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The advent of next-generation sequencing technologies has facilitated the detection of rare variants. Despite the significant
cost reduction, sequencing cost is still high for large-scale studies. In this article, we examine DNA pooling as a cost-
effective strategy for rare variant detection. We consider the optimal number of individuals in a DNA pool to detect an
allele with a specific minor allele frequency (MAF) under a given coverage depth and detection threshold. We found that
the optimal number of individuals in a pool is indifferent to the MAF at the same coverage depth and detection threshold.
In addition, when the individual contributions to each pool are equal, the total number of individuals across different pools
required in an optimal design to detect a variant with a desired power is similar at different coverage depths. When the
contributions are more variable, more individuals tend to be needed for higher coverage depths. Our study provides
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INTRODUCTION

Genome-wide association studies (GWAS) have enjoyed
a great success in the past several years to localize disease-
susceptibility loci for many common traits and diseases.
The current GWAS paradigm was partially motivated by
the common disease common variant (CDCV) assumption,
which postulates that a large proportion of heritability of
common diseases is due to common variants. GWAS was
made possible by both technological advances that can
type hundreds of thousands of single nucleotide poly-
morphisms (SNPs), at affordable cost and the strong
dependency, called linkage disequilibrium (LD), among
SNPs at the population level. The presence of LD allows
researchers to capture the genetic variations in a person’s
genome by a set of tagSNPs which can be selected based on
the LD patterns to factor associations between diseases and
disease-causing loci indirectly. One key to the success in
GWAS lies in how strong the correlations between tagSNPs
and disease-causing loci are. From this CDCV perspective,
GWAS have been successful in uncovering many common
SNPs associated with common diseases including type I/II
diabetes, rheumatoid arthritis, Crohn’s disease, and cor-
onary heart disease. However, as noted in Hardy and
Singleton [2009], the combination of many identified
common variants only explains a small proportion of the
genetic component of the common diseases. One possible
explanation of this limitation is that GWAS have focused

on variants that are common (minor allele frequencies
45%), whereas many disease-causing variants are rare and
therefore difficult to be tagged by common variants.

Recently, researchers have explored the possibility of an
alternative hypothesis, the common disease rare variant
assumption, which states that the diseases are caused by
combinations of multiple rare genetic variants. Gorlov et al.
[2008] found that the minor allele frequency (MAF)
distribution of possibly and probably damaging SNPs is
shifted toward rare SNPs compared with the MAF
distribution of benign and synonymous SNPs based on
the prediction results obtained from PolyPhen. Li and Leal
[2008] pointed out that multiple rare variants have been
implicitly identified to be associated with diseases such as
obesity and schizophrenia. Low frequencies of rare variants
lead to weak correlations with tagSNPs. As a result, GWAS
are low-powered to detect rare variants. Consequently,
different approaches are required for the detection of rare
variants. At present, sequencing of candidate genes or
entire genomes seems to be a good strategy to identify rare
variants as claimed in Li and Leal [2009].

Next-generation sequencing (NGS) or massively parallel
sequencing technologies (454FLX, Illumina/Solexa Genome
Analyzer, ABI SOLiD. See Mardis [2008] for a review) have
brought immense evolution in biological research and
increased our biological knowledge underlying diseases.
New sequencing technologies have enabled the process of
millions of sequence reads of short lengths (35–250 bp,
depending on the platform) at a time. Only one or two
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instrument runs may be required to complete a sequencing
experiment. This technological breakthrough has given rise
to an international research consortium, 1,000 Genomes
Project (1,000GP), where the scientists will sequence the
genomes of at least 1,000 people from different ethnic groups.

NGS technologies have opened up great opportunities
for discovering more variants in the human genome.
Whole exome sequencing technology is emerging as an
effective way of capturing a patient’s functional rare
variants. However, whole genome or exome sequencing
cost is still high although researchers are endeavoring to
bring down the cost of sequencing a whole genome as low
as $1,000 [Service, 2006]. In addition, thousands of
genomes need to be sequenced in order to find rare SNPs
with MAFs �1%. Consequently, a cost-effective procedure
is needed to most efficiently employ the NGS methods to
identify rare variants. The issues on a practical limit of cost
and labor could be resolved by the use of pooling the
genomic DNAs from a relatively low number of indivi-
duals. DNA pooling has been used to reduce the cost of
large-scale association studies based on high-throughput
genotyping technologies. [For reviews see Norton et al.,
2004; Sham et al., 2002.] For GWAS, the use of DNA
pooling has been considered as a cost-efficient initial
screening tool to detect candidate regions in a two-stage
design. In the first stage, a case-control association test for
each marker is performed based on the estimated allele
frequencies from the case and control pools. In the second
stage, the candidate markers selected from the first stage
are re-evaluated by individual genotyping [Zhao and
Wang, 2009; Zou and Zhao, 2004; Zuo et al., 2006]. As
suggested by Out et al. [2009], the use of a pooled DNA
sample for targeted NGS also can be an attractive cost-
effective method to identify rare variants in candidate
genes. In their paper, a Poisson model was employed to
calculate the mis-detection probability and similarly the
power to detect a variant. In the calculation of the mis-
detection probability, they did not take into account the
dependency among incorrect bases. Moreover, the pro-
posed statistical power represents the probability of
identifying a variant present in a given pooled sample so
that the probability of including the variant in the sample
is not included in the power calculation. However, it is
very important to reflect the sampling variation in the
power calculation for pooling designs. In this paper,
considering both issues, we investigate the detection
probability of a variant in DNA pooling for NGS, and
the optimal pooling designs.

This paper is organized as follows. In the next section,
we will describe how to estimate the detection probability
of a variant with a MAF p at a coverage depth C in a DNA
pool of k individuals. Due to technical variations in DNA
pooling and exon capturing, the contribution of each
individual may not be equal. Therefore, we will discuss
how to evaluate the average detection probability allowing
individual variations in the pooled DNA sample. We
illustrate these points with a real sequencing data set in the
subsequent section. We conclude this paper with some
technical details discussed in Appendix A.

METHODS

Suppose that a pooled DNA sample j is constituted by

combining DNA from k individuals. Let wj ¼ ðw
j
1; . . . ;w

j
kÞ

denote the proportional contributions of the k individuals in
the jth pooled DNA sample to be analyzed by a NGS

platform. Therefore,
Pk

i¼1 w
j
i ¼ 1 and each w

j
i � 0. We

assume that wj is invariant to genome positions. As detailed
later, from the comparison between genotyping results and
sequencing results from an empirical study, the contribution
of each individual to resulting base reads can be estimated as
shown in Appendix A.2 and empirical data suggest that the
variations can be substantial across individuals. Moreover, in
a practical pooling study, those contributions are often
unknown. The objective of this paper is to assess how likely
a variant with a MAF p can be detected from a pool of k
individuals when the sequencing coverage depth at the
position is C. As shown later in this section, wj is a key
component in the calculation of the detection probability of a
variant. In the following discussion, we call a variant
detected if at least T sequence reads carry this variant.

First, we begin with the assessment of the detection
probability of a rare variant in the simplest setup. In this
case, the contribution is assumed to be equal across the
individuals in a pooled sample. Suppose that there is a
total of 2k chromosomes among the k individuals. Let N
denote the number of chromosomes among them carrying
the rare variant. Then the detection probability of a variant
with a MAF p can be calculated as follows:

PðdetectjpÞ ¼
X2k

n¼0

PðdetectjN ¼ nÞPðN ¼ njpÞ

¼
X2k

n¼0

XC

j¼T

C
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where n is the number of chromosomes carrying the
variant in a sample, T is the threshold to call the presence
of the minor allele in the sample, C is the coverage depth,
and qn ¼ n=ð2kÞ for n ¼ 0; . . . ; 2k:

Procedure 1 Sample-Specific Detection Probability

[initialization]
Specify/Define the following parameters
� minor allele frequency p (0opo1)
� sequencing coverage depth C (C40)
� threshold for the detection T (T40)
� estimates for individual contributions ŵj ¼ ðŵ

j
1; . . . ; ŵ

j
kÞ

from genotype and sequencing data

[main]
� Let Xi denote the number of chromosomes with a

variant carried by individual i ði ¼ 1; . . . ; kÞ. Then there
are 3k distinct configurations of Xj ¼ ðX

j
1; . . . ;X

j
kÞ.

� Let psam 5 0.
for j 5 1 to 3k

1. Compute p̂j ¼ ŵj � Xj=2 ¼
Xk

i¼1
ŵ

j
iX

j
i=2.

2. Compute pconf ¼ p

Xk

i¼1
X

j
i ð1� pÞ

2k�

Xk

i¼1
X

j
i

3. Compute pdetect ¼ PðY � TÞ, where
Y � BinðC; p̂Þ.

4. psam  psam1pdetect � pconf

end

return psam

Generally, for each sample j, the individual contribu-
tions may not be equal, that is, the wj may differ. From this
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perspective, it is desirable to evaluate the detection
probability under a specific distribution for w when it
varies. The randomness of the individual contributions in
a pooled sample can be represented by the specification
of a prior distribution for w. A natural choice for
this distribution of w is the Dirichlet distribution
with hyperparameters a ¼ ða1; . . . ; akÞ, where ai40 for
i ¼ 1; . . . ; k. Due to exchangeability among the sampled
individuals, we may assume a1 ¼ . . . ¼ ak ¼ a. For the
hyperparameters a, we may either specify a hyperprior
distribution or estimate a empirically. For a specific a, we
can use Procedure 1 to estimate the detection probability.
To get a sense of the a value in practice, we have gathered
empirical data to estimate a. In Appendix A, we describe
the empirical data and the estimation procedure. We will
call this estimator â as the pseudo maximum-likelihood
estimator (PMLE) or the pseudo method of moments
estimator (PMME). See Appendix A.3 for more details. We
illustrate how to compute the average detection prob-
ability in Procedure 2.

Procedure 2 Average Detection Probability

[initialization]
Specify/Define the following parameters
� minor allele frequency p (0opo1)
� sequencing coverage depth C (C40)
� threshold for the detection t (t40)
� estimates for hyperparameters, â

[main] Let pave 5 0.
for i 5 1 to M

1. Generate ~w from a Dirichlet distribution with â.
2. Perform Procedure 1 to calculate the matching

sample-specific detection probability p�.
3. pave  pave1 1

M p�.

end

return pave.

Up to this point, the estimation of the detection
probability is based on the use of a single lane. However,
if L lanes are used to analyze independent samples, then
the detection probability can be computed as follows:

Pðdetectjp; LÞ ¼ 1� ð1� PðdetectjpÞÞL; ð2Þ

where P(detect|p) is calculated by Equation (1) or
Procedure 2.

RESULTS

EQUAL CONTRIBUTIONS

We calculate the detection probability for a given
number of individuals in a pooled sample for a given
coverage depth, threshold, and MAF. Therefore, the
optimal number of individuals in a pooled sample can
be determined in terms of the detection probability. In
addition, we study the number of lanes required to reach a
certain level of statistical power to identify a rare variant.
Since our interest lies in the identification of a rare variant,
we choose 0.005, 0.01, and 0.025 for MAFs in our analysis.
We use several coverage depths C 5 20, 30, 40, and 50 and
a fixed threshold, T 5 3. The choice of a threshold T is
discussed in more details in the Discussion and Appendix
sections. As shown in Figure 1, the detection probability

initially increases with more individuals in a pool but then
decreases from a certain point. This phenomenon can be
explained by using Equation (1). We focus on rare variants
in this manuscript, and only a small number of chromo-
somes among 2k chromosomes tend to carry the variant in
a given pooled sample for such variants even when the
pool size k increases. For example, consider a variant of a
MAF equal to 0.01 and the pool size k ¼ 1; . . . ; 30. The
probability that the number of chromosomes carrying the
variant is at most 2 is above 97% for k ¼ 1; . . . ; 30.
Therefore, if pools have the rare variant, most of the pools
will have the variant on 1 or 2 chromosomes among the 2k
chromosomes. In addition, it is more likely that only one
chromosome holds the variant in those pools. As a result,
Equation (1) may be approximated by PðdetectjN ¼ 1Þ
PðN ¼ 1jpÞ. As the pool size k increases, the sampling
probability P(N 5 1|p) increases (due to the presence of
more chromosomes), whereas the conditional detection
probability P(detect|N 5 1) decreases (due to the thresh-
old set to declare the presence of a rare variant). These two
factors counter balance each other and lead to an optimal
number of samples in a pool. For example, if the pool size
k increases from 3 to 30, the probability that only one
chromosome carries the variant among 2k chromosomes
increases about eightfold from 0.03 and 0.22. However,
when the coverage is C 5 20 and the threshold is T 5 3, the
detection probability conditional on having only one
chromosome harboring the variant decreases much more
significantly from 0.67 to 0.004 since the proportion of the
chromosomes in the pool carrying the variant drops from
1/6 to 1/60, making it more difficult to detect the rare
variant. It is also interesting to note that the optimal
numbers of individuals in a pooled sample is somewhat
invariant to MAFs. However, significantly more lanes and
subsequently more individuals are required to detect a
variant of a lower MAF to achieve a certain level of
statistical power. Table I also shows that the total number
of individuals is about the same across different options
for the same MAF.

UNEQUAL CONTRIBUTIONS

For the unequal contribution case, we first need to
consider the distribution of the unknown contribution wj

for a given sample j. The estimation of w from sequencing
and genotyping information is described in Appendix A.2.
The proposed estimation approach for w was applied to a
sample data (For the data description, see Appendix A.1.),
and our estimate ŵ is (0.1380, 0.0836, 0.1142, 0.0188, 0.1805,
0.1364, 0.1617, and 0.1667). It is apparent that there were
less contributions of individuals 2 and 4 to the pool.

Assuming that the w are drawn from a Dirichlet
distribution, we first explore the effect of a on the optimal
number of individuals in a pooled sample. We select a set
of different values for the hyperparameter, a5 0.25, 0.5,
0.75, 1.2, and 5. We know that the variability for each
individual contribution decreases with an increase in the
hyperparameter a in the Dirichlet distribution. In this
sense, w should be generated more closely around the
mean 1/k for larger a. Consequently, it can be seen in
Figure 2 that as a increases, the matching optimal number
of individuals gets smaller and closer to the one based on
the equal contributions. It can be also found that the
average detection probability increases with the magni-
tude of a.
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Now, we are interested in the estimation of the
hyperparameter a based on ŵ from our empirical data.
As described in Appendix A.3, we can estimate the
hyperparameter a by PMLE or PMME. The estimates are
2.89 and 4.76, respectively, based on PMLE and PMME. By
utilizing these two estimates of a, average detection
probabilities are calculated with various sequence read
coverage depths C 5 20, 30, 40, and 50 and MAFs
P 5 0.005, 0.01, and 0.025. Like the equal contribution
case, we investigate how many individuals and/or lanes
should be used to best identify a rare variant with a fixed

coverage depth based on the given estimates. From
Figure 3 and Table II, we can find patterns similar to the
one for the equal contribution case. However, the results
show that more individuals per lane and more lanes are
required in order to obtain a given level of statistical
power compared to the equal contribution case. In
addition, the resulting detection probabilities are shown
to decrease 7–10% in comparison with the ones for the
equal contribution case (Tables I and II).

DISCUSSION AND CONCLUSION

In this paper, we have considered the detection
probability of a variant when a NGS platform is utilized
to identify a rare variant through DNA pooling. Through
the use of an empirical data set, we inspected the number
of lanes and individuals per lane needed to be able to
locate a rare variant with a given chance. In this
examination, a number of interesting properties are
uncovered. First, increasing the number of individuals
makes the detection probability higher initially up to a
certain point and afterward the detection probability
decreases with the number of individuals. Therefore, we
can determine the optimal number of individuals in a
single lane for a given MAF, coverage depth, and thresh-
old. Second, the optimal number of individuals per lane is
very close across MAFs but many more lanes are needed

TABLE I. The optimal numbers of individuals per lane
for a given coverage depth based on the uniform
individual contributions

C p Indv Prob Lane Total C p Indv Prob Lane Total

0.005 3 0.0200 80 240 0.005 4 0.0293 55 220
20 0.010 3 0.0397 40 120 30 0.010 4 0.0580 27 108

0.025 3 0.0973 16 48 0.025 5 0.1408 11 55

0.005 6 0.0390 41 246 0.005 7 0.0482 33 231
40 0.010 6 0.0768 21 126 50 0.010 8 0.0947 17 136

0.025 6 0.1836 8 48 0.025 8 0.2247 7 56

Indv, the optimal number of individuals; Prob, detection probability;
Lane, the minimum number of lanes required for 80% power; Total,
the total number of individuals required for 80% power.
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Fig. 1. The optimal numbers of individuals on detection probabilities of the variants of P 5 0.005, 0.01, and 0.025 with C 5 20, 30, 40, and
50, threshold T 5 3, and equal contributions. The number on each curve is the optimal number of individuals.
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for the identification of a rarer variant at a given level of
detection probability. For a higher coverage depth C and
MAF p, the optimal number of individuals increases.

As introduced at the beginning of this article, Out et al.
[2009] also carried out the analysis of detecting rare
variants. We found that there are a number of differences
in their analysis compared to our approach. First, they
defined the mis-detection probability by

Pðmis-detectjCÞ ¼ 1�
XT�1

k¼0

e�llk

k!
; ð3Þ

where l is the mis-sequencing rate, that is, l5 C � p when C
and p denote the local coverage depth and sequencing
error rate, respectively. Due to sequencing errors, it
is possible to have up to three incorrect minor alleles

among which there are the dependency. Unlike the
calculation of the mis-detection probability shown in
Appendix A.4, Equation (3) cannot take the dependency
into account. Second, they focused on the identification of
a variant present in a given pooled sample in their power
analysis. However, when we collect samples for DNA
pooling, we cannot guarantee that those samples include
a specific variant. In this sense, it is crucial to consider
the sampling variation in the power calculation as can
be seen in Equation (1). Last but not the least, the power
calculation in our work can take into account the
variations of individual samples in a pooled sample by
making the use of results from microarray-based geno-
typing and NGS DNA sequencing, whereas their power
calculation is based on the assumption that individual
contributions are equal.

Fig. 2. The optimal numbers of individuals on average detection probabilities of variants of P 5 0.005, 0.01, and 0.025 with coverage
depths C 5 20, 30, and 40 and threshold T 5 3, and the Hyperparameter a 5 0.25, 0.5, 0.75, 1,2, and 5. The number on each curve is the

optimal number of individuals.
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In our analysis, a very simple model is employed
without taking into account the variations such as
sequencing errors. Sequencing errors were estimated to
be between 1 and 3% [Illumina, 2009; Richter et al., 2008].
The sequencing error rates are currently expected to be
between 0.5 and 1% due to the advance in sequencing
technologies. This level of sequencing errors will add very
little effects to the results on detection probabilities
discussed above.

In this article, we have considered a threshold of 3
for the detection of a rare variant. This is a somewhat
conservative threshold as the probability that a non-
existent variant is detected three times or more at the
discussed coverage depth is very small at an overall

sequencing error rate of 0.5–1% if the errors were to occur
independent of each other. We choose to err on the
conservative side due to potential non-independence of
the sequencing errors and the large number of bases
investigated. At an overall sequencing error rate of 1% and
a coverage depth of C 5 20, 30, 40, and 50, assuming a base
has an equal chance to be mis-sequenced to one of the
three other bases, the chance that an incorrect base is
observed twice (three times or four times) or more is
shown in Table IV and Figure 4. The results show that the
use of threshold of 3 controls those mis-detection
probabilities at the level of 0.2% across given coverage
depths of C 5 20, 30, 40, and 50. In order to control the mis-
detection probability more stringently, a larger threshold

Fig. 3. The optimal numbers of individuals on average detection probabilities of variants of P 5 0.005, 0.01, and 0.025 with coverage

depths C 5 20, 30, and 40 and threshold T 5 3. The hyperparameters 2.89 and 4.76 are estimated by the PMLE and PMME, respectively.
The number on each curve is the optimal number of individuals. PMLE, pseudo maximum-likelihood estimator; PMME, pseudo

method of moments estimator.
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than T 5 3 may be preferred. As shown in Figure 4, the
optimal numbers of individuals in a pooled sample is still
similar across different MAFs for given coverage depth

and larger threshold. These results also suggest that
controlling the mis-detection probability more stringently
requires the use of a smaller pooled size. Additionally, in
Appendix A.5, we also briefly describe how to construct a
random threshold for yielding an exact mis-detection
probability for a given significance level and perform our
analysis. See Appendix A for more details. To summarize,
our study has shown that DNA pooling can be a very
cost-effective approach for detecting rare variants, and the
optimal number of individuals in a pool is robust to the
MAFs of rare variants at a specific coverage depth. This
is a very desired property as the rare variants to be
discovered have unknown frequencies. Moreover,
DNA pooling can also be a very effective approach for
genetic association studies, and this will be explored in our
future work.
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TABLE II. The optimal numbers of individuals per lane
for a given coverage depth based on MLE and MME

MLE (a5 2.89) MME (a5 4.76)

C p Indv Prob Lane Total C p Indv Prob Lane Total

0.005 3 0.0180 89 267 0.005 3 0.0183 89 267
20 0.010 3 0.0357 45 135 20 0.010 3 0.0368 43 129

0.025 3 0.0868 18 54 0.025 3 0.0904 17 51

0.005 5 0.0259 62 310 0.005 5 0.0268 60 300
30 0.010 5 0.0515 31 155 30 0.010 5 0.0539 30 150

0.025 6 0.1265 12 72 0.025 5 0.1307 12 60

0.005 7 0.0340 47 329 0.005 6 0.0356 45 270
40 0.010 7 0.0676 23 161 40 0.010 7 0.0703 23 161

0.025 8 0.1661 9 72 0.025 7 0.1710 9 63

0.005 10 0.0423 38 380 0.005 9 0.0442 36 324
50 0.010 10 0.0838 19 190 50 0.010 8 0.0872 18 144

0.025 12 0.2046 8 96 0.025 11 0.2100 7 77

Indv, the optimal number of individuals; Prob, detection probability;
Lane, the minimum number of lanes required for 80% power; Total,
the total number of individuals required for 80% power. MME,
method of moments estimator; MLE, maximum-likelihood estimator.

Fig. 4. The mis-detection probabilities against thresholds (upper left) and optimal pool sizes for variants of MAFs P 5 0.005, 0.01, and

0.025 with the coverage depth C 5 20, 30, and 40. MAF, minor allele frequency.
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APPENDIX A

A.1. DATA DESCRIPTION

For our analysis, we use an empirical data set from a
pooled sample consisting of the genomic DNAs from eight
individuals. Exome DNA sequencing was performed by
first capturing the exome using NimbleGen 2.1M human
exome array, followed by Illumina genome analyzer
sequencing. The resulting reads are 75 bp paired-end reads.
For the alignment and mapping of sequencing reads, we
used Bowtie. The genomic DNAs from the eight individuals
were also genotyped on Illumina 610-Quad (San Diego, CA)
SNP array. As a result, both base counts and genotypes are
available for 11,312 positions in the exome.

A.2. ESTIMATION OF THE CONTRIBUTIONS
OF INDIVIDUALS IN A POOLED SAMPLE

A common approach to evaluating the accuracy of NGS
SNP detection is to compare the sequencing results
with those from microarray-based genotyping platforms.
Microarray-based genotyping information can be also
utilized in the assessment of the rate of discovery for a
variant from a NGS technology. If there is genotyping
information available for all the individuals in the pooled

DNA sample j, the individual contributions in the sample
can be estimated in the following way. Let x

j
i;l denote

the proportion of the major allele at a DNA position l ðl ¼
l1; . . . ; lNÞ for the ith individual so that x

j
i;l ¼ 0; 0:5; or1. Then

f
j
l ¼ w

j
1x

j
1;l1w

j
2x

j
2;l1 � � �1w

j
k�1x

j
k�1;l1w

j
kx

j
k;l; ðA:1Þ

where 0 � w
j
i � 1,

Pk
i¼1 w

j
i ¼ 1, and f

j
l is the expected major

allele frequency of the position l acquired by sequencing the
given pooled sample j ði ¼ 1; . . . ; kÞ. Based on results from
microarray-based genotyping and DNA sequencing, we can
formulate a quadratic programming optimization as follows:

minimize
o

jjXwj � yjj2

subject to 0 � oj
i � 1; i ¼ 1; . . . ; k;

Pk
i¼1

oj
i ¼ 1;

ðA:2Þ

where jj � jj is the l2 norm, x
j
li
¼ ðx

j
1;li
; . . . ; x

j
k;li
Þ is the i-th row

of X, and y ¼ ðyl1 ; . . . ; ylN Þ
T is the vector of sample major

allele frequencies from the NGS method. Note that we
impose the constraint to ensure the non-negativity of the
individual contributions to the overall pool.

A.3. ESTIMATION OF THE HYPERPARAMETER
FOR A DIRICHLET DISTRIBUTION

The (pseudo) maximum-likelihood estimate (afterward
MLE) â cannot be expressed in closed-form but can be
obtained by making the use of an iterative scheme such as
Newton-Raphson method [Minka, 2009]. Here, we briefly
describe Newton-Raphson procedure for the MLE â; The
probability density for the Dirichlet distribution with
parameters a ¼ ða; . . . ; aÞ at w ¼ ðw1; . . . ;wkÞ is

fðwÞ ¼
GðkaÞ

½GðaÞ	k
Yk

i¼1

wa�1
i ; ðA:3Þ

where wi40 for each i ¼ 1; . . . ; k and
Pk

i¼1 wi ¼ 1. If
w1; . . . ;wm were available, then the log-likelihood could
be written as follows:

logðw1; . . . ;wmjaÞ ¼ m log GðkaÞ �mk log GðaÞ

1ða� 1Þ
Xk

i¼1

Xm

j¼1

log w
j
i:

Note that for unknown w1; . . . ;wm, w
j
i will be replaced by

ŵ
j
i in this step. The first and second derivatives of the log-

likelihood are given by

gðaÞ ¼
d logðw1; . . . ;wmjaÞ

da

¼ mkCðkaÞ �mkCðaÞ1
Xk

i¼1

Xm

j¼1

log w
j
i;

and

g0ðaÞ ¼ mk2C0ðkaÞ �mkC0ðaÞ;

respectively, where CðxÞ ¼ d logGðxÞ=dx. The Newton-
Raphson method would be performed iteratively by

anew ¼ aold �
gðaÞ
g0ðaÞ

;

until jaold � anewjoe for a precision e.
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Our second estimator is based on the method of
moments. Under the assumption a1 ¼ � � � ¼ ak ¼ a, for
each i ¼ 1; . . . ; k,

Var½Wi	 ¼
1

k
1�

1

k

� �
1

ka11
¼ s2;

so that

a ¼
k� 1

k2
� s2

� �
1

s2k
: ðA:4Þ

The MME (PMME) can be determined by replacing s2 by
the sample variance of all w’s (ŵ’s).

For the comparison of the above two estimators, we
performed a simulation with a5 2, k 5 8, and 20,000
iterations. As shown in Table III, every pair in those
summary statistics are very comparable even though the
median and mean for the MME are closer to the true a
than those for the MLE. We also conducted simulations
with different a and k and found similar patterns.

A.4. MIS-DETECTION PROBABILITIES DUE
TO SEQUENCING ERRORS

In this section, we describe the calculation of mis-
detection probabilities due to sequencing errors. Suppose
that the overall sequencing error is 1%. Let X1 and Xi ði ¼
2; 3; 4Þ denote the number of a true base and the number of
one of three incorrect bases at a coverage depth C,
respectively. Under the assumption that a base has an equal
chance to be mis-sequenced to one of the three incorrect
bases, ðX1;X2;X3;X4Þ follows a multinomial distribution
with p1 5 0.99 and p2 5 p3 5 p4 5 1/300. Note that

Pðx1; x2; x3; x4Þ ¼ PðX1 ¼ x1;X2 ¼ x2;X3 ¼ x3;X4 ¼ x4Þ

¼
n!

x1!x2!x3!x4!
px1

1 px2

2 px3

3 px4

4 ;

where n ¼
P4

i¼1 xi. Then the mis-detection probability for a
threshold of 2 is calculated as follows:

Pðmis-detectjCÞ ¼ 1� ½PðC; 0; 0; 0Þ1PðC� 1; 1; 0; 0Þ

1PðC� 1; 0; 1; 0Þ1PðC� 1; 0; 0; 1Þ

1PðC� 2; 1; 1; 0Þ1PðC� 2; 1; 0; 1Þ

1PðC� 2; 0; 1; 1Þ1PðC� 3; 1; 1; 1Þ	;

where C is a coverage depth. We can also compute the
mis-detection probability for TZ3 in a similar way. The mis-
detection probabilities for T 5 2, 3, and 4 can be found in
Table IV.

A.5. RANDOM THRESHOLDS FOR THE MIS-
DETECTION PROBABILITY OF 0.01%

Based on Table IV, we construct a random threshold for
controlling type I errors of 0.01% as follows: For
U � Unif½0; 1	,

TðUÞ ¼ t1 � IðU�wÞ1t2 � IðU4wÞ; ðA:5Þ

where t1 5 3, t2 5 4, and w are so chosen as to satisfy the
corresponding type I error is equal to 0.01% at a coverage
depth C. See Tables V and VI for more details.

TABLE III. Summary statistics for 20,000 MMEs and
MLEs for a 5 2 and k 5 8

MME MLE

1st Qu. 1.3553 1.5934
Median 1.9821 2.1923
Mean 2.4394 2.7312
3rd Qu. 2.9359 3.1932
Bias 0.4394 0.7312
Var 3.6335 4.2745

MME, method of moments estimator; MLE, maximum-likelihood
estimator.

TABLE IV. The probabilities that an incorrect base is
observed twice (three times/four times) or more with a
coverage depth of C 5 20, 30, 40, and 50 based on the
overall sequencing error rate of 1%

C 5 20 C 5 30 C 5 40 C 5 50

Z2 0.006075 0.013573 0.023730 0.036307
Z3 0.000121 0.000422 0.001001 0.001936
Z4 0.000002 0.000009 0.000031 0.000075

TABLE V. The specification of random thresholds for a
coverage depth of C 5 20, 30, 40, and 50 controlling the
type I error rate 0.01%

C 5 20 C 5 30 C 5 40 C 5 50

w 0.8235 0.2203 0.0711 0.0134
E(T) 3.1765 3.7797 3.9289 3.9866

TABLE VI. The optimal number of individuals per lane
for given coverage depth based on the uniform
individual contributions

C p Indv Prob Lane Total C p Indv Prob Lane Total

0.005 3 0.0188 85 255 0.005 3 0.0235 68 204
20 0.010 3 0.0373 43 129 30 0.010 3 0.0466 34 102

0.025 3 0.0917 17 51 0.025 3 0.1132 14 42

0.005 4 0.0302 53 212 0.005 5 0.0370 43 215
40 0.010 4 0.0596 27 108 50 0.010 5 0.0729 22 110

0.025 4 0.1437 11 44 0.025 5 0.1741 9 45

Indv, the optimal number of individuals; Prob, probability; Lane,
the minimum number of lanes required for 80% power; Total, the
total number of individuals required for 80% power.
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