
29Bioinformatics and Biology insights 2015:9(s1)

Introduction
High-throughput sequencing technologies are being widely 
applied in biomedical research. Since the initial application, it 
has expedited tremendous advances in the characterization and 
quantification of genomes, epigenomes, and transcriptomes 
over the last few years. Next-generation sequencing (NGS) 
technology is free from many of the confines dictated by pre-
vious technologies, such as the bias due to the probe selection 
in array technology, cross-hybridization background, and sig-
nal saturation-induced detection dynamic range limitation.1,2 
Moreover, this high-throughput technology produces large 
and complex datasets at single nucleotide resolution, and 
the cost is continuously dropping so that it offers the possi-
bility of investigating the molecular biology genome widely 
in a far more precise and comprehensive manner as has been 
previously achieved.

RNA-seq is the set of experimental procedure that gener-
ates cDNA sequences derived from the entire RNA molecules, 
followed by library construction and massively parallel deep 

sequencing. Gene expression is known to be time-, cell-type-, 
and stimulus-dependent, and many loci are only expressed 
under very specific conditions. In fact, the genome-sequencing 
project has revealed numerous open reading frames encoding 
“hypothetical” genes, for which expression patterns are not 
established yet.3,4 RNA-seq allows quantifying the abundance 
level or relative changes of each transcript during defined devel-
opmental stages or under specific treatment conditions. Also, 
RNA-seq allows for analysis of the transcriptome in a rather 
unbiased way, with single base pair resolution, a tremendous 
dynamic detection range (.8,000 fold), and low background 
signals.5 In contrast to hybridization-based technologies, it is 
not limited to the interrogation of selected probes on an array 
and can be also applied in species, for which the whole refer-
ence genome is not assembled yet.

RNA-seq is not only a tool for quantitative assessment 
of RNA but can also be exploratory. Only until recently, it 
was appreciated that 85% of the human genome can be tran-
scribed, albeit only 3% of the genome encodes protein-coding 
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genes.6 Thus, RNA-seq has been instrumental to catalog the 
diversity of novel transcript species including long non-coding  
RNA, miRNA, siRNA, and other small RNA classes  
(eg, snRNA and piRNA) involved in regulation of RNA 
stability, protein translation, or the modulation of chroma-
tin states.7,8 For instance, RNA-seq has been used to dis-
cover enhancer RNA, a class of short transcript directly 
transcribed from the enhancer region, which contributes to 
our knowledge of epigenetic gene regulation.9,10 In addition, 
RNA-seq can give information about transcriptional start 
sites, revealing alternative promoter usage, information about 
mRNA isoforms derived from alternative splicing, and pre-
mature transcription termination at the 3’ end, which is criti-
cal from mRNA stability.11–15 Most recently, RNA-seq was 
used to study biological problems including precisely locat-
ing regulatory elements.16,17 RNA-seq information can also 
identify allele-specific expression, disease-associated single  
nucleotide polymorphisms (SNP), and gene fusions contrib-
uting to our understanding about disease causal variants in 
cancer.18–21 Furthermore, RNA-seq can provide information 
about the transcription of endogenous retrotransposons and 
other parasitic repeat elements that may influence the tran-
scription of neighboring genes or may result in somatic mosa-
icism in the brain.22 Finally, single-cell RNA-seq analysis has 
been widely applied to study the cellular heterogeneity and 
diversity in stem cell biology and neuroscience.23–25

While RNA-seq technology is considered unbiased, it is 
important to note that the preparation and fragmentation of 
RNA and the library construction (which includes size selec-
tion) can be biased.5 This bias may be undesired or unfavor-
able; for example, the use of oligo (dT) primers in the first 
strand synthesis enriches poly (A) mRNA, which is useful to 
study expression of most protein coding genes, but misses on 
canonical histones,26 some histone variants, and subclasses of 
non-coding RNA.27 Strand-specific sequencing retains the 
orientation of the original RNA transcript, which may be 
critical to identify antisense or non-coding RNA.28

The interpretation of the NGS datasets requires sophis-
ticated and powerful computational programs. The RNA-seq 
data generation is an ever-evolving process, which includes 
development in sequencing technology, experiment design, 
and algorithm development. Accompanied with this, com-
putational tools with varying performances are emerging 
constantly. A wealth of mature tools exists to meet the basic 
requirements of  RNA-seq data analysis, for instance, the 
quality assessment and reads mapping. Meanwhile, challenges 
remain that require comprehensive solutions, such as differen-
tial gene expression analysis, as well as the detection of fusion 
genes. Instead of describing each software, we outline in this 
study the available tools to perform the analysis of data pre-
processing, differentially gene expression (DGE), alternative 
splicing, variants detection and allele-specific expression, path-
way analysis, co-expression network analysis and highlight the 
essential principles of computational methods in the RNA-seq 

data analysis, describe the challenges associated with the 
RNA-seq application, and discuss examples that represent the 
most advances in the transcriptome characterization.

rNA-seq workflow
An overview of a typical RNA-seq workflow is outlined in 
Figure 1. Three main sections are presented: the Experimental 
Biology, the Computational Biology, and the Systems Biology. 
The experimental part includes the methods’ choice of RNA 
collection, first strand synthesis, and library construction, 
resulting in millions of short reads from the NGS sequencer. 
Multiple platforms (Table 1) have been applied for the RNA-seq 
including sequencing-by-synthesis approach Illumina GA IIx 

RNA extraction

RNA fragmentation and reverse transcription

Library construction and sequencing 

Experimental
biology

Millions of short reads

Quality control and preprocessing

Alignment to reference genome or de novo assembly

Indexing to coding regions/exons/junctions 

Computational
biology 

Pathway analysis or
co-expression network

Transcriptome
structure assay

Integration analysis with
epigenomic/proteomic data

Enriched categories test

Biological insights

Systems
biologyDEG analysis

figure 1. overview of the typical rna-seq pipeline. three main sections 
are presented: the Experimental Biology, the computational Biology 
and the systems Biology. the pipeline starts from the experimental 
preparation and come with the work flow to the sequencing and analysis 
steps as the arrows point from step to step.
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and HiSeq,29,30 Applied Biosystems SOLiD,31 Roche 454 Life 
Science,32 semi-conductor technology-driven Ion torrent Per-
sonal Genome Machine,33 single molecule real-time PCR 
machine PacBio,34 and nanopore technology-driven por-
table device MinION, and PromethION (http://allseq.com/
blog/minion-and-promethion-oxford-nanopore-s-present- 
and-future).

RNA preparation methods may vary for different kinds 
of sequencing platforms, RNA subtypes, and sequencing pur-
poses. However, sample quality is always the determinant of 
acquiring qualified data and deriving biological insights from 
unbiased analysis. Poly-A-selection of sufficient mRNA is 
well used in a variety of whole-transcriptome analysis includ-
ing gene expression, alternative splicing, and variations 
detection.35,36 While for single cell sequencing, molecular 
labeling, and random sequencing, the labeled molecules on 
Illumina platform can achieve remarkable mRNA capture 
efficiency.36 With more RNA-seq applications in clinical 
samples, formalin-fixed paraffin-embedded (FFPE) tissue 
samples became invaluable recourse for transcriptomic stud-
ies. Ribo rRNA depletion is the preferred method for archival 
and long-aged FFPE samples.37

The raw reads served as starting material of the second 
part, the computational biology. First, technical and biologi-
cal contaminations were removed from preprocessing steps, 
followed by mapping the qualified reads to the genome or 
transcriptome. The mapped reads for each sample were sub-
sequently indexed into gene-level, exon-level, or transcript-
level to assess the abundance of each category depending on 
the experimental purpose. The summarized data were then 
assessed by statistical models of differentially expression gene 
list and alternative splicing events, or regulatory mechanisms 
were evaluated via integration analysis with other datasets 
such as epigenomic or proteomic data. Finally, pathway or 
network level analyses were implemented to gain biological 
insight through the systems biology approaches.

data Preprocessing
Quality assessment. Since RNA-seq is a complicated, 

multiple-step process involving sample preparation, frag-
mentation, purification, amplification, and sequencing, it is 
not straightforward to identify and quantify all RNA species 
from the reads sequenced. Hence, quality assessment is the 
first step of the bioinformatics pipeline of RNA-seq, and also, 
it is important as a step before analysis. Often, it is necessary 
to filter data, removing (trimming) low-quality sequences or 
bases adaptors, contaminations, or overrepresented sequences 
to ensure a coherent final result. An array of tools are available 
for this purpose with reads quality visualized graphically such 
as FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/
fastqc), HTQC,38 as listed in Table 2. Recently, more flexible 
and efficient preprocessing tools were developed: Trimmo-
matic was developed to remove adapters and scan every read 
with a 4-base sliding window and trim the lower-scored bases 

and low-quality N bases to enhance the quality of reads39 and 
HTSeq to depict the base calling and evaluate the base quality 
at position-based way as well as the overall read features.40

Before alignment to the reference genome, RNA-seq 
data can be further preprocessed to meet expectations in the 
next sequencing mapping steps. There are multiple tools avail-
able for this purpose, for example, BBMerge from BBMap 
package (http://sourceforge.net/projects/bbmap/) merges 
paired reads based on overlap to create longer reads and cre-
ates an insert-size histogram. FLASH41 combines paired-end 
reads that overlapped and converts them to single long reads. 
It is also a good practice to assess the RNA-seq data quality 
after the preprocessing procedure, and there are packages, for 
example, RSeQC package, to comprehensively evaluate the 
reads that will go to analysis.42

reads mapping. Once high-quality data are obtained 
from preprocessing, the next step is to map the short reads 
to the reference genome or to assemble them into contigs and 
align them to the reference genome. This procedure refers to the 
classic bioinformatics problem of discovering the most reliable 
original sources of a large scale of short DNA sequences from 
the genome in a speed- and memory-efficient manner.43,44 
There are many popular bioinformatics programs that can be 
used for this purpose, including ELAND (http://support.illu-
mina.com/help/SequencingAnalysisWorkf low/Content/
Vau lt / Informat ics/Sequencing_ Ana lysis/CASAVA /
swSEQ _mCA_ReferenceFiles.htm), SOAP,45 SOAP2,46  
MAQ ,47 Bowtie,48 BWA,49 ZOOM,50 STAR,51 etc. Com-
parable analyses on real data have been done to assess most 
mapping tools.52 These programs are typically suitable for 
reads that are not located at the poly (A) tails or exon-intron 
splicing junctions. Poly (A) tails can be easily identified by the 
presence of multiple As or Ts, and a partial junction library 
that contains the known junction sequence has been com-
piled to allow the alignment of difficult mapping reads.23,53 
From a different point of view, the reads that locate at the 
exon–intron boundaries are helps with the determination 
of the alternative splicing pattern, where advent RNA-seq 
promotes the development of new generation of slice-align-
ment software such as BLAT,54,55 TopHat,56,57 GEM,58  
and MapSplice.59

Another problem in reads mapping is that of polymor-
phisms, which occur when sequence reads align to multiple 
locations of the genome. Polymorphisms are especially com-
mon for the large and complex transcriptomes. For lower 
repetitive reads, one can employ the solution of assigning the 
reads to multiple locations proportionally based on the neigh-
boring unique reads.31,53 However, for the short reads that 
have a very high copy number and repetitive sequences, poly-
morphism is still a great challenge. A longer read sequencer 
such as the Roche 454 or PacBio sequence analyzer might be 
required. Alternatively, there are bioinformatics solutions to 
extend the short pair-end reads into 200–500 bp fragments 
before deciding upon the multiple-aligned reads.60–62
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Table 2. selected list of packages and tools for rna-seq data analysis.

ANALYSIS STEP PACkAgE DESCRIPTIoN AND CoMMENTS REfERENCES

Quanlity assessment 
and preprocessing

fastQc a sequencing quality evaluator, easy to use, reports with reads 
quality visualized graphically.

http://www.bioinformatics.bbsrc.
ac.uk/projects/fastqc

htQc a toolkit including statistics tool for illumina high-throughput 
sequencing data, and filtration tools for sequence quality, length, 
tail quality. depict the base calling and evaluate the base quality at 
position based way and the overall read features.

38

trimmomatic trimmomatic performs a variety of useful trimming tasks for 
illumina paired-end and single ended data. remove Pcr primers, 
adpater sequences, scan every read with a 4-base sliding window 
and trimming the lower-scored bases and low quality n bases to 
enhance the reads qualityflexible, can handle paired end data.

39

BBmap short read aligner for dna and rna-seq data. capable of 
handling arbitrarily large genomes with millions of scaffolds. han-
dles illumina, PacBio, 454, and other reads; very high sensitivity 
and tolerant of errors and numerous large indels. Very fast. 
BBmerge included which can merge paired reads based on over-
lap to create longer reads and creates an insert-size  
histogram.

http://sourceforge.net/projects/
bbmap/

flash a rapid and cost-effective method for large-scale assembly of 
talEns. combines paired-end reads that overlapped and con-
verts them to single long reads.

41

rseQc rseQc package provides powerful modules that can 
comprehensively evaluate rna-seq data after the preprocessing 
procedure. some basic modules quickly inspect sequence quality, 
nucleotide composition bias, Pcr bias and gc bias, while rna-
seq specific modules evaluate sequencing saturation, mapped 
reads distribution, coverage uniformity, strand specificity, etc. 

42

mapping Eland The first short read aligner but not the fastest any more. Eland sub-
stantially influences many aligners in this category and still outper-
forms many followers. Eland itself works for 32 bp single-end reads 
only. additional Perl scripts in gaPipeline extend its ability. 

http://support.illumina.com/help/
SequencingAnalysisWorkflow/
content/Vault/informatics/
sequencing_analysis/casaVa/
swsEQ_mca_referencefiles.htm

soaP  A program for efficient gapped and ungapped alignment of short 
oligonucleotides onto reference sequences. soaP is compat-
ible with numerous applications, including single-read or pair-end 
resequencing, small rna discovery and mrna tag sequence map-
ping. soaP is a command-driven program, which supports multi-
threaded parallel computing, and has a batch module for multiple 
query sets.

45

soaP2 an updated version of soaP software for short reads alignment. 
super fast and accurate alignment for huge amounts of short 
reads, includes a single individual genotype caller (soaPsnp, 
soaPsnv, soaPindel)

46

maQ a program to align short reads and to call variants. features 
includes PEt mapping, quality aware, gapped alignment for PEt, 
mapping quality, adapter trimming, partial occurrences counting, 
and snP caller.

47

Bowtie An ultrafast, memory-efficient short read aligner. Bowtie indexes 
the genome with a Burrows-Wheeler index to keep its memory 
footprint small. Useful unspliced aligners.

48

BWa a software package for mapping low-divergent sequences against 
a large reference genome. it consists of three algorithms: BWa-
backtrack, BWa-sW and BWa-mEm, which are suitable for reads 
length from 70 bp to 1mb.

49

Zoom a framework that is able to map the illumina/solexa reads of 15x 
coverage of a human genome to the reference human genome in 
one cPU-day, allowing two mismatches, at full sensitivity.

50

star an ultrafast universal rna-seq aligner which utilizes sequential 
maximum mappable seed search in uncompressed suffix arrays 
followed by seed clustering and stitching procedure. star has a 
potential for accurately aligning long (several kilobases) reads  
that are emerging from the third-generation sequencing  
technologies.

51

Blat 54,55
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Table 2. (Continued)

ANALYSIS STEP PACkAgE DESCRIPTIoN AND CoMMENTS REfERENCES

htseq a Python framework to work with high-throughput sequencing data, 
able to perform sequencing quality evaluation, reads counting. it is 
flexible that customize the needs by writing scripts or just use the 
stand alone scripts.

40

Easy 
rnaseq

a bioconductor package for processing rna-seq data, which 
perform count summarization per feature of interest and count 
normalization.

64

geno 
micranges

A bioconductor package defines general purpose containers for 
storing genomic intervals. specialized containers for representing 
and manipulating short alignments against a reference genome 
are defined in the GenomicAlignments package.

65

feature-
counts

an r package suitable for counting reads generated from either 
RNA or genomic DNA sequencing. It implements highly efficient 
chromosome hashing and feature blocking techniques so consider-
ably faster than existing methods and requires far less computer 
memory.

66

Expression 
quantification

alexa-seq a comprehensive package that include a database for alignment, 
gene expression euantification, extract isoform features and 
visualize the results. 

12

Cufflinks transcriptome assembly and differential expression analysis for 
RNA-Seq. It also can perform Isoform Quantification, Maximum 
likelihood estimation of relative isoform expression.

7,83,84

rsEm a package for quantifying gene and isoform abundances from 
single-end or paired-end rna-seq data. rsEm outputs abun-
dance estimates, 95% credibility intervals, and visualization files 
and can also simulate rna-seq data. in contrast to other existing 
tools, the software does not require a reference genome. thus, 
in combination with a de novo transcriptome assembler, rsEm 
enables accurate transcript quantification for species without 
sequenced genomes. 

79

differential 
expression

cuffdiff a robust and accurate tool for differential analysis of rna-seq 
experiments. isoform level analysis, Uses isoform levels in analysis.

7,83,84

dEseq an r package to analyse count data from high-throughput 
sequencing assays such as rna-seq and test for differential 
expression. it uses multi-factors analysis, Poisson glm.

31

dEseq2 a method for differential analysis of count data, using shrinkage 
estimation for dispersions and fold changes to improve stability 
and interpretability of estimates. this enables a more quantitative 
analysis focused on the strength rather than the mere presence of 
differential expression.

85

Edger a bioconductor software package for examining differential expres-
sion of replicated count data. an overdispersed Poisson model is 
used to account for both biological and technical variability. Empiri-
cal Bayes methods are used to moderate the degree of overdisper-
sion across transcripts, improving the reliability of inference. the 
methodology can be used even with the most minimal levels of 
replication, provided at least one phenotype or experimental condi-
tion is replicated. the software may have other applications beyond 
sequencing data, such as proteome peptide count data.

82

Poissonseq a method for normalization, testing, and false discovery rate 
estimation for rna-sequencing data based on poisson log-linear 
model.

86

limma-
voom

limma is data analysis r package based on linear models and 
differential expression for microarray data. voom function in the 
limma package offers a way to transform count data into gaussian 
distributed data so that significance can be tested statistically.

 87, 88, 89

miso a probabilistic framework that quantitates the expression level of 
alternatively spliced genes from RNA-Seq data, and identifies dif-
ferentially regulated isoforms or exons across samples. 

105

altenative splicing tophat a widely used, fast splice junction mapper for rna-seq reads. it 
aligns rna-seq reads to mammalian-sized genomes using the 
ultra high-throughput short read aligner Bowtie, and then analyzes 
the mapping results to identify splice junctions between exons.

56, 57
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Table 2. (Continued)

ANALYSIS STEP PACkAgE DESCRIPTIoN AND CoMMENTS REfERENCES

mapsplice an algorithm for mapping rna-seq data to reference genome 
for splice junction discovery. It utilizes the exon-first methods, 
supports both single-end and pair-end reads with high memory 
efficiency and accuracy. 

59

splicemap a de novo splice junction discovery and alignment tool. it offers 
high sensitivity and accuracy and support for arbitrary rna-seq 
read lengths. 

106

splitseek a program for de novo prediction of splice junctions in rna-seq 
data. It utilizes the exon-first method.

107

gEm 
mapper

A fast, accurate and versatile alignment by filtration. It can lever-
age string matching by filtration to search the alignment space 
more efficiently, simultaneously delivering precision and speed.

58

splicer an easy-to-use tool that extends the usability of rna-seq and 
assembly technologies by allowing greater depth of annotation of 
rna-seq data.

108

splicing-
compass

a method and software to predict genes that are differentially 
spliced between two different conditions using rna-seq data.

109

glimmPs a robust statistical method for detecting splicing quantitative trait 
loci (sQtls) from rna-seq data. 

110

mats a computational tool to detect differential alternative splicing events 
from rna-seq data. the statistical model of mats calculates 
the P-value and false discovery rate that the difference in the 
isoform ratio of a gene between two conditions exceeds a given 
user-defined threshold. From the RNA-Seq data, MATS can auto-
matically detect and analyze alternative splicing events correspond-
ing to all major types of alternative splicing patterns. mats handles 
replicate rna-seq data from both paired and unpaired study 
design.

111

rmats a statistical model and computer program designed for detection 
of differential alternative splicing from replicate rna-seq data. 
rmats uses a hierarchical model to simultaneously account for 
sampling uncertainty in individual replicates and variability among 
replicates. 

112

Varients detection gatK Package for aligned ngs data analysis, which includes a snP 
and genotype caller (Unifed Genotyper), SNP filtering (Variant 
filtration) and snP quality recalibration (Variant recalibrator).

http://gatkforums.broadinstitute.
org/discussion/3891/calling-
variants-in-rnaseq). 

annoVar An efficient software tool to functionally annotate genetic variants 
(gene-based, region-based or filter-based) detected from diverse 
genomes.

115

snPir a highly accurate approach termed snPir to identify snPs in 
rna-seq data.

116

sniPlay3 a web-based application for exploration and large scale analyses 
of genomic variations.

117

Pathway analysis gsEa a knowledge-based approach for interpreting genome-wide 
expression profiles. It determines whether an a priori defined set 
of genes shows statistically significant, concordant differences 
between two biological states (eg, phenotypes). 

130

gsVa a non-parametric, unsupervised method for estimating variation 
of gene set enrichment through the samples of a expression data 
set. gsVa performs a change in coordinate systems, transforming 
the data from a gene by sample matrix to a gene-set by sample 
matrix, thereby allowing the evaluation of pathway enrichment for 
each sample. 

131

seqgsEa the package generally provides methods for gene set enrichment 
analysis of high-throughput rna-seq data by integrating differen-
tial expression and splicing. it uses negative binomial distribution 
to model read count data, which accounts for sequencing biases 
and biological variation. Based on permutation tests, statistical 
significance can also be achieved regarding each gene’s differen-
tial expression and splicing, respectively.

132

gagE an evaluation of the very latest large-scale genome assembly 
algorithms.

133
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Table 2. (Continued)

ANALYSIS STEP PACkAgE DESCRIPTIoN AND CoMMENTS REfERENCES

sPia an r package that uses the information form a list of differentially 
expressed genes and their log fold changes together with signal-
ing pathways topology, in order to identify the pathways most rel-
evant to the condition under the study.

135

taPPa A java-based tool, for identification of phenotype-associated 
genetic pathways utilizing the pathway topological measures. 

136

dEaP a tool capitalizes on information about biological pathways to iden-
tify important regulatory patterns from differential expression data. 
It makes significant improvements over existing approaches by 
including information about pathway structure and discovering the 
most differentially expressed portion of the pathway. 

137

gsaa 
seqsP

a toolset for gene set association analysis of rna-seq count data. 
GSAASeqSP identify pathways/gene sets significantly associated 
with a disease or a phenotype by analyzing genome-wide patterns 
of gene expression variation measured by rna-seq technology.

134

co-expression 
network

gsca an open source software package to help researchers use mas-
sive amounts of publicly available gene expression data (PEd) to 
make discoveries. Users can interactively visualize and explore 
gene and gene set activities in 25,000+ consistently normalized 
human and mouse gene expression samples representing diverse 
biological contexts.

146

dicEr a method for detecting differentially co-expressed gene sets using 
a novel probabilistic score for differential correlation. dicEr goes 
beyond standard differential co-expression and detects pairs of 
modules showing differential co-expression.

151

Wgcna a powerful method to extract co-expressed groups of genes from 
large microarray data sets and has been successfully applied 
to rna-seq data. it is suggested to remove genes whose read 
counts are consistently low and normalize the data with a vari-
ance-stabilizing transformation before calculating pairwise similar-
ity of expression pattern.

152

 

reads counting. RNA-seq reads number that map to 
a gene is the measurement of the gene’s expression level. 
After mapping the reads to the reference genome, counting 
the reads number that mapped to gene body will facilitate 
the next steps. Library preparation methods, such as whether 
the protocol is strand-specific, whether first read is on the 
same strand or opposite strands, are determinant factors for 
the counting of reads. One example of tools and packages 
for read counting from bam file is the multicov command in 
bedtools that takes a feature file (GFF) and read counts in 
certain regions, such as all exons of a gene.63 By default, it 
counts reads on both strands within interested regions. But it 
can work in a strand specific manner if necessary. HTseq is 
a specialized utility for counting reads although speed lifting 
is necessary in the future.40 However, it allows us to look for 
more fine-grained controls on read counting by setting dif-
ferent parameters. This is very useful, especially when a read 
overlaps more than one gene and we want to use customized 
strategy. Note that HTseq-counts assume that the RNA-seq 
data is strand-specific; it will only count those reads that 
were mapped to the strand that the feature is on. R pack-
ages include easyRNASeq, summarizeOverlaps and feature-
Counts for reads counting. easyRNASeq hides the complex 
interplay of the required packages and thus can be easily used. 

summarizeOverlaps, which is a function in the Genomics-
Ranges package in Bioconductor, and featureCounts, which 
have implemented, highly efficient chromsome hashing 
and feature blocking methods, are suitable for RNA-seq or 
genomic DNA sequencing data. Different tools and their dif-
ferent related parameters generate different reads’ numbers, 
and thus affect downstream analysis because they use differ-
ent strategies to assign reads to features.

In addition, the gene model that hypothesizes the struc-
ture of transcripts produced by a gene also affects the analy-
sis. Among multiple genome annotation databases, RefGene, 
Ensembl, and the UCSC annotation databases are the most 
popular ones. The choice of genome annotation directly affects 
gene expression estimation. Recently, Zhao and Zhang sys-
tematically characterized the impact of genome annotation 
datasets choice on read mapping and transcriptome quantifi-
cation.67 They found that the impact of a gene model on map-
ping of nonjunction reads is different from junction reads. The 
percentage of correct mapped nonjunction reads was much 
higher than that of the junction reads for all gene models. 
Surprisingly, although there are 21,958 common genes among 
RefGene, Ensembl, and UCSC annotation, only 16.3% of 
genes obtained identical quantification results. Approximately  
28.1% of genes’ expression levels differed by $5% when using 
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different annotation, and of those, the relative expression 
levels for 9.3% of genes differed by $50%. This study revealed 
that the different gene definition of gene models frequently 
result in inconsistency in gene quantification.

Normalization. After getting the read counts, data nor-
malization is one of the most crucial steps of data process-
ing, and this process must be carefully considered, as it is 
essential to ensure accurate inference of gene expression and 
subsequent analyses thereof. There are multiple facets of the 
RNA-seq data to be taken into account including transcript 
size, GC-content, sequencing depth sequencing error rate, 
insert size, etc.68,69 Multiple normalization methods should be 
compared for the specific bias elimination of a dataset, which 
can be done by comparing their corresponding estimated per-
formance parameters using measurement error models.69,70 
Plenty of comparative analysis or integrative analysis con-
cluded the best approach in different types of RNA-seq data 
analysis. For instance, quantile normalization can improve the 
mRNA-seq data quality including those from low amounts of 
RNA.71,72 R package EDASeq using within-lane normaliza-
tion procedures followed by between-lane normalization can 
reduce GC-content bias.73 Lowess normalization and quantile 
normalization worked well in microRNA-seq data normal-
ization.74 Further advancement of RNA-seq application calls 
for the development of effective statistical and computational 
methods for RNA-seq data normalization.

There are other bioinformatics challenges for the RNA-
seq reads mapping, for example, reducing the errors in image 
analysis and base calling to enhance sequencing accuracy; 
removing low-quality reads; and the development of appli-
cable approaches to store, retrieve, and process large datasets 
in a time- and energy-efficient manner.

differential Gene expression
The transcriptome is the complete set of transcripts in a cell or 
cell population, and transcriptome analysis provides informa-
tion about the identity and quantity of all RNA molecules. An 
important application of RNA-seq is the comparison of tran-
scriptomes across different developmental stages, across a dis-
ease state compared to normal cells, or specific experimental 
stimuli compared to physiologic conditions. This type of anal-
ysis requires identification of genes along with their isoforms 
and precise assessment of their abundance comparing two or 
multiple samples. It is essential for interpreting the functional 
elements of the genome and uncovering the molecular consti-
tution providing important insights in the biological mecha-
nisms of development and diseases.

After the step of preprocessing RNA-seq reads, it is an 
important question to reveal how the transcripts level differs 
across samples, known as DGE analysis. Numerous statisti-
cal methods have been developed that use read coverage to 
quantify transcript abundance since the microarray era.75,76 
The RPKM (reads per kilo base per million mapped reads) is 
widely used method to account for expression and normalized 

read counts with respect to overall mapped read number and 
gene length.32,53 However, beside the read coverage, there are 
other factors that determine the estimated transcript abun-
dance including sequencing depth, gene length, and isoforms 
abundance.72,77,78 Since the RPKM method handles all the 
RNA-seq reads almost equally, for example, without concern 
for isoforms, it has been criticized. RNA-Seq by Expectation 
Maximization (RSEM) is a newly developed software tool, 
which gives accurate estimates for gene and isoform expres-
sion levels and can be used even for species without a reference 
genome assembly.79

Most algorithms to date for differential gene expression 
analysis apply simple count-based probability distributions 
(eg, Poisson distribution) followed by Fisher’s exact test with-
out accounting for biological variability among samples.32,53,80 
While the technical variability of RNA-seq is extremely low 
compared with microarray data,32 the biological variability 
could be significantly reduced by analyzing several replicates 
through a permutation-derived methods.75 Serial analysis of 
gene expression has been developed for biological variability 
assessment, in which larger scale datasets are used so that an 
additional dispersion parameter can be estimated based on an 
extended Poisson distribution, allowing extensive molecular 
characterization capability.81,82

However, for most applications, a large number of replica 
may be too costly, and many developed methods have over-
come the problem by modeling biological variability and 
measuring the significance with limited number of samples, 
applying pairwise or multiple group comparisons.75 Several 
programs offer well-done solution for this purpose and have 
been applied in numerous studies for biomedical and clinical 
research. Examples of these programs are Cuffdiff from the 
Cufflinks package,7,83,84 DESeq,31 DESeq2,85 and EdgeR.82 
Since RNA-seq read counts are integer numbers that range 
from zero to millions and are highly skewed, many kinds of 
transformation algorithms have been applied to the counts so 
that the numbers can be fit to statistic distribution models for 
differential expression detection. For instance, Li et al devel-
oped PoissonSeq, a Poisson log-linear model for differential 
gene expression assay.86 Approaches developed for microar-
ray data analysis based on continuous distribution have been 
improved for RNA-seq counts. Excellent example is the voom 
function in the limma package, which offers a way to transform 
count data into Gaussian distributed data so that significance 
can be tested statistically.87–89 An extensive comparison to 
evaluate the performances of several DGE packages has been 
recently reported.90,91 However, to the best of our knowledge, 
there is no one-size-fits-all strategy. Also, space for refine-
ment of existing pipelines exists to develop effective strategies 
for the following questions: how to uniform the reads coverage 
along the genome with the nucleotide composition variation; 
how to detect the “within-sample” variations without simply 
assuming that the underlying conditions or treatments affect 
all individual gene equally; how to improve current methods to 

http://www.la-press.com
http://www.la-press.com/bioinformatics-and-biology-insights-journal-j39


Han et al

38 Bioinformatics and Biology insights 2015:9(s1)

detect differences in gene isoform preferences and abundance 
level in varying conditions; and how to account for the dif-
ferent probability in read coverage in long genes versus short 
genes since we can gain great sequencing depth nowadays.

Alternative splicing
The biological complexity and genomic diversity are deter-
mined, to a large degree, by the alternative splicing events.92 
Alternative splicing shapes the control of numerous pivotal 
cellular processes, and abnormal splicing events are involved 
in 15%–50% of disease-causing mutations in human.93 Com-
pared with constitutive splicing, alternative splicing refers to 
the differential inclusion/exclusion of exons in the processed 
RNA product after splicing of a precursor RNA segment.94 
It is a crucial step in controlling the expression of ∼95% of 
all multiexon genes, and an increasing number of diseases are 
found to be associated with the “wrong” splice sites usage, 
while the overall transcript abundance does not change.95,96 
Spliceosomes, composited of intricate structures with RNA–
RNA, protein–protein, and RNA–protein interactions, carry 
out the splicing reaction.97 Splicing mechanism studies on 
model genes have deduced many regulatory principles includ-
ing the role of negative intrinsic sites binding and positive 
enhancement of splicing sites selection in the formation of 
spliceosome assembly.94

However, given the variety of cis-acting elements and 
trans-acting factors involved in splicing, either cooperatively or 
in a competing manner, the “code” for controlling alternative 
splicing needs still further deciphering using high-throughput  
approaches.98 RNA-seq technology allows us to estimate 
alternative splicing events on genome-wide scales and in an 
unbiased manner. Deep surveying of alternative splicing by 
RNA-seq revealed unprecedented wealth of splice junctions 
and RNA-binding motifs and provides more reliable measure-
ments compared with microarray technology.99–101 Further-
more, alternative splicing is tissue-specific, with hundreds of 
context-sensitive RNA features and tissue-dependent splicing 
regulatory elements, which generate thousands of combina-
tions of alternative splicing events.102,103 In-depth of RNA-
sequencing analysis yield a digital inventory of gene and mRNA 
isoform expression with tissue specificity and high sensitivity 
of single cells and provides a framework of understanding 
alternative splicing pattern on genome-wide scales.15,104

With the rapid accumulation of RNA-seq data, many 
methods and tools have been developed to infer alternative 
splicing events. These tools generally focus on either gapped 
alignment of short reads or de novo assembly and charac-
terization of transcript models. Examples of these methods 
are MISO for identification and regulation of isoforms from 
CLIP-seq data and105 SpliceMap,106 SplitSeek,107 spliceR,108 
and SplicingCompass109 for detection of splice junctions and 
exon usage from pair-end RNA-seq. GLiMMPS provides 
a useful tool for elucidating the genetic variation of alterna-
tive splicing in humans and model organisms.110 MATS is 

developed from a statistical method and used for detecting 
differential alternative splicing events from RNA-seq data.111 
rMATS is a statistical method for robust and flexible detec-
tion of genome-wide differential alternative splicing from 
paired or unpaired replicates.112 ALEXA-Seq assesses the 
differential and alternative expression of the mRNA iso-
forms after cataloging transcripts.12 An integrative analysis 
approach constructed an exon co-splicing network based on 
distances combined with matrix correlations and found that 
the co-splicing network was distinct and complementary to 
the co-expression network, although they both possess scale-
free properties.113,114

The field of alternative splicing analysis using RNA-seq 
data is still in its infancy and would benefit from new strate-
gies. An extensive evaluation and comparison of the existing 
methods would be desirable, and to date, there is no gen-
eral consensus regarding which method performs best under 
given conditions. We are expecting to see the novel, explor-
ing methods to be developed in this flourishing field in the 
near future.

Variants detection and Allele-specific expression
The main applications of RNA-seq analysis are novel gene 
identification, expression, and splicing analysis. However, 
RNA-seq data is also a useful by-product of sequence-based 
mutation analysis, though there are many limitations, such as 
highly differential coverage between different genes. Among 
many variants calling and annotation methods such as 
ANNOVAR,115 SNPiR,116 and SNiPlay3,117 the best practical 
workflow provided by GATK may be still the best pipeline 
to identify mutations from RNA-seq data, although it is still 
far from perfect and under heavy development (http://gatk-
forums.broadinstitute.org/discussion/3891/calling-variants-
in-rnaseq). In GATK pipeline, the sequence reads are first 
mapped to the reference using STAR aligner (2-pass protocol) 
to produce a file in SAM/BAM format sorted by a coordi-
nate. After marking and removing duplicates, GATK splits 
reads with N operators in the CIGAR strings into component 
reads and trims to remove any overhangs into splice junctions 
to reduce the occurrence of artifacts. The remaining steps are 
similar to DNA-seq variants calling, such as local alignment 
and haplotype variant call.

Heterozygous SNP, which means two different alleles in 
the same position in the DNA, may lead to the following: one 
of two alleles is highly transcribed into mRNA and another is 
lowly transcribed or even not transcribed at all. This is called as 
allele-specific expression (ASE). Both genetic and epigenetic 
determinants govern transcriptional activity at the different 
alleles of a gene in a non-haploid genome, and impairment 
of this highly regulated process can lead to disease.118,119 
Whole genome DNA sequencing (WGS) allows identifica-
tion of single nucleotide mutations or polymorphisms in the 
entire human genome. The expression state of the heterozy-
gous loci can be investigated in the matched RNA-Seq and 
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WGS sample from the same individual, and ASE activity can 
be identified to uncover the instances of allele silencing.120 
Though conceptual simple, there is still a challenge to identify 
ASE due to many problems, such as reads bias and lack of 
sophisticated statistical model.121 Recently, Mayba et al devel-
oped a pipeline, MBASED to ASE detection, through aggre-
gating information across multiple single nucleotide variation 
loci to obtain a gene-level ASE.122 More sophisticated soft-
wares are needed for ASE identification.

beyond the differentially expressed Gene Lists
Creating lists of the differentially expressed genes is only the 
starting point of gaining biological insights into experimen-
tal systems, developmental stages, or specific disease sce-
narios. To understand the biologic context of differentially 
expressed genes, many advanced analyses have been working 
on gene ontology,123,124 gene sets,125 network inference, and 
knowledge databases.126,127

Pathway Analysis. The interpretation of gene expression 
data is based on the function of individual genes as well as 
their role in pathways since genes work connectively in all bio-
logical processes. In addition, for some genes, a small expres-
sion change may be not significant at a single gene level, but 
minor changes of several genes may be relevant in a pathway 
and may have dramatic biological consequences. Thus, differ-
entially expressed biological pathways provide better explana-
tory results than a long list of seemingly unrelated genes.128

One traditional analysis works with a gene list of inter-
est, identified with genomics methods or curated by biologists, 
and applies statistical methods, such as the Fisher Exact Test, 
on contingency tables to test for enrichment of each anno-
tated gene set.129 Such approaches can be applied to the dif-
ferentially expressed gene list identified with RNA-seq data 
directly. Another class of analysis ranks all expressed genes 
according to metrics of expression difference and then uses 
Kolmogorov–Smirnov like tests to obtain enrichment sig-
nificance. Gene set enrichment analysis (GSEA) is one such 
highly effective method that has been widely used in studying 
functional enrichment between two biological groups.130

Many studies have adapted pathway analysis tools from 
microarray data analysis and developed new tools applicable 
to RNA-seq data. For example, a non-parametric competitive 
GSA approach named Gene Set Variation Analysis has been 
developed to fit RNA-seq data characteristics. Such analy-
ses have given highly correlated results between microarrays 
and RNA-Seq sample sets of lymphoblastoids cell lines that 
have been profiled using both technologies.131 SeqGSEA uses 
count data modeling with negative binomial distributions to 
score differential expression and then executes gene set enrich-
ment analysis to achieve biological insights. In real applica-
tions, SeqGSEA detects more biologically meaningful gene 
sets without biases toward longer or more highly expressed 
genes.132 GAGE is another method for pathway analysis 
that is applicable to both microarray and RNA-seq data. It 

is unaffected by sample sizes, experimental designs, assay  
platforms, or other types of heterogeneity.133 GSAASeqSP 
offers a variety of statistical procedures by adapting and com-
bining multiple gene-level and gene set-level statistics for RNA-
seq count-based data. Such statistics include Weighted_KS, 
L2Norm, Mean, WeightedSigRatio, SigRatio, Geometric-
Mean, TruncatedProduct, FisherMethod, MinP, and Rank-
Sum.134 GSAASeqSP is a powerful platform for investigating 
molecular differential activity within biological pathways.

The limitations of the gene set analysis methods devel-
oped for microarrays in the context of RNA-seq data have 
been comprehensively investigated.128 Several frequently used 
RNA-seq normalization strategies were studied to exam-
ine the performance of multivariate tests. Data transforma-
tions were also investigated in an attempt to extend other 
approaches beyond microarray data analysis. It was found that 
the use of log counts when normalized for sequence depth is a 
good strategy for data transformation prior pathway analysis.

Previously, pathway analysis methods had been developed 
based on algorithms considering pathways as simple gene lists 
and ignoring pathway structure. Recently, methods have been 
developed that incorporate various aspects of pathway topol-
ogy. For example, SPIA captures pathway topology through 
its scoring system, in which the positions and the interactions 
of the genes in the pathway are considered.135 Accordingly, 
interacting differentially expressed gene pairs are preferen-
tially weighted over two non-interacting genes. Similarly, 
TAPPA is a scoring method in which higher weights are auto-
matically assigned to hub genes and interacting gene pairs.136 
DEAP identifies the most differentially expressed path to 
provide a refined focus for further biological exploration.137 
Accordingly, biological pathways are represented by directed 
graphs, where nodes are biological compounds and the edges 
represent catalytic or inhibitory regulatory.

Applying methods developed for microarray data analy-
sis without considering specific data features of RNA-seq data 
may lead to biases. For example, long or highly expressed tran-
scripts are more likely to be detected as differentially expressed 
than are the short and/or lowly expressed ones. By developing 
new statistical framework, the new problem of gene length 
bias and total reads number bias from RNA-seq could be well 
corrected. One good example is the GOseq package for gene 
ontology analysis. It considered the read counts bias by estimat-
ing the probability weighting function and used resampling 
strategy beyond the differentially expressed gene expression 
so that it can highlight GO categories more consistent with 
the known biology.138 Development of good methods to cor-
rect the biases in pathway analysis brought by GC content, 
dinucleotide distribution, and other factors is challenging.139

Although many pathway databases are available, high-
resolution annotation of such knowledge bases is still lack-
ing. For example, .90% of the human genome is alternatively 
spliced and transcripts from the same gene may have distinct, 
even opposing functions. However, current knowledge bases 

http://www.la-press.com
http://www.la-press.com/bioinformatics-and-biology-insights-journal-j39


Han et al

40 Bioinformatics and Biology insights 2015:9(s1)

only are curated at gene level. It is essential to also include 
knowledge about pathway-specific transcript activity. In 
addition, high-quality annotations for genes are still needed, 
although there are enormous numbers of annotations available 
in the public domain.140 We expect to see more sophisticated 
data mining and machine learning algorithms applicable to 
RNA-seq data, especially those methods considering the gene 
in the context of its pathway. 

co-expression network analysis. Co-expression network 
analysis is an important complement to DGE analysis. A gene 
co-expression network is represented as an undirected graph, 
in which each node corresponds to a gene, and two nodes 
are linked if there is a significant co-expression relationship 
between them. Because co-expressed genes are often function-
ally related, controlled by the same set of transcriptional factors, 
or work together within same pathway, building co-expression 
networks can help to extract meaningful biological modules that 
are tightly associated within a specific biological process.141

The co-expression network has been extensively studied 
since microarray era and such data have been examined using 
RNA-seq data with the emergence of NGS technology. Com-
parison studies between RNA-seq co-expression networks 
and microarray data-derived networks revealed that correla-
tions from RNA-seq data are much higher due to the reason 
that RNA-seq data is of greater sensitivity and larger dynamic 
range. Although both co-expression networks show scale-free 
properties, there is low overlap between hub-like genes. This 
phenomenon can be explained by low correlation between 
microarray and RNA-seq data, especially for high- and low-
transcript abundances.142

Both sample size and reads’ depth affect the quality of 
RNA-seq-derived co-expression networks.143 Larger sample 
sizes and greater read depth can increase the functional con-
nectivity of the networks. The minimal suggested experimen-
tal criteria to obtain performance on par with microarrays are 
at least 20 samples with total number of reads greater than 
10 million per sample. Meta-analysis across multiple data sets 
is a good solution to increase the relatively poor performance of 
individual co-expression networks. Aggregation across differ-
ent experiments can improve performance significantly beyond 
that attained by even the largest individual co-expression net-
works in one experiment. However, thousands of samples from 
different conditions are necessary to obtain the “gold standard” 
co-expression networks.

The high quality of co-expression network by large 
meta-analysis promises the power of a functional genom-
ics tool to biologists and clinicians. GeneFriends project 
team has constructed co-expression maps for human and 
mouse with RNA-seq datasets of 4,000 and 2,500 samples 
from different experiments, respectively.144 This information 
can be used statistically, such as using a guilt by association 
approach to predict gene function, identifying and prioritizing  
novel candidate genes involved in biological processes. 
COXPRESdb is another database of RNAseq-based gene 

co-expression networks.145 The co-expressed gene list in 
COXPRESdb provides a comparable view of orthologous 
genes among several species (human, mouse, rat, chicken, fly, 
zebra fish, nematode, monkey, dog, and yeast) and the num-
bers of common edges for all pairs of species.

Besides building gene co-expression networks under 
defined conditions, finding co-expression modules in one 
condition and then testing if these modules show different 
co-expression in other conditions can assist in understand-
ing the regulatory change under disease conditions. Gene set 
co-expression analysis was proposed to test differential co-
expression of known pathways through testing the changes 
in co-expression over all gene pairs in the pathway.146 Based 
on theoretical analysis, a small highly co-expressed subnet-
work was found to be a good indicator of disease onset or 
other biological process. This finding has been validated with 
real data and confirmed that this small set of genes clustered 
within a strongly correlated subnetwork is able to provide the 
significant warning signal just before onset of disease.147 The 
current approach of building dynamic network biomarker is 
based on population data. It might be interesting to build a 
co-expression of network with time series data from same 
subject with self-correlation or synchronization,148,149 such 
that we can use it to predict disease onset for diagnosis and 
personalized medicine.

Interestingly, in biological systems, antagonistic and self-
reinforcing co-expressed modules have been found in system 
stability and adaptability.150 Algorithm have been designed to 
model this phenomenon, for instance, DICER, in which the 
expression profiles of genes within each module of the pair 
are correlated across all samples and the correlation between 
the two modules differ dramatically between the disease and 
normal samples.151 Weighted gene co-expression network 
analysis is a powerful method to extract co-expressed groups 
of genes from large microarray data sets and has been suc-
cessfully applied to RNA-seq data. It is suggested to remove 
genes whose read counts are consistently low and normalize 
the data with a variance-stabilizing transformation before cal-
culating pairwise similarity of expression pattern. It can per-
form various aspects of weighted correction of co-expression 
network analysis including network construction, module 
detection, gene selection, calculations of topological prop-
erties, data simulation, visualization, and interfacing with 
external software.152

As more and more RNA-seq data become publically 
available, there is a great need to develop new algorithms 
to formulate both the global and local characteristics of co- 
expression networks, especially those dynamic changes asso-
ciated with biological processes. Much work still remains for 
the development of RNA-seq co-expression methodologies. 
So far, there have been few published statistical studies that 
have examined metrics for similarity of expression profiles 
with RNA-seq data. Si et al designed an algorithm to cluster 
genes by measuring the differential expression patterns across 
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treatments using model-based statistical methods according 
to either Poisson or NB models for RNA-seq data, using the 
mean expression level as reference, bypassing treating RNA-
seq data directly.153 The co-expression networks built with 
different expression measurements, such as those using raw 
counts, RPKM, or variance-stabilizing transformation have 
low overlap. Therefore, the development of new metrics for 
co-expression network establishment is urgently needed.142

Centrality and network flow have been successful for  
the identification of important genes and modules from co-
expression networks. However, we lack a good way to for-
mulate the network structure. Some network metric, such as 
percolation, is too simple to grasp network characteristics effi-
ciently due to the dynamic nature of the biological processes. 
The lack of a model that represents the dynamic change of co-
expression network at different time points limits our ability 
to observe biological system changes at a network level.150

systems biology
High-throughput sequencing technologies are now rou-
tinely being applied to a wide range of topics in biology and 
medicine, allowing scientists to address important questions 
and reveal difficult discoveries that were impossible before. 
Advances in genome sequencing and data analysis are of 
critical roles, while the procedure for how to prepare sam-
ples selectively and how to generate qualified data requires 
sophisticated experimental design, which is essential part of 
systems biology (Fig. 2).

Concerning gene expression analysis, the integration data-
sets from diverse platforms in this Next-Generation Genom-
ics era, including genomics, epigenomics, and proteomics with 
transcriptomics, is critical in the effort to understand complex 
biological systems. A wide scope of integrating analysis proj-
ects were well defined for a more complete picture of gene 
regulation such as the Roadmap Epigenomics Project, the 
ENCODE Project, and The Cancer Genome Atlas.154 RNA-
seq has been used in combination with transcription factor 
(TF) binding,155,156 histone modification,157,158 DNA methyla-
tion,159,160 genotyping data,161,162 and RNA interference.163 In 
this study, we summarize two excellent examples to illustrate 
RNA-seq application in the frame of systems biology.

stArr-seq: whole genome functional readout of 
enhancers. Enhancers are functional non-coding DNA 
sequences that can recruit TFs, physically interact with pro-
moters, and regulate the timing and tissue specificity of gene 
expression.164–169 Despite their important roles during devel-
opment, in response to stimuli and various diseases, a genome-
wide approach to identify functional enhancer regions is still 
lacking. Current high-throughput enhancer detection methods 
can be grouped into three categories: (1) identification of open 
chromatins, including deep sequencing of DNase hypersensi-
tive sites (DHS-seq)170 and formaldehyde-assisted isolation of 
regulatory elements sequencing (FAIRE-seq)171; (2) chromatin 
immunoprecipitation followed by deep sequencing (ChIP-seq) 

on enhancer-associated histone modifications (H3K4me1, 
H2K27ac, H3K18ac, etc.)172–175; and (3) ChIP-seq on TFs or 
cofactors (p300, CEBPB, etc.).176 However, the mapping of 
open chromatins and histone modifications usually lacks suffi-
cient resolution and specificity to detect precise enhancer loca-
tions, and the binding of some specific TFs or cofactors can 
hardly cover all the active enhancers. Moreover, none of these 
methods can provide a quantitative measurement of enhancers’ 
activities. The traditional quantitative reporter assays, on the 
other hand, cannot be scaled up to a high-throughput genome-
wide manner.177,178

To address this question, Arnold and colleagues developed 
a method, named self-transcribing active regulatory region 
sequencing (STARR-seq),17 which quantitatively measures 
the activity of enhancers in the whole genome. They sheared 
Drosophila melanogaster genomic DNA and selected ∼600 bp 
fragments. These random fragments were PCR amplified and 

DNA fragments
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cDNA library preparation

Computational analysis

ORF

ORF

ORF

Reporter library

Poly-A site

Poly-A site
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measurement 
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figure 2. the starr-seq pipeline and the corresponding ‘systems 
biology’ steps. The sonicated genomic DNA are PCR amplified and 
placed downstream of a minimal promoter in reporter vectors. the desired 
measurement are embedded in the genome. the reporter library is 
transfected into the cultured cell lines and Poly-a rnas are isolated from 
the pool of total rna. these steps are selectively to enrich the targets 
interested. after rna-seq is performed, the reads are mapped to the 
reference genome and their enrichment over input are measured to reflect 
enhancer activity. the steps of systems biology including mathematics and 
computational biology analysis will help with the interpretation.
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placed downstream of a minimal promoter in reporter vectors 
(Fig. 2). The reporter library contains 11.3 million candidate 
fragments, which covered 96% of the non-repetitive genome 
by 10-folds. In these constructs, if candidate DNA fragments 
are enhancers, they will have an opportunity to activate their 
own transcription. Furthermore, by transfecting the reporter 
library into Drosophila cell lines, isolating polyadenylated 
RNA, and performing RNA-seq, the authors were able to 
quantitatively estimate the enhancers’ strength based on the 
amount of their transcription.

Computational analyses include mapping the STARR-
seq data to the genome and examining their enrichment over 
input. From this, the authors identified 5,499 enhancers in 
Drosophila S2 cells and validated 77 in addition to 65 negative 
controls by luciferase assays. As a result, 81% of the predicted 
enhancers and 14% of negative controls showed enhancer activ-
ity. There was a strong linear correlation (r = 0.83) between the 
levels of luciferase activity and their STARR-seq transcrip-
tion readouts, indicating STARR-seq is a reliable quantitative 
measurement of enhancers’ strength.

STARR-seq is a high-throughput application of the 
traditional enhancer reporter assay that directly and quanti-
tatively assesses enhancers’ activities in a genome-wide man-
ner. It complements existing enhancer detection methods 
based mainly on chromatin features. One of the limitations of 
STARR-seq, as the authors pointed out, is that it only assesses 
the potential enhancer ability of DNA sequences irrespective 
of the endogenous genomic context, such as DNA accessibil-
ity and histone modification.

structural genome (re)annotation. The task of defining 
the complete set of transcripts is complicated because of the fact 
that transcriptomes are of high dynamic entities, which change 
in response to both of the intracellular signals and extracellu-
lar environment. In addition, expression level, allele expression, 
and alternative splicing events are involved in increasing the 
complexity of transcriptome defining with regard to the devel-
opment stages, growth condition, or disease status.

Genomic studies including gene expression by microar-
ray and chromatin feature assays by tiling array are based 
on genome annotations. However, the genome annotation 
is continuously being updated and even the current annota-
tion is incomplete indicating that the previous studies might 
have missed important information or they are not precise 
enough to uncover the biological insight. Accumulating 
studies using RNA-seq to reveal the genome and transcrip-
tome annotation structurally have been generating a more 
complete and more precise map to facilitate our understand-
ing of the gene transcription. We highlight in this study 
examples that finely annotated transcriptional landscapes 
in a major invasive fungal pathogen with combined elegant 
experiment design and RNA-seq following comprehensive 
data analysis.

Candida species is a major invasive fungal pathogen of 
humans, responsible for diseases ranging from superficial 

skin infections to deep-seated systematic candidiasis with 
high mortality rates, for which progression and severity 
are determined by the host immune system.179 The disease 
caused by Candida albicans largely depends on the feature to 
change its transcription landscape thus switch its morpholo-
gies in response to different host niches or environmental 
stimuli.180,181 Because of the clinical significance, based on 
the feature of change transcriptome upon environmental clue, 
Beuno with colleagues generated RNA-seq data from in vitro-
cultured C. albicans with diverse growth conditions includ-
ing hyphae-inducing condition, high/low oxidative stress/pH 
condition, nitrosative stress, and cell wall damage-inducing 
condition.182 From a total of 177 million mapped reads, they 
have remarkably refined the primary genome annotations by 
determining transcripts position, identifying new genes and 
new introns, and determining expression levels under each 
growth condition and condition-specific expression of novel 
transcripts. With similar experimental design strategy, Linde 
et al depicted an even detailed transcriptional map by anno-
tating protein coding genes and non-coding genes, intron and 
UTR in another Candida species Candida glabrata under pH 
and nitrosative stress.183 Comparison genomics also fueled 
this study to determine species-specific and condition-specific 
adaptions are regulated by individual genetic repertories and 
conserved orthologs on transcriptional level.184

outlook/Perspective
In this review, we have outlined major applications of the 
RNA-seq in biomedical research, highlighted the compu-
tational approach in data preprocessing, differential gene 
expression, alternative splicing, pathway analysis, and co-
expression network, and presented examples to show how 
this technology can be applied in systems biology field 
to advance our understanding in genomic level. Since it is 
potent in investigating the transcriptome in a highly quanti-
tative manner at single nucleotide resolution, complex disease 
diagnosis, and precision medicine, the rapidly accumulating 
genome sequence data allow researchers to address funda-
mental biological questions that were not even asked just a 
few years ago. Although many progresses have been made 
since the initial application of this technology, there are still 
more applications possible if further refinement is provided 
for each of the topics.

single rNA-seq. RNA-seq in single cells has provided a 
new powerful approach to study complex biological processes, 
for instance, promoting advances in cancer studies starting 
from qualitative microscopic images to quantitative genomic 
datasets in recent year.185 Single-cell genome and exome 
sequencing fueled the investigation of fundamental questions 
including resolving solid tumor heterogeneity, identifying 
stem cells, tracking cell lineages and population consump-
tion, measuring mutation rates, and detecting fusion gene 
events.19,186–188 Although single-cell sequencing can provide 
far more accurate measurement, however, the challenges of the 
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single-cell sequencing in cancer cells exist in the sequencing  
and data analysis steps beyond the cancer cell isolation. First, 
the two copies of DNA strands as the input material results 
in technical errors including insufficient coverage, difficulties 
in mutation calling, and false-positive error in heterogene-
ity characterization. Multiple datasets from different single-
cell sequencing encompass even higher requirements for the 
post-sequencing comparison analysis. In the near future, we 
expect to see that the single-cell sequencing will be applied in 
much more new issues of cancer genomics study such as dif-
ferentiate extensive biological complexity or extensive techni-
cal errors, rare cancer diagnosis, and early development stage 
tumor discovery.

dual rNA-seq. Pathogen–host interactions study 
including the immune response of eukaryotic cells is another 
important battlefield, where RNA-seq plays a critical role. 
Transcriptomic analysis has predominantly focused on either 
the host or the pathogen, which requires the RNA molecule 
separation from the host or the pathogen at specific time 
point, prior to the high-throughput sequencing era.189 Deeper 
understandings of the interaction process, identification of 
new virulence factors, immune response mechanism, and 
development of therapeutic approach will require the simul-
taneous analysis of interaction partners because the battle 
leads to a constantly changing environment and complex gene 
expression patterns. A “dual RNA-seq” approach allows to 
monitor the genes from both host and pathogen without RNA 
separation throughout the infection process.190 It enables the 
study of dynamic response and interspecies gene regulatory 
networks in both the interaction partners from initial contact 
through to invasion and the final persistence of the pathogen 
or clearance by the host immune system with high level of 
accuracy and depth. Dual RNA-seq attempt studies are in 
widespread areas such as molecular and cellular biology,191,192 
public health,191 immune response in disease,193,194 and bac-
teria and plant interactions.195–197 As a discovery-from-data 
approach, computational process and storage of the high mag-
nitude data are of great challenge recently, although project-
specific packages have been developed.198–200 Computational 
modeling and algorithm design beyond the existing ones will 
facilitate greatly for answering emerging questions by ever-
developing applications from NGS to nanopore sequencing 
and single-cell sequencing.

As the biological complexity, the challenges of devel-
opment of computational methods also exist in multiple 
dimensions. We have to consider the particular situation 
and design experiment accordingly, and no single method 
or pipeline is optimal under all circumstances even in the 
same fields. In addition, with rapid accumulation of data 
in public repositories, new challenges arise from the urgent 
need to effectively integrate many different RNA-seq data-
sets, as well as different levels omics data to study the bio-
logical complexity and ultimately facilitate the precision and 
personalized medicine.
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