adduct or

a loss) and is indicated by a bidirectional arrow (e.g., 173/190
and 212/229). For clusters of three or more ions, the algorithm
examines each ion and calculates the intensity sum and estab-
lishes the connectivity of the ions it can explain. For example,
116 in the blue cluster can explain 154 and 231 (connectivi-
ty = 2), but 231 can only explain itself (connectivity = 1). The
ion with the largest explained TIC, and connectivity in the
case of a tie, is used as the [M+H]+ of the underlying analyte.

Figure 2c tabulates the mass values, assignments, ex-
plained TIC, and mass errors for ions in the three major clus-
ters. For homocitrulline, the ions at m/z 173.0922 and
190.1195 explain the same TIC, but the latter has a higher
connectivity and is selected as the [M+H]+ candidate. All
assignments are reasonable and the mass errors consistent
(mean = 0.33, median = − 0.05, stdev = 1.0) except for
176.0100 (error = 1.6 mmu) and 229.1306 (error =
3.5 mmu). As shown in Fig. 2d, peak 1, the 176 elution profile
matches that of 138 and corresponds to the [M+K]+ of
trigonelline (C7H7NO2, [M+H]+ 138.0550, [M+K]+ m/z
176.0108) and is within the mass tolerance window of the
[M+K+Na-H]+ of proline (C5H9NO2, [M+K+Na-H]+ m/z
176.0084). The assignment for m/z 229.1306, [M+Na+
NH3]

+, is within the error tolerance, but there is no evidence
of the corresponding [M+NH4]

+ ion. The extracted ion chro-
matogram shows that it occurs when both creatinine
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(C4H7N3O, MW 113.059) and proline (C5H9NO2, MW
115.063) co-elute, suggesting the possibility of a heterodimer
with the composition C9H16N4O3, MW 228.1222 and [M+
H]+ 229.1295, an error of 1 mmu. Further investigation in this
region reveals the presence of a second heterodimer between
creatine and homocitrulline (C11H24N6O5, MW 320.1808)
from a weak [M+H]+ ion at 321.1881.

A similar problem is illustrated in Fig. 2e. The software
identifies m/z 132.0767 as an [M+H]+, which corresponds to
creatine, based on a [M+K]+ adduct and water losses from the
[M+H]+ and [M+K]+ ions. However, the XICs show two
compounds: the second, represented by m/z 114.0679 and
m/z 152.0219, is creatinine which differs from creatine by
the elements of water, H2O. Since the elemental composition
of creatinine and the water loss from creatine are identical,
correct interpretation can only be solved by chromatography.

These examples show that mass measurements are reliable
and consistent and can be used to flag potential errors, but
chromatography can be essential to clarify ambiguous cases
and low-intensity peaks may be important for correct interpre-
tation. Furthermore, species such as the heterodimers will not
have profiles that match any of the related ions. Hence, in
approaches that rely on chromatographic peak picking, careful
parameter choice is key and the chromatography and mass
accuracy must match.

Overall, the total number of [M+H]+ candidates was re-
duced from 19 to 4 and the clusters containing the protonated
forms of homocitrulline, L-proline, and creatine explained,
respectively, 20%, 42%, and 37% of the mass spectrum TIC
(CIC), and 6 (32%), 5 (26%), and 7 (37%) of the total peak
counts (CCC) (ESM Table S14).

For comparison, the positive mode spectrum of L-proline
obtained by FIA with mzAdan annotation using the default
parameters and an adduct mass difference tolerance of
10 mmu is presented in Fig. 3. Under these conditions, the
spectrum showed extensive adduct formation and the annota-
tion generated six clusters from the 33 filtered peaks: one with
13 peaks, one with 4, three with 2, and 10 singletons. The
largest cluster contained the protonated form of L-proline, ex-
plained 61% of the mass spectrum total ion current and 13
(39%) of the total peak count, and showed dimers, trimers,
and multiple replacement forms including combinations of Na
and K (see ESM Table S15). However (Fig. 3c), the mass
accuracy shows a wider spread (mean = − 3.75, median = −
2.0, stdev = 4.22) mainly due to the ions apparently corre-
sponding to trimers with K adducts. This, combined with the
observation that there are no other annotations with potassi-
um, requires an alternate explanation, in this case adduction
with Ca rather than K (adduct mass difference 9.5 mmu) as
described previously, giving [3M+Ca-H]+, [3M+Na+Ca-
2H]+, and [3M+2Na+Ca-3H]+ (see ESM Table S15 for exact
masses and errors), and the mass accuracy statistics was as
follows: mean − 1.7 mmu, median − 1.8, stdev = 0.78. With
this information, the cluster of Na adducts starting at m/z
499.2041 can be identified as the equivalent tetramer ions:
[4M+Ca-H]+, [4M+Na+Ca-2H]+, [4M+2Na+Ca-3H]+, and
[4M+3Na+Ca-4H]+ with errors around − 3 mmu (ESM
Table S15). This again illustrates the reliability of mass accu-
racy and underscores the need for flexible annotation sets and
a tool that can be used interactively.

Comprehensive analysis of the 408 and 52 analytes of the
UNIGE-FIA-MS and UNIGE-LC-MS datasets showed that
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Fig. 1 Extracted ion profiles for the 52 standard compounds in the UNIGE-LC-MS dataset (see ESM Table S2 for details). The number of eluting
compounds per minute is displayed below the chromatograms
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the number of spectral features, and thus the number of [M+
H]+ candidates, could be reduced by about 22% and 31%,
respectively, after deisotoping and by an additional 41% and
51% following annotation with mzAdan. Clusters containing
the protonated form explained a significant percentage of the
TIC with averages of 69% and 67% for the UNIGE-FIA-MS
and UNIGE-LC-MS, as well as 39% and 53% of the total
number of peaks per spectrum. Despite the rather small size
of the annotation sets and the presence of numerous ions de-
rived from co-eluting compounds in LC, significant fractions

of all mass spectra were explained in both datasets.
Furthermore, although FIA is not commonly used in metabol-
ic studies, the higher complexity of the data did not affect the
performance of mzAdan.

MzAdan’s ranking system correctly identified the majority
of protonated analytes in their clusters but failed to identify the
correct [M+H]+ for six of the 408 standard analytes of the
UNIGE-FIA-MS dataset (ESM Table S1) and three early elut-
ing analytes (carnosine, trigonelline, and creatinine) of the 52
compounds of the UNIGE-LC-MS dataset. Incorrect
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m/z analyte annotation TICex error mmu

116.0711 L-proline [M+H]
+

59745 0.5

154.0264 L-proline [M+K]
+

4476 -0.7

176.0100 L-proline [M+Na+K-H]
+

624 1.6

191.9822 L-proline [M+2K-H]
+

1087 -0.2

231.1337 L-proline [2M+H]
+

1066 -0.2

173.0922 homocitrulline [M+H-NH3]
+

28975 0

190.1195 homocitrulline [M+H]
+

28975 0.9

212.1005 homocitrulline [M+Na]
+

1562 -0.1

228.0753 homocitrulline [M+K]
+

10677 0.8

229.1306 homocitrulline [M+Na+NH3]
+

1562 3.5

266.0302 homocitrulline [M+2K-H]
+

878 -0.2

114.0674 creatine [M+H-H2O]
+ 

28322 1.2

132.0767 creatine [M+H]
+

53734 0.2

136.0476 creatine [M+Na-H2O]
+ 

767 -0.5

152.0219 creatine  [M+K-H2O]
+

6840 0.1

170.0322 creatine [M+K]
+

10164 -0.4

227.1255 creatine [2M+H-H2O]
+

3214 -0.4

265.0808 creatine [2M+K]
+

745 -0.2

Fig. 2 a Annotated, background-
subtracted, deisotoped, and
thresholded full scan spectrum of
the UNIGE-LC-MS peak at
1.35 min. b Graph generated by
mzAdan. The nodes correspond
to related masses (nominal values
are used for legibility) and arrows
indicate the relationship direction
and the most likely [M+H]+

candidate is marked with a star
(see text for details). c Major ion
assignments, explained intensity
(TICex), and mass errors for the
network clusters. Errors are
relative to the elemental formula
derived from the annotation. d
Extracted ion chromatograms of
[M+H]+ and [M+K]+ for 1:
trigonelline (m/z 138.0550,
176.0108, RT 1.30 min) and 2: L-
proline (m/z 116.0706, 154.0265,
RT 1.35 min). e Extracted ion
chromatograms of [M+H]+ and
[M+K]+ for 3: creatinine (m/z
114.0662, 152.0221, RT
1.31 min) and 4: creatine (m/z
132.0768, 170.0326, RT
1.34 min)
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identification for the FIA dataset was mainly caused by the
formation of clusters containing highly interconnected ion
networks including nonanalyte-related species or unexpected
adduct combinations. In the LC data, overlapping elution pro-
files of analytes with forms close in mass was the only cause
of failure. As shown above, the masses of creatinine (MW=
113.0589 Da, RT = 1.31 min) and creatine (MW =
131.0695 Da, RT = 1.30 min) differ by 18.0106 amu, which
led to creatinine being annotated as the [M+H-H2O]

+ of cre-
atine (Fig. 2). Similarly, trigonelline (MW= 137.0477 Da,
RT = 1.30 min), which eluted close to L-proline (MW =
115.0633 Da, RT = 1.35 min), was annotated as the [M+
Na]+ of L-proline (m/z 138). Moreover, the clusters of two
co-eluting compounds may be merged into one that contains
both protonated forms when their adducts match the same
peak in the mass spectrum. For instance, the [M+H-NH3-
H2O]

+ of carnosine (m/z 192.0743, RT = 1.16 min) and the
[M+Na]+ of 1-methylhistidine (m/z 192.0743, RT = 1.17 min)
lead to merging the two corresponding clusters and identifica-
tion of 1-methylhistidine as the single most probable [M+H]+

candidate.
As shown above, mzAdan relies on stable mass accuracy,

which is also a goodmeasure of result confidence and can flag
the presence of difficult cases such as unexpected charge

agents and heterodimer formation. Nonetheless, careful LC-
MS peak selection ensures that related peaks are correctly
grouped and small important peaks retained. In contrast, the
popular XCMS tool is based on chromatographic feature de-
tection (RT, m/z) with subsequent adduct annotation software
generating pseudo-spectra for RT windows. This approach
has several drawbacks: (i) chromatographic peak width and
symmetry are not constant over the LC-MS run; (ii) LC peaks
are best detected using at least 10 data points; (iii) in complex
samples, analyte co-elution is common; and (iv) a low-
intensity peak may be missed or misassigned due to noisy
traces. Since mzAdan can be incorporated into a XCMS-
based workflow, we evaluated the peak-picking parameters
and compared our results with other annotation tools.

Evaluation of XCMS–CAMERA peak picking and fea-
ture grouping with the LC-MS dataset

Conventional LC-MS–based workflows use peak picking,
alignment, and grouping, before annotation. Peak-picking
tools generate lists of features (unique m/z–retention time
pairs) that correspond to single chromatographic peaks or sets
of peaks aligned across multiple samples. Features are
grouped into pseudo-spectra based on retention time and

a

b c

m/z annotation TICex error mmu

116.0701 [M+H]
+

68757 -0.6

138.0521 [M+Na]
+

17364 -0.5

160.0336 [M+2Na-H]
+

5423 -0.9

253.1148 [2M+Na]
+

6576 -1.1

275.0964 [2M+2Na-H]
+

3040 -1.4

297.0783 [2M+3Na-2H]
+

1476 -1.4

368.1772 [3M+Na]
+

7049 -2

384.1424 [3M+K]
+

3972 -10.7

390.1589 [3M+2Na-H]
+

3808 -2.3

406.1240 [3M+Na+K-H]
+

2713 -11.1

412.1404 [3M+3Na-2H]
+

1759 -2.7

428.1057 [3M+2Na+K-2H]
+

1048 -11.3

434.1223 [3M+4Na-3H]
+

1057 -2.8

Fig. 3 a Annotated, background-
subtracted, deisotoped, and
thresholded full scan spectrum of

L-proline from the UNIGE-FIA
data. b Network graph generated
by mzAdan. Nodes correspond to
related masses (nominal values
used for legibility) and the arrows
indicate relationship direction
(see text for details). c Initial ion
assignments, explained intensity
(TICex), and mass errors for the
main cluster. Errors are relative to
the elemental formula derived
from the annotation
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chromatographic peak shape similarities. Optimization of the
numerous parameters for peak picking and grouping is critical
since these can drastically affect the number and quality of the
features detected and their correct grouping in the pseudo-
spectra. In XCMS, several parameter settings can be adjusted,
including peak width, m/z tolerance, and prefilters, as well as
ion intensity and signal-to-noise ratio thresholds. Selection of
the optimum settings for a distinct LC-MS run is customarily
achieved via manual examination of the LC-MS performance
following extensive parameter testing which can be challeng-
ing and time-consuming, especially for inexperienced users.
Thus, it is good practice to start with the recommended pa-
rameters optimized for specific chromatographic systems and
mass spectrometers provided by the XCMS online platform
[20, 21].

The XICs of the 52 protonated forms in the raw data pre-
sented in Fig. 1 can be divided into three distinct regions:
region (1) from 1 to 2 min showed strong co-elution of 21
compounds, region (2) from 2 to 8 min showed moderate co-
elution of 22 compounds, and region (3) ranging from 8 to
19 min showed low co-elution with nine compounds in
11 min.

With the recommended XCMS parameters optimized for
HPLC–HRMS platforms, the 52 mix generated a total of 665
features (1–18.5 min), which were collected in 228 pseudo-
spectra by CAMERA using only the retention time–based
peak grouping function (groupFWHM). Of these hundreds
of features, 50 corresponded to the protonated forms of one
of the 52 compounds. Eluting at 4.83 and 7.68 min, respec-
tively, 3-chlorotyrosine and 5′-methylthioadenosine were not
identified by XCMS. Of the 50 detected compounds, 44 ap-
peared in individual spectra, while the remaining six were
grouped with one or two additional metabolites. In total, five
composite mass spectra were generated in a narrow time win-
dow of 11.4 s, starting at 1.16 min. Nonetheless, the previous-
ly discussed problematic features associated with co-eluting
creatinine (M14) and creatine (M15), as well as trigonelline
(M13) and L-proline (M16), were contained in different pseu-
do-spectra. Although retention time feature grouping may
solve some co-elution issues, the process remains challenging
particularly early in the chromatogram and with noisy signals.

We used a list of 13 common adducts (ESM Table S4) to
manually annotate the 52 standard analyte mixture mass spec-
tra from PeakView (ESM Table S16) and XCMS–CAMERA
(ESM Table S17) where 119 and 33 ions were respectively
annotated. XCMS–CAMERA did not generate a pseudo-
spectrum for two analytes. Comparison of the results revealed
a substantial loss of 86 (72%) compound-related features in
the pseudo-spectra. The [M+NH4]

+, [M+K]+, and [M+H-
NH3]

+ showed decreases of, respectively, 25%, 50%, and
50% in the number of annotations, and other adducts had even
more significant losses. Of the 25 [M+Na]+ ions identified in
the raw data, only two were part of the pseudo-mass spectra

and none of the 19 [M+2K-H]+ and 9 [M+Na+K-H]+ anno-
tated peaks were found in the pseudo-spectra. Although de-
tection of fewer features resulting in mostly protonated
analytes is viewed as beneficial, the absence of these addition-
al signals, including adducts, in-source fragments, and oligo-
mers, adversely affects annotation tools that rely on peak con-
nectivity. In addition, if the relationship between protonated
ions and other forms is not recognized, the latter may be con-
sidered as additional unique compounds.

The first region of the chromatogram presented in Fig. 1
contained 44 annotated ions, but only 20% of the correspond-
ing features were found in XCMS pseudo-spectra. The second
region contained 42 annotations of which XCMS detected
24%, while, in contrast, the third region showed a much lower
loss and 58% of the 33 annotations were detected.
Additionally, for the first, second, and third regions of the
chromatogram, respectively, 67%, 55%, and 22% of the
analytes had none of the 13 annotations in their pseudo-mass
spectra.

As background-subtracted mass spectra may still contain
ions from neighboring chromatographic regions, it is possible
that some annotations were due to mixed mass spectra, but
XICs of the annotated features revealed that 97% eluted with
the corresponding analyte. Of the four misannotated peaks,
three were identified as neutral losses ([M+H-NH3]

+, [M+
H2O]

+) and one as sodium potassium adducts ([M+Na+K-
H]+). Since only a small fraction (3%) of annotated ions did
not co-elute with their corresponding analyte, the difference in
retention time could not explain the considerable loss of the
analyte-derived features discussed above. Hence, we
suspected that one or more XCMS parameters were
preventing the detection of low-abundant features.

Optimization of XCMS parameters for feature
detection

An R package named IPO was recently developed to automat-
ically optimize a predefined set of XCMS parameters. The
tool was benchmarked against the traditional manual tuning
workflow [21] and was shown to produce more robust results,
in terms of cross-sample feature detection. However, this
study also cautioned about unrealistic values that might be
suggested for complex biological samples when the tool is
used in an unsupervised manner. In our hands, using this tool
to optimize settings for the 52 standard compounds mixture
was initially unsuccessful and the number of detected analytes
was reduced to 38, and the number of annotated features de-
creased to 22.

Manually tuning the XCMS peak width and m/z tolerance
parameters showed no significant increase in analyte-related
feature detection (ESM Table S18) in fact increasing or de-
creasing the settings caused a rapid decrease in XCMS feature
detection performance. In contrast, the signal-to-noise ratio
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and “prefilters” options had notable impact on the detection of
analyte and analyte-related features (ESM Table S18). By
default, prefilters are automatically applied to discard low-
intensity chromatographic regions to decrease both processing
time and the number of low-abundance features. To be con-
sidered a potential feature of interest by XCMS, an ion corre-
sponding to a distinct mass trace must be present in n scans
with an intensity higher than a threshold, k; otherwise, it is
discarded by the prefilters. The default values of these param-
eters are a minimum of three scans and an intensity of 100 cps,
i.e., n = 3, k = 100, or (3100). Disabling the prefilters increased
the number of detected features from 665 to 1700 and raised
the number of pseudo-spectra from 228 to 309. Eventually, all
52 protonated forms were detected, and the number of anno-
tated features increased from 33 to 161, while the number of
pseudo-spectra containing the 52 protonated forms and one or
more annotated features increased from 24 to 46.

Although IPO allows prefilter optimization, this option was
not discussed in either the initial article or the subsequent
performance assessment [22]. IPO was rerun to optimize the
prefilters along with XCMS main settings (peak width, toler-
ance, m/z diff, and S/N) which caused most parameters to be
closer to the recommended values, except for the S/N and
prefilters which were set to their minimum values (ESM
Table S5). These settings allowed detection of the 52 features
corresponding to the standard analytes and 206 adducts and
neutral losses. Only a few XCMS parameters, especially
signal-to-noise ratio and the prefilter settings, significantly
affected the number of detected analytes and compound-
derived signals, and since the recommended parameters were
comparable to that of IPO, all were used “as is,” except for
prefilters and S/N. The impact of the prefilters on the detection
of compound-derived features is illustrated with L-lysine in
Fig. 4 and N-acetyl-L-phenylalanine in Fig. S1 (see ESM).
These settings are examined further below to evaluate the
consequence of discarding low-abundant features on
XCMS-based annotation software.

Comparative analysis of XCMS-based annotation tools
for LC-MS analysis of the standards mixture and urine
sample

MzAdan was incorporated into a conventional LC-MS
untargeted analysis workflow with the widely used XCMS
platform and evaluated using a mixture of 52 standard com-
pounds and 35 selected metabolites present in a human urine
sample. We compared the performance of mzAdan with that
of CAMERA, findMAIN, and CliqueMS with different
XMCS parameter values for S/N and the prefilters and con-
sidered the deficiencies of each software. Even though a wide
range of annotation tools is currently available for LC-MS
metabolomics analysis with XCMS, these three tools were
selected for their ability to also process single samples.

The four software packages were tested with the set of
annotations used previously, but without [M+Na+K-H]+,
and ten lists of features generated by XCMS with different
parameter values for the signal-to-noise ratio and prefilters
option. The S/N was varied from 1 to 24 (sn1–sn24), and
the prefilters were either enabled and set to default values
(scans = 3, intensity = 100) or disabled (nf). These settings
were specifically chosen to assess the influence of low-
abundant features on correct analyte annotation. Moreover,
as recommended for findMAIN and CliqueMS, respectively,
the three and five best scoring annotations were considered.
Detailed results for the mix of 52 standards and each set of
parameters tested are illustrated in Fig. 5a.

To evaluate the reproducibility of each software, each anal-
ysis was repeated three times for each dataset, software, and
set of parameters tested. All annotation tools returned identical
outputs for the three replicates, except CliqueMS which
showed limited reproducibility. Features corresponding to
the protonated form of some analytes were inconsistently an-
notated in both the urine sample and the standard mixture
depending on the parameter sets tested (ESM Fig. S2). The
CliqueMS peak grouping algorithm was eventually identified
as the cause of these discrepancies as several features were
repeatedly grouped in different cliques which affected the
downstream annotation process. Since no replicate showed
significantly better performance, we arbitrarily selected the
results of the first analyses for the following comparison.

Considering the detection of known analytes, mzAdan
showed the best performance for the standard mixture closely
followed by findMAIN. Both tools correctly annotated the
majority, if not all, of the features corresponding to the 52
protonated forms. In contrast, CAMERA and CliqueMS
showed overall lower performance mainly related to the set
of parameters tested but especially with the prefilters set to
default values. Two sets of features (SN6 and SN6-NF) are
discussed in detail below to explore the advantages and short-
comings of each annotation tool.

The main factor limiting the performance of the annotation
software is detection of specific adduct features associated
with the analytes of interest. Out of the 52 metabolites in the
standard sample, 50 protonated forms were detected in SN6
compared with SN6-NF where all 52 were identified (ESM
Tables S19 to S23).

The urine sample is far more complex with regard to the
number of analytes, with many metabolites co-eluting and a
large range of MS response. A representative chromatogram
of the LC-MS analysis with extracted ion current profiles of
the 35 selected metabolites is presented in Fig. 6. The four
software packages were tested under the same conditions de-
scribed for the standard mix and the results are presented in
Fig. 5b and the outcome is summarized in Fig. 6. As before,
MzAdan showed the best performance closely followed by
findMAIN. Out of 35 metabolites, 27 protonated forms were
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detected in SN6, while in SN6-NF, 34 were identified (ESM
Tables S24 to S28 for urine).

The annotation approaches used by CAMERA and
CliqueMS share similarities that partly explain their lower
performance compared with findMAIN and mzAdan. Both
are highly dependent on peak connectivity and require two
or more features to be linked by annotation for the molecular
mass of the hypothetical neutral molecule to be computed.
CAMERA computes putative neutral masses for each group
of two or more adducts and then proposes the most likely one
by summing adduct-specific frequency scores. In contrast,
CliqueMS uses the log of adduct frequencies to propose the
most likely molecular mass of a group of two or more adducts.
The lack of a rational connection between the analytes’ pro-
tonated forms and co-eluting features prevented both software

from computing these theoretical neutral masses for a signif-
icant number of analytes. In SN6, of the 50 and 27metabolites
detected by XCMS in the mixture of standards and urine sam-
ples, 26 and 21 could not be annotated by either package. In
SN6-NF for the standard mixture, one analyte was
misannotated and ten others received no annotation using
CAMERA, while eight were not annotated with CliqueMS.
Ultimately, both approaches appear to be strongly impacted
by the composition of the pseudo-mass spectra as well as by
the variety of adducts chosen for the annotation.

Examination of the mass spectra used for benchmarking
the findMAIN and mzAdan approaches showed that several
adducts detected by XCMS were absent from the CliqueMS
and CAMERA pseudo-spectra containing the corresponding
protonated analytes. In fact, CAMERA provides two feature
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Fig. 4 Manually annotated mass
spectra of L-lysine (C6H14N2O2)
considering a set of 12
annotations: [M+H-H2O]

+, [M+
H-NH3]

+, [M+H]+, [M+NH4]
+,

[M+Na]+, [M+K]+, [M+2Na-H]+,
[M-H+2K]+, [2M+H]+, [2M+
K]+, [2M+Na]+, and [3M+H]+.
Spectra were either extracted
using PeakView (Sciex) (a) or
generated with XCMS–
CAMERA. Only monoisotopic
peaks with intensities above 1%
and 500 cps were annotated in
PeakView, while XCMS pseudo-
spectra were annotated “as is.”
Only the protonated form of L-
lysine was detected using XCMS
with the default prefilter settings
(b), but disabling the prefilters
option resulted in more features,
including many adducts (c). A
total of eight peaks were
annotated with both PeakView
and XCMS with prefilters off.
The extracted ion chromatograms
of the annotated features show
that they are slightly displaced (d)
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grouping algorithms: one based on retention time
(groupFWHM) and the other on peak shape correlation
(groupCor). The groupFWHM function generated the

pseudo-spectra used with findMAIN and mzAdan, and both
functions were applied successively to produce the ones for
CAMERA. CliqueMS uses its own feature grouping

Fig. 5 Summary of four XCMS-based annotation software packages for
the standards mixture (a) and urine sample (b). These tools were tested
using data generated by XCMSwith different S/N thresholds (sn1–sn24),
and the prefilters enabled and set to default values or entirely disabled
(nf). The number of features detected by XCMS increased with lower
signal-to-noise ratios and the prefilters disabled, and the number of
pseudo-spectra generated, [M+H]+ candidates, and metabolite

annotations increased. The number of pseudo-spectra generated with
CAMERA using its peak shape-based feature grouping algorithm was
consistently higher than CliqueMS, while CliqueMS and CAMERA
performed worse than findMAIN and mzAdan for both samples and
sets of parameters tested, though disabling the prefilters did improve
performance. findMAIN and mzAdan consistently produced higher
numbers of [M+H]+ candidates
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algorithm based on a similarity network to generate its pseu-
do-spectra. Both CAMERA and CliqueMS relocated several
features to different pseudo-mass spectra and by doing so
sometimes prevented the annotation of adducts which were
required for computation of the analyte neutral mass.
However, this issue was more prevalent for CAMERA.

Mahieu et al. [21] recently showed that adducts can pro-
duce EIC significantly different from the typical and expected
Gaussian-like profiles and from the related species (see also
Fig. 4d). Consequently, feature grouping based on peak shape
correlation can lead to the segregation of many related signals.
Figure S3 (see ESM) shows that decreasing the cutoff of the
groupCor function can significantly reduce the number of
pseudo-spectra and increase the number of annotated analytes.

FindMAIN considers every feature as one or several pos-
sible common ionization products (e.g., [M+H]+, [M+Na]+,
[M+K]+) and uses a weighted scoring system based on ex-
plained intensity, mass accuracy, and isotope charge agree-
ment to rank the most likely annotation (i.e., hypothetical
molecular mass). In contrast to CliqueMS and CAMERA, this
solution provides scored annotations to each peak in the mass
spectrum, even in the absence of a relationship, other than
with isotopologue ions. As a result, findMAIN performs well
even when known adducts are absent from the spectrum and
the systematic annotation of every spectral feature greatly in-
creases the number of putative analyte candidates. It is

recommended that only the top three candidates be consid-
ered, but then, several real molecular masses were ranked
much lower. Consequently, keeping only the top scoring can-
didates can cause the loss of several correct annotations and
considering lower-ranked ones may lead to an overestimation
of putative metabolites in the samples.

MzAdan takes a similar approach to findMAIN, as it con-
siders every feature as a possible protonated ion ([M+H]+).
Although its annotation approach is designed to reduce the
number of putative candidates through annotation and cluster-
ing of analyte-derived signals, the number of candidates re-
mains higher than for the other annotation tools. Indeed,
mzAdan does not compute likelihood scores for each annota-
tion to discard the least plausible ones. Instead, the tool pro-
vides the whole list of candidates and several informative
indexes (CGC, CIC, and CCC) that can be used to significant-
ly reduce the number of putative analytes while keeping those
that most likely correspond to metabolites. The higher the
value of these indexes, the more likely an annotation will
correspond to a real analyte.

Conclusions

For many analytes, electrospray ionization generates proton-
ated and deprotonated ions, but many different species are also
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Fig. 6 Results obtained for the annotation of 35 reference metabolites
identified in the urine sample using mzAdan, findMAIN, CAMERA,
and CliqueMS, with XCMS for feature detection and grouping. The
entire chromatogram is shown (inset), as well as the extracted ion

currents of each analyte and a table indicating analyte detection with the
different software packages. No peaks were detected for alpha-
aminobutyric acid and mzAdan assigned creatinine as a loss of water
from creatine
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observed including water or ammonia loss as well as ammo-
nium, sodium, and potassium adducts. The presence of ad-
ducts is often related to trace amounts of these cations in the
mobile phases and their intensities depend on the analyte and
analysis conditions. For example, L-proline shows the pres-
ence of sodium and calcium adducts and multimers in flow
injection analysis (Fig. 3), while mostly potassium adducts are
observed with liquid chromatography (Fig. 2). A similar be-
havior is observed for most of the analytes investigated in the
present study. In qualitative work for analyte identification
(e.g., elemental formulae), adduct annotation has become an
essential step in data processing. Considering combinations of
water and ammonia losses, sodium, potassium, ammonia ad-
ducts, and multimers, about 50% or the TIC of the spectra can
be annotated, but half of the signals remain unexplained.
Many different software solutions have been described for
metabolomics workflows but are integrated into rigid
untargeted analysis pipelines or depend on the outputs of spe-
cific chromatographic peak-picking tools. MzAdan, a
nonchromatography-based multipurpose desktop application,
was developed for the annotation and exploration of convo-
luted high-resolution ESI-MS spectra. The tool annotates sin-
gle or multiple spectra (in mgf format) using accurate mass
with a customizable adduct annotation list and produces a list
of [M+H]+ candidates.With recent instruments, accurate mass
measurements are consistent and essential to differentiate the
correct adduct (e.g., calcium versus potassium), but chroma-
tography (extracted ion current profiles) can be helpful to
clarify ambiguous cases. Low-intensity peaks are important
for correct interpretation and can be missed by approaches
that rely on chromatographic peak picking. The performance
of MzAdan was evaluated with FIA-MS spectra of standards,
and 402 of the 408 analytes could be correctly annotated as
[M+H]+. MzAdan was incorporated in an untargeted LC-MS
workflow with XCMS, applied to a 52 metabolite mix and
human urine sample and benchmarked against three other
annotation tools, CAMERA, findMAIN, and CliqueMS.
XCMS with recommended parameter settings missed many
important low-intensity features but, despite this, FindMAIN
and mzAdan consistently produced higher numbers of [M+
H]+ candidates than CliqueMS and CAMERA. With lower
signal-to-noise ratios and disabled prefilters, the number of
features detected by XCMS increased and the number of gen-
erated pseudo-spectra, [M+H]+ candidates, and metabolite an-
notations also increased. Analyte co-elution and composite
spectra are a major challenge for adduct annotation software,
and mzAdan was designed to handle mixed multi-analyte
spectra.

While protonated molecules generate good quality MS/MS
spectra by collision-induced dissociation, information is often
limited with adduct precursor ions. This is important for data-
dependent acquisition (DDA) workflows where precursors
selected based on intensity may generate poor product ion

spectra if adduct ions are chosen. However, this may not be
true for other dissociation techniques, e.g., electron-induced
fragmentation [23]. The ideal option would be the application
of a real-time annotation filter capable of handling mixed
spectra, such as mzAdan, with selection of the best precursor
ions for a given fragmentation technique. In the selected reac-
tion monitoring mode, largely used for targeted quantitative
analysis, the analyst does not usually see changes in adducts
of the analyte of interest, and this may cause limited assay
performance and challenges in assay transfer. Finally, unde-
tected adducts and complex forms such as heterodimers may
changewith conditions or system impurities and can confound
applications such as metabolomics and lipidomics that rely on
measuring changes across many samples.

Overall, electrospray ionization remains a complex process
and the fact that a large part of the ESI spectra collected can
still not be explained requires further investigations.
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