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Abstract: Commonly, volumetric shrinkage occurs during polymerizations due to the shortening
of the equilibrium Van der Waals distance of two molecules to the length of a (significantly shorter)
covalent bond. This volumetric shrinkage can have severe influence on the materials’ properties.
One strategy to overcome this volumetric shrinkage is the use of expanding monomers that show
volumetric expansion during polymerization reactions. Such monomers exhibit cyclic or even oligo-
cyclic structural motifs with a correspondingly dense atomic packing. During the ring-opening
reaction of such monomers, linear structures with atomic packing of lower density are formed, which
results in volumetric expansion or at least reduced volumetric shrinkage. This review provides a
concise overview of expanding monomers with a focus on the elucidation of structure-property
relationships. Preceded by a brief introduction of measuring techniques for the quantification of
volumetric changes, the most prominent classes of expanding monomers will be presented and
discussed, namely cycloalkanes and cycloalkenes, oxacycles, benzoxazines, as well as thiocyclic com-
pounds. Spiroorthoesters, spiroorthocarbonates, cyclic carbonates, and benzoxazines are particularly
highlighted.

Keywords: expanding monomer; volumetric shrinkage; volumetric expansion; cationic ring-opening
polymerization; radical ring-opening polymerization

1. Introduction

Volumetric aspects of curing reactions in macromolecular science such as polymeriza-
tions and polymeranalogous crosslinking reactions have gained continuously increased
attention over the recent decades (Figure 1; the blue bars represent the overall activities).
Commonly, volumetric shrinkage occurs during curing reactions due to the fact that the
Van der Waals distance of two molecules is shortened to the length of a (significantly
shorter) covalent bond [1]. This volumetric shrinkage has to be considered for all bonds
formed during the curing reaction and can amount to total values higher than 10 vol.% (see
the examples reported hereinafter). In final consequence, large-extent volumetric shrinkage
induces the formation of voids and micro-cracks in the polymer-based materials as well as
delamination of the polymer-based materials from adjacent surfaces [2,3].

Correspondingly, the volumetric shrinkage can have severe influence on the materials’
properties, to mention the deterioration of the optical, mechanical, and insulating properties
as prominent examples [4–6]. Three main strategies exist to overcome volumetric shrinkage.
One of these strategies foresees to apply composite materials with large filler contents:
While the fillers are not involved in the curing reaction, volumetric shrinkage only occurs
in the share of the total volume occupied by the molecules involved in the curing reaction;
the overall shrinkage, hence, is reduced accordingly. The mechanical properties of the
composites, however, differ significantly from those of the unfilled polymers and resins [7],
which limits the applicability of this strategy. A second strategy foresees the involvement
of pre-cured oligomers or even polymers: Due to the fact that a large extent of volumetric
shrinkage has already occurred during pre-curing, lower volumetric shrinkage will occur

Polymers 2021, 13, 806. https://doi.org/10.3390/polym13050806 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-6459-6136
https://doi.org/10.3390/polym13050806
https://doi.org/10.3390/polym13050806
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13050806
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/2073-4360/13/5/806?type=check_update&version=2


Polymers 2021, 13, 806 2 of 32

during the (final) curing itself. Nonetheless, both of these strategies only enable to reduce
the volumetric shrinkage; the opposite of volumetric expansion cannot be accomplished by
these two strategies.
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Figure 1. Evolution of the number of publications addressing the concepts of “expanding” and
“monomer” during the last three decades. Literature search in the Scopus database on 13 Febru-
ary 2021.

Finally, the third strategy foresees the involvement of so-called expanding monomers;
these are monomers that show volumetric expansion during polymerization reactions
(Figure 1; the black bars are considered to be indicative of research activities in this field).
Only very few monomer classes exhibit this unconventional behavior; these types of
monomers exhibit cyclic or even oligocyclic structural motifs. This behavior can be retraced
to the dense atomic alignment in small cyclic structures (Figure 2).
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Figure 2. Molecular structure and density of 1,3-butadiene, cyclobutene, bicyclo[2.2.2]oct-2-ene,
tricyclo[4.2.0.02,5]octane, and poly(butadiene).

The density of 1,3-butadiene (0.62 g·mol−1; no ring present) [8], cyclobutene (0.73 g·mol−1;
1 ring present) [9], bicyclo[2.2.2]oct-2-ene (0.91 g·mol−1; 2 rings present) [10], and
tricyclo[4.2.0.02,5]octane (1.04 g·mol−1; 3 rings present) [11] increases alongside with the num-
ber of rings present in the molecular structure, indicative of a comparably dense atomic
packing in the rings. Theoretical consideration of polymerizations of these “monomers” with
the molecular formulae of (C4H6)n (n = 1, 1, 2, 2) yielding poly(butadiene) with the molec-
ular formula of (C4H6)∞ (density of 0.91 g·mol−1) [12] reveals that the polymerizations of
1,3-butadiene and cyclobutene would experience volumetric shrinkage, while the polymer-
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ization of bicyclo[2.2.2]oct-2-ene would proceed in volume-neutral fashion and only that of
tricyclo[4.2.0.02,5]octane would show volumetric expansion.

Hence, due to ring-opening in the course of the curing reaction, the expanding
monomers are likely to show reduced volumetric shrinkage or even volumetric expansion.
In the context of reviews of the last decades [13–17], this review aims to provide a concise
overview of expanding monomers with a focus on the most recent activities and the eluci-
dation of structure-property relationships. While different methods for the quantification of
volumetric expansion exist, which renders it difficult to compare the values reported in the
literature, this review is preceded by a brief introduction of measuring techniques for the
quantification of volumetric changes. Subsequently, the most prominent classes of expand-
ing monomers will be presented and discussed, namely cycloalkanes and cycloalkenes,
oxacycles, benzoxazines, as well as thiocyclic compounds. The applicability of expanding
monomers in novel products and materials, with a special focus on bifunctional monomers,
which simultaneously exhibit shrinkage (due to, e.g., polymerization or crosslinking) and
expansion due to ring-opening reactions, is discussed in a dedicated section.

2. Measurement Techniques for Volumetric Shrinkage/Expansion

Various techniques have been developed to measure the volumetric and dimensional
changes during crosslinking of thermosetting resins and composites. This chapter gives a
short summary of the commonly used techniques, based on volume dilatometry and linear
(axial) shrinkage measurements. Potential shortcomings of the individual methods have
been summarized at the beginning of this section (Table 1). More detailed descriptions and
comparisons of different techniques for the measurement of curing shrinkage can be found
in the literature [18–20].

Table 1. Methods for the quantification of volumetric shrinkage and their potential shortcomings.

Method Potential Shortcomings

Capillary Dilatometry

Sticking of the resin to the capillary walls and the
challenges of temperature control in case of strongly
exothermic polymerization reactions can affect the
accuracy of the measurements.

Gas Pycnometry
For the quantification of volumetric changes during
curing reactions, the volume of the sample needs to be
measured before and after curing.

Buoyancy Method

While the method is independent of the size or geometry
of the specimens, voids inside the material and air bubbles
on the surface can strongly affect the results of the
measurements.

Linometry Three-dimensional volumetric expansion can be only
estimated in case of isotropic expansion.

Bonded Disk Method The obtained values for linear shrinkage depend on the
dimension of the tested specimens

Laser-Based Methods High equipment expenditure and high security demands.

Rheometry Three-dimensional volumetric expansion can be only
estimated in case of isotropic expansion.

Thermomechanical Analyses Standard set-ups are exclusively applicable for solid
samples.

Imaging Methods High equipment expenditure (and eventually high
security demands).

2.1. Measurement of Volume or Density Changes

In capillary type dilatometers, a sample of the uncured resin or composite is sur-
rounded by a liquid (typically mercury [21] or water [22]), which does not react and
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is immiscible with the resin (Figure 3). By monitoring the height of the liquid in the
capillary, the volumetric changes during polymerization can be monitored [23]. Hence,
capillary dilatometers enable the time-resolved monitoring of volumetric changes during
the curing reaction.
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Gas pycnometers enable to quantify volumes by measuring the amount of displaced
gas and have been applied for shrinkage measurements of thermosetting resins and com-
posites (Figure 4) [24–26]. First, the chamber containing the sample is filled with an inert
gas such as helium until a certain pressure is reached. When the valve is opened, the gas
expands into the expansion chamber, and the pressure decreases. The volume of the sample
Vs can be calculated according to Equation (1) [19], in which VC and VE are the volumes of
the sample chamber and the expansion chamber, and p1 and p2 correspond to the pressure
before and after expansion of the gas.

VS = VC − VE·
p2

p1 − p2
(1)
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Using the so-called buoyancy method, volumetric changes can be calculated from
the density variations of a sample before and after polymerization [18]. The sample is
weighed in air and in a liquid of known density such as water or silicon oil. According
to Archimedes’ principle, a body immersed in a fluid is buoyed up by a force equivalent
to the weight of the fluid displaced by the body. The density ρ of the specimen can be
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calculated by Equation (2), in which ml and mair correspond to the mass of the sample
weighed in the liquid and in air, and ρl is the density of the liquid:

ρ =
ml

mair −ml
·ρl (2)

Sealing the resin in a thin-walled silicone rubber bag and subsequent suspension in a
silicone bath enable the in-situ measurement of the shrinkage of liquid epoxy resins during
isothermal curing (Figure 5) [27].
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2.2. Measurement of Linear Shrinkage

A so-called linometer was developed by Gee et al. It enables the measurement of
the linear shrinkage during the curing of resins and composites (Figure 6) [28]. In this
device, the sample is placed between a glass slide and an aluminum disk. The materials
to be investigated can be photocured by irradiation through the glass slide. The linear
shrinkage in vertical direction can be monitored during the curing reaction by measuring
the displacement of the aluminum disk with a contactless displacement transducer.
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The linear shrinkage LS can be calculated according to Equation (3), in which ∆L is
the recorded displacement and L is the height of sample after polymerization:

LS (%) =
∆L

L + ∆L
·100 (3)
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From the linear shrinkage LS, the volumetric shrinkage VS can be calculated according
to Equation (4):

VS (%) = 3·LS − 0.03·(LS)2 + 0.0001·(LS)3 (4)

The observed shrinkage values by Gee et al. were in good agreement with the results
of dilatometry measurements that were performed for comparison.

The bonded-disk method was developed to measure the real-time linear shrinkage of
dental composites during curing [29]. A disk-shaped specimen is placed between a rigid
glass plate and flexible microscope cover slip. The displacement during the curing reaction
by irradiation through the lower glass plate is measured by a linear variable differential
transformer (LVDT), and the shrinkage in vertical direction can be calculated from the
displacement and height of the specimen after curing (Equation (3)) [30].

The application of lasers for the measurement of linear shrinkage has been used in
several approaches referred to as laser interferometer method [31], laser beam scanning, [32]
and laser reflection method [33,34]. Compared to mechanical techniques, the vertical
displacement of resins and composites caused by shrinkage during the curing reaction can
be determined with high resolution in the range of 10 nm to 0.5 µm [19].

Rheometers have been used for the measurement of the linear shrinkage of epoxy
resins [35] and acrylate [36] resins in dependence of the reaction time. After the gelation
point of the resin, the gap change between the upper and lower plate of the rheometer was
recorded. Coupling with near-infrared spectroscopy enabled to correlate the conversion
with the volumetric shrinkage during photopolymerizations [36]. Thermomechanical
analyzers have been used to quantify the linear polymerization shrinkage by monitoring
the height of the resin and composite samples during thermal curing [26,37].

2.3. Imaging Methods

Another technique to quantify the volumetric shrinkage of thermally or photocured
resins is video-imaging [38,39]. For the measurement, a small drop of the resin (typically
5 to 15 µm) is placed on an adjustable platform, and its contour is recorded by a camera.
By dividing the pictures of the drop into thin, horizontal slices with a certain height, the
overall volume of the drop can be calculated. The polymerization shrinkage is obtained
from the calculated volume of the drop before and after curing.

Digital image correlation DIC is a full-field image analysis method, which enables
the measurement of the three-dimensional deformation of a sample [40,41]. By tracking
the movement of visible patterns on the sample surface with cameras, the deformation
of the sample can be determined during the curing process. A major advantage of DIC is
the possibility to measure non-uniform and anisotropic displacements and strain patterns
within the sample.

Optical coherence tomography [42] and x-ray micro-computed tomography [43,44]
were applied to determine the shrinkage of dental composites during photocuring. To-
mographic methods have the advantage that the accuracy of the measurements is not
influenced by different shapes of the sample as well as enclosed voids and air bubbles
within the material.

3. Expanding Cycloalkanes and Cycloalkenes
3.1. Vinylcyclopropanes

2-Vinylcyclopropanes are monomers that can be subjected to radical ring-opening
polymerizations RROPs with low shrinkage compared to linear vinyl monomers [45,46].
The RROP is initiated by the addition of a radical species to the vinylic double bond,
followed by ring-opening involving the formation a carbon-carbon double bond and a
propagating radical species (Figure 7A). The formation of polymers with ring-opened units
provides volumetric expansion during the RROP, while the by-reactions, namely backbiting
and the formation of cyclobutane units, cause volumetric shrinkage. In consequence,
most vinylcyclopropanes exhibit shrinkage; nonetheless, some examples of monomers
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with bulky substituents have been reported to undergo volumetric expansion during
polymerization (Figure 7B).
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During the bulk polymerization of 1,1-bis(phenoxycarbonyl)-2-vinylcyclopropane
VCP-Ph (Figure 7B) at 60 ◦C using azobisisobutyronitrile AIBN as initiator, volumetric
expansion of 6.7 vol.% was observed by Ueda et al. [47]. The expansion rate decreased at
lower monomer concentrations during solution polymerization as well as with increasing
temperature due to the by-reactions of recyclization and the formation of the cyclobu-
tane units.

The synthesis and RROP of 1,1-bis[(1-adamantyloxy)carbonyl]-2-vinylcyclopropane
VCP-adamantyl (Figure 7B) with volumetric expansion of 4.5 ± 1.1 vol.% was reported
by Shimada et al. [48]. Due to steric hindrance by the adamantyl groups, the unfavored
recyclization by-reaction was suppressed, and, even at high temperatures, the ring-opening
reaction occurred preferentially. Molecular orbital calculations suggested that the RROP
causes a spread of the adamantyl groups, and the free volume of the polymer increases.

The group of Endo synthesized the bifunctional adamantane-substituted vinylcy-
clopropane bis-VCP-adamantyl (Figure 7B), which enables the formation of crosslinked
networks by RROP [49]. During homopolymerization, volumetric expansion of 6.1 vol.%
was observed. By copolymerization of bis-VCP-adamantyl with tricyclodecane dimethanol
dimethylacrylate, the shrinkage was reduced from 8.5 (observed in the course of the
polymerization of tricyclodecane dimethanol dimethylacrylate) to 3.6 vol.%.

Argawal and coworkers compared the thermally triggered and photo-initiated RROP
of 1,1-bis(ethoxycarbonyl)-2-vinylcyclopropane [50]. During photopolymerization, a signif-
icantly reduced formation of cyclobutane units and, correspondingly, increased extent of
ring-opening reactions was observed in comparison to thermal polymerization. Hence, the
shrinkage of 11.2 vol.% during the thermally induced RROP could be reduced to 5.5 vol.%
during photopolymerization.

Moszner, Liska and coworkers investigated the photocuring of vinylcyclopropane-
based composites as alternative to methacrylate-based dental fillings [51–53]. The syn-
thetic focus was directed on various vinylcyclopropane monomers, which contain sim-
ilar structural units like in commonly used acrylate-based monomers such as urethane
dimethacrylate UDMA and tri(ethylene glycol) dimethacrylate TEGDMA (Figure 8). The
composites exhibited low volumetric shrinkage in the range of 1.5 to 1.8 vol.%. The shrink-
age stress as function of the curing time was measured based on a method described
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by Watts et al. [54] using a universal testing machine. During polymerization, the vinyl-
cyclopropane monomers exhibited up to 50% lower shrinkage force compared to the
corresponding methacrylate-based analogues.
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3.2. Norbornenes

Endo and coworkers reported volumetric expansions in the range of 2.0 to 6.3 vol.%
during the ring-opening metathesis polymerization ROMP of norbornenes that contain
five- and six-membered cyclic carbonate groups (Figure 9) [55]. Under otherwise identical
reaction conditions, the polymerization of unsubstituted norbornenes proceeded with
shrinkage of 1.6 vol.%. The unexpected volumetric expansion during the ROMP was
explained by dipole–dipole interactions between the cyclic carbonate groups. Prior to the
polymerization, these interactions are strong, yielding densely packed monomers. After
the ROMP, the dipole–dipole interactions are disturbed due to steric hindrance within the
formed polymer structures. In a second step, the linear polymer chains were crosslinked at
60 ◦C by the cationic ring-opening polymerization CROP of the cyclic carbonate CC units
initiated by scandium triflate Sc(OTf)3. During crosslinking, volumetric changes ranging
from −0.3 to +3.3 vol.% were observed.
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In a subsequent study, Endo et al. investigated the influence of the reaction conditions
on the expansion rates during the ROMP of norbornenes with five- and six-membered CC
groups (Figure 9) [56]. Expansion rates of 1.1 to 3.9 vol.% were observed, depending on
the reaction conditions. The polymerizations were performed at 25 ◦C in dichloromethane
CH2Cl2 using differently substituted Grubbs catalysts. By systematic variation of the
initiator and monomer concentration, respectively, the volumetric expansion was found
to increase with an increasing monomer concentration, molecular weight, and content of
irregular cis-configuration of the exo-cyclic double bonds in the polymer. The polymer-
ization of structurally similar norbornenes without cyclic carbonate groups proceeded
with volumetric shrinkage, indicating that the volumetric expansion during the ROMP
exclusively occurs with norbornenes bearing cyclic carbonate moieties.

The volumetric shrinkage during the ROMP of cyclooctene can be tuned by copoly-
merization with norbornenes that contain cyclic carbonate groups [57]. By variation of the
amount of the norbornene derivatives from 0 to 90 mol%, the degree of volumetric changes
during the ROMP could be customized in the range of −7.4 to +3.8 vol.%. Simultaneously,
the glass-transition temperature Tg of the copolymers increased from −60 to 172 ◦C along
with the content of norbornene. The number-average molecular weight Mn of the obtained
copolymers ranged from 14.5 to 25.8 kDa.
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4. Expanding Oxacycles
4.1. Oxetanes

Oxetanes are a monomer class known to polymerize with lower volumetric shrinkage
than other oxacycles such as epoxides, and, hence, have gained attention for applications
that require low-shrinking resins [58].

Verstegen et al. investigated the photopolymerization of numerous difunctional ox-
etanes derived from bisphenol A [59]. Cationic photopolymerization in the presence of
triaryl sulfonium salts yielded crosslinked networks with shrinkage lower than 3 vol.%. The
oxetane monomer 2,2-di(4-(2-(3-methyloxetane-3-ylmethoxy)propyloxy)phenyl)propane
polymerized with pronouncedly low shrinkage of 0.2 vol.%. The Tg of the polymer net-
works ranged from 71 to 116 ◦C. The polymerization of the oxetanes proceeded with higher
reaction rates compared to bisphenol A diglycidyl ether and with lower reaction rates
compared to the dimethacrylate diacryl 101.

The group of Lub reported the synthesis and cationic photopolymerization of liquid
crystalline difunctional oxetanes [60]. The effect of the spacer length as well as the structure
of the mesogenic and the oxetane group on the liquid crystalline and optical properties was
investigated. Photopolymerization at temperatures above 60 ◦C in the presence of triaryl
sulfonium salts as initiator proceeded with almost 100% conversion and low shrinkage of
2 vol.%. Thermally stable films with birefringence values of up to 0.13 were prepared. The
synthesized oxetanes polymerized with similar reaction rates like commonly used liquid
crystalline dimethacrylates and much faster than liquid crystalline diepoxides.

4.2. Spiroorthoesters

Spiroorthoesters SOEs are conventionally synthesized by the reaction of lactones
with epoxides in the presence of boron trifluoride diethyl etherate BF3·OEt2 as catalyst
(Figure 10A) [61]. After the report of Bailey et al. of the polymerization of spirocyclic
compounds upon volumetric expansion in the 1970s, SOEs have gained increased attention
as expanding monomers, and numerous studies on the synthesis and polymerization of
SOEs were published [13,15]. In the presence of Bronsted and Lewis acids, SOEs polymerize
by cationic double-ring opening reaction, yielding poly(ether ester)s (Figure 10B). For
the polymerization of seven-membered SOEs at low temperatures, single ring-opening
polymerization upon the formation of poly(cyclic orthoester)s was reported [62]. At
temperatures above 100 ◦C, the poly(cyclic orthoester)s undergo isomerization yielding
poly(ether ester)s.
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Figure 10. (A): Synthesis of SOEs from epoxides and lactones. (B): Schematic representation of the cationic double
ring-opening polymerization of SOEs.

The volumetric expansion during the double-ring opening polymerization of SOEs
can be referred to the change of bond distances [13]. The shrinkage occurring during the
formation of a covalent bond between two monomers is counterbalanced by the double-
ring opening, in which two covalent bonds are cleaved upon volumetric expansion.
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Mehrkhodavandi et al. prepared a cationic indium-based catalyst for the synthesis
of SOEs from lactones and epoxides [63]. The indium complex catalyzes the reaction of
1:1 mixtures of a variety of epoxides and lactones into SOEs, which were obtained as
racemic mixtures of diastereomers. At 60 ◦C in benzene, complete conversion of both
educts, the corresponding epoxide and lactone, was observed within 24 h. Competing
homopolymerization of the epoxide, which takes place during conventional SOE synthesis
with BF3·OEt2 as catalyst, was completely avoided.

The double ring-opening polyaddition of mono- and multifunctional SOEs and acid
chlorides was investigated by Nishida and coworkers [64]. The presence of various
tetraphenyl phosphonium halides as catalysts enabled performance of the ring-opening
reaction at room temperature with conversions of up to 100%. The polyaddition of a
bifunctional SOE and 1,3,5-pentanetricarbonyl trichloride yielded a crosslinked network
by curing at 30 ◦C in the presence of 1 mol% tetraphenylphosphonium bromide. Measure-
ments of the volumetric change during the curing reaction using a dilatometer were carried
out over a time period of 10 d and revealed a final shrinkage of 0.21 vol.%.

Hsu and coworkers demonstrated the regiospecific photopolymerization of cis-2,3-
tetramethylene-1,4,6-trioxaspiro[4.4]nonane by exposure to UV light (Figure 11) [65]. The
photopolymerization, initiated by a sterically hindered 9-phenyl-9,10-dihydroanthracen-
10-ylium cation PDAC, yielded poly(trans-2-oxycyclohexyl butanoate) with a volumetric
expansion of 2.1 vol.%. In contrast, during the thermally initiated polymerization with
tin(IV)chloride SnCl4 as initiator, the corresponding cis-form of the polymer was formed
with volumetric shrinkage of 2.5 vol.%. According to density-functional theory DFT
calculations, the trans-form of the poly(ether ester) shows a volumetrically extended
structure, while the cis-form exhibits a more compact and coiled conformation, which
explains the different volume changes during polymerization. In a subsequent study [66],
volumetric expansion rates of 1.53 and 5.35 vol.% were observed during regiospecific
photo-polymerization of the SOEs cis-2,3-tetramethylene1,4,6-trioxaspiro[4.5]decane and
cis-2,3-tetramethylene-1,4,6-trioxaspiro[4.6]undecane.
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Cadiz and coworkers compared the cationic copolymerization of 2-phenoxymethyl-
1,4,6-trioxaspiro[4.4]nonane and bisphenol A diglycidylether DGEBA with lanthanide tri-
flate La(OTf)3 and ytterbium triflate Yb(OTf)3 as initiators under microwave-assisted and
conventionally heated conditions [67]. Microwave-assisted irradiation was argued to accel-
erate the reaction rate by a factor of ten. Fourier-transformed infrared FT-IR measurements
of the curing reaction revealed a higher conversion of the SOE units under microwave
irradiation. This resulted in lower shrinkage in the range of −1.1 to −1.6 vol.% for the
microwave-assisted polymerization, compared to −2.2 to −2.6 vol.% for conventional
thermal curing. The Tg of the obtained networks was in the range of 77 to 80 ◦C.

Ramis and coworkers investigated the cationic copolymerization of DGEBA and
4-phenyl-γ-butyrolactone in the presence of Yb(OTf)3 as thermal initiator and triarylsulfo-
nium hexafluoroantimonate as photoinitiator, respectively [68]. Monitoring of the curing
reaction by FT-IR measurements revealed the formation of intermediate SOE compounds
and subsequent double-ring opening of the SOE moieties by homopolymerization and
copolymerization with epoxy groups. The volumetric shrinkage before and after gelation
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was determined by thermomechanical analyses TMAs and density measurements. The
overall shrinkage slightly increased with the amount of lactone, due to higher conver-
sions. Nevertheless, after gelation, a shrinkage reduction from 0.91 vol.% (neat DGEBA)
to 0.21 vol.% (ratio DGEBA:lactone = 1:1) was observed upon the addition of 4-phenyl-γ-
butyrolactone. Due to the higher crosslinking density, the photocured networks exhibited
higher Tgs and thermal stabilities compared to thermally cured materials.

Canadell et al. investigated the effect of silicon- [69] and phosphorous-containing
SOEs [70] on the shrinkage and flame retardancy of epoxy resins (Figure 12). DGEBA
was cured with Yb(OTf)3 as cationic initiator at temperatures in the range from 140 to
180 ◦C with the corresponding SOE in a molar ratio of 2:1. While pure DGEBA exhibited
shrinkage of 3 vol.%, the formulations DGEBA/SOE-Si and DGEBA/SOE-DOPOMA
(Figure 12) showed volumetric expansion of +0.9 vol.%. The homopolymerization of SOE-
Si and SOE-DOPOMA proceeded with volumetric expansion in the range of +3 vol.%.
The copolymers containing repetition units of SOE-Si and SOE-DOPOMA showed lower
thermal stability and lower Tgs compared to the DGEBA homopolymer. The limiting
oxygen values increased upon the addition of SOE-Si and SOE-DOPOMA. In another study,
reduced shrinkage in the range of 0.5 to 0.9 vol.% as well as improved flame retardancy
was observed in copolymers of SOE-Si, DGEBA, and phosphorous-containing diglycidyl
compounds [71].
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The groups of Sangermano and Wiesbrock employed SOEs bearing allyl groups as
volume-controlling additive in photocurable thiol-ene resins composed of DGEBA and
trifunctional thiol crosslinkers [72]. The volumetric expansion during crosslinking could be
tailored in the range of −3.07 to +1.70 vol.%, alongside with an increase of the SOE content
from 0 to 30 wt.%. Network formation was accomplished according to a visible-light
induced dual-cure mechanism, comprising the radical-mediated thiol-ene reaction and
cationic double ring-opening reaction of the SOE groups.

In a subsequent study, the authors reported the 3D-printing of thiol-ene resins with
SOEs as anti-shrinkage additives by digital light-processing [73]. Formulations of tri(ethylene
glycol) divinyl ether, a tetrafunctional thiol crosslinker, and 50 wt.% of 2-((allyloxy)methy)-
1,4,6-trioxospiro[4.4]nonane were 3D-printed with resolutions of 50 µm, while the shrinkage
was reduced by 39 vol.% compared to the resin free of the SOE. The cured networks
containing SOEs showed permittivities as high as 104, qualifying the materials as high-κ
dielectrics.

Kawakami and coworkers synthesized siloxane-containing bifunctional SOEs and epox-
ides via the hydrosilylation of 2-allyloxymethyl-1,4,6-trioxaspiro[4.6]undecane and allyl gly-
cidylether [74]. Mixtures of the SOEs and epoxides with trimethylolpropane triacrylate were
used to prepare holographic gratings by irradiation with laser light (λ = 532 nm). The SOE-
based holographic gratings showed diffraction efficiency of 66% for the siloxane-containing
SOEs and 36% for the aliphatic SOEs. The volumetric shrinkage of the SOE-based formulations
(6.8 vol.%) was lower than that of the epoxy-based formulations (11.8 vol.%).

The application of SOEs bearing exo-methylene groups as anti-shrinkage additive for
dental resins was investigated by Hang et al. [75]. Acrylic resins based on bisphenol S
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glycidyl methacrylate and 30 wt.% of the SOE were cured by visible light using a three-
component photoinitiator system. By addition of the SOE, the curing shrinkage was
reduced from 2.92 to 1.34 vol.%. Due to reduced shrinkage stress, the cured polymer
networks containing the SOE showed increased compressive strength, Vickers hardness
and tensile bond strength.

The copolymerization of the SOE 2-phenoxymethyl-1,4,6-trioxa-spiro[4.6]undecane
PSOE with 3-ethyl-3-phenoxymethyl oxetane EPOX was investigated by Nagasawa et al. [76].
PSOE and EPOX were mixed in different molar ratios and copolymerized at 120 ◦C, initiated
by a benzyl sulfonium salt. Both monomers showed nearly complete conversion, while
the molecular weight of the copolymers increased along with the amount of EPOX. By
variation of the monomer ratio PSOE:EPOX from 0:100 to 100:0, volumetric changes in the
range from −3.88 to +3.21 vol.% were observed in the course of the polymerization. IR
thermography revealed that the addition of PSOE suppressed temperature increases during
polymerization, which would lead to thermal runaway and thermal shrinkage. Polymer
networks were obtained from the curing reaction of the bifunctional oxetane 1,4-bis(3-
ethyloxetanylmethoxy)benzene with PSOE in the ratio of 80:20 with volumetric expansion
of 3.7 vol.% [77].

Novel styrene monomers bearing five- and seven-membered SOE groups (SOE5
and SOE7) were synthesized from 4-vinylbenzyl glycidylether and γ-butyrolactone or
ε-caprolactone, respectively, by Endo and coworkers (Figure 13A) [78]. The radical poly-
merization of these monomers as well as the crosslinking of the obtained polymers was
investigated. Radical copolymerization of the SOEs with styrene was performed with AIBN
as initiator at 60 ◦C in methyl ethyl ketone MEK; the corresponding statistic copolymers
were obtained with yields between 44 and 74%. The copolymers were crosslinked by
cationic double ring-opening of the SOE units in the sidechains at 120 ◦C in the presence
of a sulfonium antimonite as thermally latent cationic initiator. The crosslinking reaction
occurred with low volumetric shrinkage. During the crosslinking of the homopolymer
poly(SOE7) and the copolymer polystyrene0.32-co-poly(SOE7)0.68, volumetric expansions
of 2.78 and 0.42 vol.% were achieved, respectively.
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(A): Copolymers of styrene and five/seven-membered SOEs. (B): Copolymers of acrylonitrile or vinyl
acetate with five/seven-membered SOEs bearing unsaturated C=C double bonds. (C): Copolymers
of phosphorous-containing vinyl monomers and SOEs with acrylate groups.

Endo et al. investigated the radical copolymerization of a SOE bearing an exo-
methylene group with acrylonitrile and vinylacetate (Figure 13B) [79]. The radical copoly-
merization was performed at 60 ◦C with AIBN as initiator for 24 h. No radical ring-opening
polymerization of the SOE was observed, and statistical copolymers with SOE moieties
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in the sidechain were obtained. During crosslinking with BF3·OEt2 as cationic initia-
tor at 120 ◦C for 24 h, all copolymers showed volumetric expansion in the range from
0 to +1 vol.%, regardless of the copolymer composition.

Cadiz et al. reported the homopolymerization of SOEs bearing acrylate groups and
the copolymerization with phosphorous-containing vinyl monomers (Figure 13C) [80].
Upon free-radical polymerization, copolymers with different phosphor concentrations and
crosslinkable SOE units in the sidechain were obtained. By crosslinking with Y(OTf)3 as
cationic initiator at 80 ◦C, networks with a Tg in the range of −14 to +12 ◦C were obtained.
All copolymers showed volumetric expansion of +1.7 to +2.6 vol.% during crosslinking.
The incorporation of 3 and 6 wt.% phosphorous in the copolymers increased the limiting
oxygen values and the flame retardancy of the materials.

Radical homopolymerization of the acrylic SOE monomer yielded a polyacrylate (Mw
of 25.0 kDa) with SOE side-groups. Crosslinking with DGEBA and various phosphorous-
containing epoxy components proceeded with low shrinkage in the range of −0.2 to
−0.7 vol.% and yielded networks with a Tg above 100 ◦C and increased limiting oxygen
values [81].

4.3. Spiroorthocarbonates

Since the first report by Bailey and coworkers of the spiroorthocarbonate SOC poly-
merization upon volumetric expansion in 1972, the synthesis and application of SOCs
as expanding monomers to control the shrinkage during conventional polymerizations
has gained increased attention [13,17]. In the presence of acids, six-membered SOCs un-
dergo cationic double ring-opening polymerization upon volumetric expansion, yielding
poly(ether carbonate)s (Figure 14A). For SOCs that contain five- or seven-membered rings,
the formation of polyethers and polycarbonates, respectively, has been reported [82]. Due
to the accompanying elimination of propylene carbonate and tetrahydrofurane THF as
by-products, the application of five- and seven-membered SOCs as expanding monomers
is limited. SOCs that bear exo-methylene groups can undergo radical-initiated vinyl poly-
merization and radical-initiated double ring-opening polymerization (Figure 14B) [83,84].
The degree of ring-opening depends on the monomer structure and the stability of the
radical intermediates formed. The volumetric expansion upon polymerization increases
alongside with the degree of double ring-opening.
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The synthesis of oligo(spiroorthocarbonate)s by polycondensation of pentaery-
thritol derivatives and tetraethyl orthocarbonate was reported by Endo and coworkers
(Figure 15A) [85]. Oligomers with a Mn in the range of 1.1 to 1.3 kDa and dispersity
indices in the range of Ð = 1.66 to 1.96 were obtained. The solubility is strongly de-
pendent on the substituent R (Figure 15A). While the oligomeric SOC with R = H was
completely insoluble, the introduction of methyl, n-butyl and phenyl groups provided
solubility in common organic solvents.
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Moritsugu et al. synthesized novel poly(SOC)s from several bis-catechols containing
fluorine BCFL (yielding SOC-FL), spirobischromane BCSPC (yielding SOC-SPC), and
spirobisindane BCSPI (yielding SOC-SPI) structures (Figure 15B) [86]. Polymers were
obtained as white solids with weight-average molecular weights Mw in the range of 10.8
to 35.8 kDa. From the soluble polymers poly(SOC-FL) and poly(SOC-SPC), transparent
films with 95% light transmission in the visible region were prepared by spin-coating. In
the temperature range from 50 to 300 ◦C, no Tg was detected. The polymers showed high
thermal stability. Data on the ring-opening reaction of the SOC groups and expansion
measurements were not reported.

The group of Endo investigated the cationic copolymerization of oligomeric SOCs
(Figure 15A) with DGEBA [87]. The copolymerization was performed at 180 ◦C for 1 h
in the presence of sulfonium salts as cationic initiators. The methyl-substituted SOC
showed higher shrinkage reduction compared to other SOCs. While pure DGEBA showed
shrinkage of 3.1 vol.%, mixtures with 1 and 10 mol% of the methyl-substituted oligo-SOC
exhibited shrinkage of only 1.2 and expansion of +0.1 vol.%, respectively. The copolymer
networks containing oligo(SOC)s showed a similar temperature stability like the DGEBA
homopolymer.

Xu et al. synthesized novel phosphorous-containing SOCs DSOCs as anti-shrinkage
additive and flame-retardant for epoxy resins (Figure 16A) [88]. The DSOC was copolymer-
ized with the DGEBA-based epoxy resin E51 at 150 ◦C in the presence of boron trifluoride
triethylamine BF3·NEt3 as catalyst. During crosslinking, volumetric changes in the range
from −1.49 to +1.43 vol.% were observed if the content of DSOC was increased from 0 to
20 wt.%. The limiting oxygen index LOI values increased from 19.9% for the epoxy resin to
30.9% for the resin containing 20 wt.% DSOC.
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The prepolymer SOCP was synthesized from an oligomeric SOC bearing hydroxy
functions and toluene diisocyanate by Changsong and coworkers (Figure 16B) [89]. During
copolymerization of the DGEBA-based epoxy resin E51 with 20 wt.% of SOCP at 190 ◦C in
the presence of BF3·NEt3, volumetric expansion of 1.1 vol.% was observed. The polymer
networks containing SOCP showed increased adhesive strength, impact strength, and
flexural strength compared to the pure epoxy resin.

Ortiz et al. reported the shrinkage reduction of cycloaliphatic epoxy resins by copoly-
merization with sterically hindered SOCs [90]. A dicyclododecanyl-substituted SOC was
synthesized with an overall yield of 37% in five steps starting from cyclodecanone. The SOC
was copolymerized with 3,4-epoxycyclohexylmethy-3′,4′-epoxycyclohexane carboxylate
by cationic photopolymerization. Upon addition of 4 and 8 mol% of the SOC, volumetric
expansions in the range from 0.68 and 3.39 vol.% were achieved. The Tg of the cured
polymer networks slightly decreased from 154 ◦C of the pure epoxy resin to 151 and 140 ◦C
of the materials containing 4 and 8 mol% SOC.

The cationic photopolymerization of DGEBA with a SOC bearing two fluorenyl
groups SOC-Fl as anti-shrinkage additive was investigated by Sangermano et al. [91].
The shrinkage during the curing reaction of pure DGEBA was 4.77 vol.%. Upon addition of
2.5 and 5.0 mol% of SOC-Fl, the shrinkage was reduced to 2.42 and 1.94 vol.%, respectively.
For the formulation containing 10 mol% of SOC-Fl, expansion of 0.19 vol.% was observed.
All networks showed high gel contents in the range of 98 to 100%, and Tgs in the range
from 157 to 181 ◦C. The conversion of epoxy groups increased from 70 to 80% alongside
with the concentration of SOC-Fl.

Cheng and coworkers reported the preparation of an UV-curable resist for nanoimprint
lithography [92]. A bifunctional cycloaliphatic epoxy resin was formulated with a liquid
SOC, namely 3,9-diethyl-3,9-bis(allyloxy)-1,5,7,11-tetraoxaspiro undecane and a photoacid
generator in different ratios. Upon addition of the SOC, the shrinkage decreased from
7.86 vol.% of the pure epoxy resin to 1.86 vol.% for the formulation containing 50 wt.% of
the SOC. In addition, the demolding force during the nanoimprint process was reduced
by 69% upon addition of 50 wt.% of the SOC. All formulations were patterned by UV
nanoimprinting with a maximum resolution of approximately 60 nm.

The groups of Ortiz and Sangermano used tetrafunctional SOCs Tetra-SOCs as anti-
shrinkage additive for the photopolymerization of the bifunctional cycloaliphatic epoxide
3,4-EP (Figure 17A) [93]. The Tetra-SOCs were synthesized in three steps starting from
tetraethyl orthocarbonate and glycerol with an overall yield of 15%. Since the two obtained
isomers were difficult to separate, a mixture (ratio Tetra-SOC 1:Tetra-SOC 2 = 65:35) was
used for the cationic copolymerization with 3,4-EP (Figure 17A) in the presence of a
iodonium salt as photoacid generator. The epoxy resin without additive showed shrinkage
of 5.8 vol.%, which was not significantly reduced by the addition of 2.5 mol% of Tetra-SOC
(shrinkage of 5.5 vol.%). On the contrary, addition of 5.0 and 7.0 mol% of Tetra-SOC resulted
in nearly volume-neutral curing (+0.26 vol.%) and expansion of +2.2 vol.%, respectively.
For the epoxy homopolymer, a Tg of 153 ◦C was observed, which decreased to 125 ◦C upon
the addition of 7 mol% of Tetra-SOC.
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SOC-Ol.

Ortiz, Sangermano and coworkers reported the cationic photopolymerization of
3,4-EP with different amounts of hydroxyl-modified SOCs as anti-shrinkage additive
(Figure 17B) [94]. By the reaction of tetraethyl orthocarbonate and glycerol, SOC-Diol 1 and
SOC-Diol 2 were obtained as hardly separable isomeric mixture in the ratio of 3:2 with a
yield of 50%. Hemi SOC-Ol was obtained as by-product in a yield of 25%. Upon addition
of a mixture of SOC-Diol 1 and SOC-Diol 2, the conversion of epoxy groups increased from
40% (pure epoxy resin) to 78% (formulation with 20 mol% of the SOC-Diol). The higher
conversions were explained by the flexibilization of the polymer networks due to the
formation of poly(ether carbonate) chains during the cationic ring-opening of SOC groups
and the resulting delay of gelation. Correspondingly, due to the higher conversion, the Tg
increased from 105 ◦C for the pure epoxy resin to 145 ◦C for the formulation containing
5 mol% of the SOC-Diol. However, in networks with further increased concentrations
of the SOC-Diol (10 and 20 mol%), the Tg decreased to 96 and 81 ◦C, respectively, due
to the formation of flexible poly(ether carbonate) chains. Compared to the pure epoxy
resin (shrinkage of 3.97 vol.%), the formulations containing 5, 10 and 20 mol% of the SOC
showed reduced shrinkage of 2.83, 2.47 and 2.17 vol.%.

In another study, the same authors investigated the photopolymerization of DGEBA
with a mixture of SOC-Diol 1 and SOC-Diol 2 as well as Hemi SOC-Ol (Figure 17B) [95]. The
shrinkage of 8.0 vol.% in the case of pure DGEBA was reduced to 1.8 vol.% for formulations
containing 30 wt.% of Hemi SOC-Ol as anti-shrinkage additive. SOC-Diol was found to be
more effective, inducing a volumetric expansion of 1.1 vol.% during crosslinking if it was
added in the same amount. Gel contents above 95% confirmed the formation of crosslinked
networks. The Tg of the pure, cured epoxy resin of 145 ◦C decreases to 128 and 95 ◦C for
the networks containing 30 wt.% SOC-Diol and Hemi SOC-Ol, respectively. While the
elastic modulus decreased upon the addition of Hemi SOC-Ol, no significant changes were
observed for the SOC-Diol based networks.

Endo et al. described the thermally initiated, cationic copolymerization of a SOC with
the bifunctional oxetane BOXT (Figure 18) [96]. By curing formulations containing the
bifunctional oxetane and a varying content of the SOC (0, 25, 32, 50, 75 mol%) at 150 ◦C for
2 h, insoluble polymer networks were obtained with yields in the range from 88 to 96%.
While the formulation containing 32 mol% of the SOC were cured without the occurrence
of any volumetric changes, the formulations with 50 and 75 mol% of the SOC showed
expansion rates of +3.1 and +4.4 vol.% during curing. The Tg of the copolymer networks
ranged from 86 to −21 ◦C and was found to decrease linearly with increasing amount of
SOC. The copolymerization of the monofunctional monomer 3-ethyl-3-phenoxymethyl
oxetane with SOC yielded linear, soluble polymers with Mn in the range of 5.6 to 12.0 kDa.
The formation of copolymers containing both, repetition units of poly(SOC) as well as
poly(oxetane), was proven by proton nuclear magnetic resonance 1H-NMR spectroscopy.
By increasing the amount of the SOC from 0 to 75 mol%, volumetric changes in the range
of −4.5 to +8.6 vol.% were observed.
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The cationic UV-induced curing of a bifunctional oxetane resin with an oxetane-
functionalized hemi-SOC, namely 7,7-diethoxy-2,6,8-trioxaspiro[3.5]nonane, as anti-
shrinkage additive was investigated by the groups of Sangermano and Ortiz [97].
While the pure oxetane resin showed shrinkage of 4.21 vol.%, formulations containing
50 mol% of the hemi-SOC showed slight expansion of +0.95 vol.% upon curing. Both
networks showed high gel contents of 97%. The Tg of the polymer network decreased
from 115 to 70 ◦C upon the addition of the hemi-SOC.

The effect of a SOC bearing two thiol groups (SOC-Dithiol) on the mechanical proper-
ties and shrinkage of dental resins was investigated by Ortiz et al. (Figure 19A) [98]. The
SOC-Dithiol was added to a conventional acrylic resin composed of bisphenol A glyceroate
dimethacrylate (bis-GMA), urethane dimethacrylate (UDMA), and tri(ethylene glycol)
dimethacrylate (TEGDMA) with concentrations in the range of 5 to 30 mol%. Curing of the
resin in the course of both, the radical-mediated thiol-ene reaction and the methacrylate
homopolymerization, was initiated by LED light in the presence of a radical initiator; for
the cationic ring-opening reaction of the SOC units, also a photo-acid generator was added.
The addition of 30 mol% of the SOC-Dithiol reduced the shrinkage by 59% (from 5.37 to
2.21 vol.%) compared to the pure resin without the SOC. The conversion of methacrylate
groups increased with the amount of the SOC-Dithiol, which results in higher crosslinking
densities and increased elastic modulus. The Tg of all materials was in the range from 75
to 90 ◦C.
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A mixture of SOCs with five and six-membered rings bearing two allyl groups
(SOC-diallyl) was used to reduce the shrinkage of acrylic dental resins (ratio bis-
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GMA:UDMA:TEGDMA = 50:30:20) by Ortiz, Gonzales and coworkers (Figure 19B) [99].
The SOC-diallyl was incorporated into the acrylic resin by radical polymerization
of the carbon double bonds, while cationic polymerization of SOC groups yielded
additional crosslinking by the formation of poly(ether carbonate) chains. The resin
without additive showed shrinkage of 5.98 vol.%, which was reduced by 53% upon
addition of 20 mol% of the SOC-diallyl. The conversion of the acrylic carbon double
bonds increased with the amount of the SOC-diallyl, resulting in higher crosslinking
density. Correspondingly, the Tgs, flexural strength, and compressive strength of the
cured networks were found to increase by the addition of the SOC-diallyl.

Dental composites containing bismethylene modified SOCs (SOC-BM), bisphenol S
glyceroate dimethylacrylate, and TEGDMA as resin matrix, as well as 70 wt.% of SiO2 were
prepared by the group of Wang (Figure 19C) [100]. The composites without the SOC exhib-
ited shrinkage of 4.5 vol.% and contraction stress of 3.8 MPa upon curing. In comparison,
the composites containing 30 wt.% of the SOC-BM showed reduced shrinkage of 1.25 vol.%
and reduced contraction stress of 1.9 MPa. In addition, the compressive strength increased
from 200 to 240 MPa upon the addition of the SOC-BM. The cured composites containing
SOC-BM showed lower wettability compared to the SOC-free composites.

Spiroorthocarbonates modified with dimethacrylate urethanes UDMA-SOC and
isophorone urethanes IP-UDMA-SOC were synthesized as anti-shrinkage matrices
for dental composites by Duarte et al. (Figure 19D) [101]. Formulations of an acrylic
resin containing bis-GMA, UDMA and TEGMA as well as different amounts of the
SOCs were investigated. The shrinkage stress was reduced by 53% and 47% if bis-GMA
was replaced by UDMS-SOC and IP-UDMA-SOC, respectively. The cured polymer
networks with IP-UDMA-SOC showed higher flexural strength and elastic modulus
compared to pure bis-GEMA-based resins. The Tg values of the polymer networks
were in the range of 80 to 100 ◦C.

Kim and coworkers investigated various formulations of alkoxylated bis-GMA
derivatives and SOCs containing exo-cyclic carbon double bonds for the production
of dental composites with reduced shrinkage (Figure 19E) [102]. In the case of ther-
mally induced homopolymerizations of the SOC monomers with AIBN as initiator
at 100 ◦C, volumetric expansions in the range from 2.7 to 4.0 vol.% were observed;
photopolymerization in the presence of camphorquinone, on the other hand, was
found not to occur. However, during the photocuring of formulations composed of
bis-GMA and SOCs, the formation of carbonate groups was detected, indicative of the
double ring-opening polymerization of the SOC moieties. A composite composed of
a conventional resin matrix (ratio bis-GMA:TEGDMA = 70:30) and 70 wt.% of silica
filler showed shrinkage of 2.5 vol.% during the curing reaction. In comparison, the
composites containing alkoxylated bis-GMA derivatives and 10 or 20 wt.% of the SOC
showed reduced shrinkage in the range of 0.65 to 1.15 vol.%.

4.4. Cyclic Carbonates

The polymerizations of six-membered cyclic carbonates CCs can be initiated by either
cationic or anionic initiators, yielding polycarbonates almost quantitatively [14]. As ex-
panding monomers, CCs have gained increased attention since the early 1990s, and various
six- and seven-membered CCs were found to undergo volumetric expansion in the range
of 1.1 to 7.7 vol.% during cationic or anionic homopolymerization [103]. The observed
volumetric expansions during polymerization can be explained by a strong difference
between some physical properties of cyclic and acyclic carbonates (Table 2) [13]. Despite
similar molecular weights, cyclic propylene carbonate shows a higher boiling point, den-
sity and dipole moment than acyclic diethyl carbonate. Tanaka et al. proposed that the
volume expansion during polymerization is a direct consequence of the changes of the
dipole moments before and after polymerization [103]. While CC monomers are densely
packed and show strong interactions due to the high dipole moments, these intermolecular
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interactions are significantly reduced in the corresponding polymers derived from acyclic
carbonate units.

Table 2. Boiling point, density ρ and dipole moment µ of some cyclic and acyclic carbonates.

Cyclic Carbonate Boiling Point (◦C) ρ (g/mL) µ (Debye)
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The dipole moment of numerous six-membered CCs that undergo volumetric ex-
pansion during polymerization and their acyclic counterparts was determined by semi-
empirical molecular orbital calculations [103]. The calculations revealed dipole moments
of approximately 5.5 Debye for the CCs, and dipole moments in the range from 0.59 to
1.05 Debye for their acyclic analogues. The volumetric expansion during polymerization
was found to increase with the difference of the dipole moments of the monomer and the
corresponding polymer.

The cationic copolymerization behavior of various cyclic ether monomers with
norbornene modified cyclic carbonate N-CC was investigated by the group of Endo
(Figure 20) [104]. Polymerizations were performed in bulk at 120 ◦C in the presence of
the thermal latent cationic initiator 2-indanyl phenyl methyl sulfonium hexafluoroanti-
monate. While the cationic homopolymerization of the epoxy monomer 1 (Figure 20)
resulted in shrinkage of 24 vol.%, the addition of 5, 10, 20, and 50 mol% of N-CC
resulted in volume changes ranging from −19 to +2.5 vol.% during copolymerization.
Due to the poor solubility of N-SOC in formulations containing the epoxy monomer,
the shrinkage reduction and the yields of copolymer networks were lower compared
to the formulations containing N-CC. For the copolymerization of N-CC with the
epoxides 3, 4, and 5 (Figure 20), no expansion was observed, but the shrinkage was
reduced significantly. From the copolymerization of N-CC with the monofunctional
oxetane 2a, linear copolymers with Mns in the range from 5.8 to 6.9 kDa were obtained;
the formulation containing 30 mol% N-CC showed expansion of 0.4 vol.% during
polymerization.
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The anionic copolymerization of the cyclic carbonate DM-CC with phenyl glycidylether
GPE in the presence of 4 mol% 1,8-diazabicyclo[5.4.0]undec-7-ene DBU as anionic initiator
was reported by Morikawa et al. (Figure 21A) [105]. The homopolymerization of GPE at
90 ◦C proceeded slowly; after 90 h, the conversion of the epoxy groups amounted to only
39%. The addition of DM-CC accelerated the polymerization rate of GPE and suppressed
chain-transfer reactions, resulting in conversions higher than 95% within 12 h and the
formation of the corresponding copolymers with higher molecular weight compared to the
GPE homopolymer. By the curing reaction of the multifunctional novolak glycidylether
with different amounts of DM-CC, insoluble networks with gel contents of 99% were
formed. The polymerization shrinkage of 3.9 vol.% for the pure novolak resin was reduced
to 1.7 vol.% by the addition of 50 mol% of DM-CC. The copolymer networks showed Tg
regions at temperatures between 20 and 120 ◦C.
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A patent of the company 3M describes the synthesis of multifunctional CCs by the
reaction of glycerol carbonate with poly(isocyanate)s (Figure 21B) [106]. The CCs were used
to reduce the shrinkage of numerous epoxy-amine resins. Exemplarily, the DGEBA-based
epoxy resin Epon 828 exhibited shrinkage of 4.11 vol.% during curing with isophorone
diamine at 70 ◦C. By the addition of 10, 25 and 50 mol% of a trifunctional CC, volumetric
changes in the range of −0.2 to +1.73 vol.% were observed during curing under the
same conditions.

4.5. Other Oxygen-Containing Oligocyclic Monomers

A bicyclic orthoester BOE (Figure 22A) was used to control the shrinkage of trimethy-
lolpropane triglycidyl ether during cationic photopolymerization [107]. By variation of
the BOE content from 0 to 50 wt.%, the formulations showed volumetric changes ranging
from −3.3 to +1.6 vol.% during UV-induced cationic curing. The volumetric changes were
proportional to the content of the BOE. The Tg of the polymer networks decreased from
110 to 40 ◦C with increasing amounts of the BOE. Due to flexibilization of the polymer
networks, the final conversion of epoxy groups increased upon the addition of the BOE.
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The thermally induced cationic copolymerization of hydroxy-modified BOE-OH
(Figure 22B) with GPE was investigated by Endo and coworkers [108]. Polymerization at
130 ◦C in the presence of BF3·OEt2 as cationic initiator yielded linear, soluble polyethers.
By curing at 250 ◦C, insoluble polymer networks were obtained due to the additional
condensation reaction of hydroxy groups of the polymer chains, yielding ether bonds.
During the formation of linear (co)polymers, pure GPE showed shrinkage of 7 vol.%, which
was reduced to 4 vol.% upon the addition of 90 mol% of the BOE. During crosslinking at
250 ◦C, only slight shrinkage reduction of 0.9 vol.% was achieved. The linear polymers and
the crosslinked networks exhibited Tgs in the range of −12 to +20 ◦C and −22 to +47 ◦C,
respectively.

The anionic copolymerization of epoxides with various bicyclic bis(γ-butyrolactone)s
was investigated by the group of Endo [109]. The ring-opening polymerizations yielding
polyesters were performed in THF at 120 ◦C using triphenylphosphine PPh3 as initiator.
By copolymerization of a mixture of DGEBA and bifunctional BBL (Figure 22C) in the
molar ratio of 50:50, polymer networks with a Tg of 68 ◦C and high thermal stability were
obtained; volumetric expansion of +1.0 vol.% was observed.

Cationic double ROP of a spiroketal was investigated by Endo et al. (Figure 22D) [110].
The polymerization was performed with 5 mol% of BF3·OEt2, methyl triflate TfOMe, triflu-
oromethanesulfonic acid TfOH, or SnCl4 as cationic initiator in CH2Cl2 at temperatures
between 50 and 100 ◦C. The double ROP yielded poly(ether ketone)s with Mns in the
range from 2.9 to 3.7 kDa. Depending on the reaction conditions, the spiroketal induced
volumetric expansion between +0.9 to +1.2 vol.% in the course of the polymerization.

Wienmann et al. compared the commercially available silorane (Figure 22E) with
conventionally applied methacrylate-based dental composites [111]. Cationic crosslinking
of the silorane composite was performed by irradiation with visible light, using an initiator
system composed of camphorquinone, an iodonium salt, and a tertiary amine. The silorane
composite showed shrinkage of 0.94%, which was lower compared to the methacrylic
composites (shrinkage in the range of 2.0 to 3.6 vol.%). The cured silorane composites
showed similar mechanical properties like the methacrylic systems.

Lee et al. reported volumetric expansion during the cationic curing of DGEBA in the
presence of N-benzylpyrazinium hexafluoroantimonate as initiator [112]. The density of
the formed polymer networks was measured at room temperature after curing at 150 ◦C for
(maximum) 40 min, and was monitored as a function of the curing time. While the density
of the samples containing 0.5 wt.% of the initiator did not change during curing, the density
of the samples containing 3.0 wt.% of the initiator decreased from 1.23 to 1.20 g·cm−3 with
proceeding reaction time. This corresponds to a volumetric expansion of 2.5 vol.%. The
authors explained the volumetric expansion as a consequence of inter- and intramolecular
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hydrogen bonding due to an increased abundance of hydroxy groups at higher initiator
concentrations and the resulting changes of molecular packing in the polymer networks.

5. Expanding Benzoxazines

In the last decades, benzoaxazine resins have gained increased attention as alterna-
tive to resol- and novolak-type phenolic resins [113,114]. Benzoxazine-based thermosets
show high Tgs, excellent flame retardance, high mechanical strength, low dielectric con-
stants as well as low coefficients of thermal expansion and, hence, are used for various
industrial applications such as aerospace composites and laminates for printed circuit
boards PCBs [115]. Compared to classic phenolic resins, benzoxazines polymerize with
low volumetric shrinkage or even slight expansion [116] and without the formation of any
by-products. Typically, benzoxazines are synthesized by a Mannich-type condensation
reaction from phenol derivatives, formaldehyde and primary amines (Figure 23). The
ring-opening polymerization of benzoxazines proceeds at elevated temperatures (typically
140 to 220 ◦C) without a catalyst by cleavage of the C-O-bonds and the formation of reac-
tive iminium ions. The addition of cationic initiators such as Lewis acids [117], Bronsted
acids [118], and Crivello salts [119] accelerates the polymerization and enables curing at
lowered temperatures.
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Figure 23. Schematic representation of the synthesis and polymerization of benzoxazine monomers.

Ishida and Low published a study of the volumetric expansion of benzoxazine resins,
which were synthesized from bisphenol A, formaldehyde and various primary amines
(Figure 24A) [116]. Curing at 150 ◦C without a catalyst or initiator yielded polymer net-
works with Tgs in the range from 135 to 180 ◦C. The volumetric changes upon crosslinking
were determined by density measurements of the monomers and the cured polymers
at room temperature and were found to correlate with the substituent R of the amine
employed in the monomer synthesis. For aliphatic substituents, the volumetric expansion
decreased with the length of the aliphatic chain: While the methyl-substituted monomer
showed expansion of +3.20 vol.%, the n-butyl-substituted monomer polymerized with
shrinkage of 0.82 vol.%.
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Figure 24. (A): Volumetric changes of bisphenol A-based benzoxazines with different substituents R at the nitro-
gen atom. (B): Schematic representation of possible hydrogen intramolecular bonds in N,N-bis(3,5-dimethyl-2-
hydroxybenzyl)methylamine as model compound for benzoxazine-based resins.
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The authors proposed that the volumetric changes are a consequence of intramolec-
ular hydrogen bonding and the resulting molecular packing of the polymer networks.
Intramolecular hydrogen bonds between hydroxyl groups and the nitrogen bridges or
between adjacent hydroxyl groups were argued to occur in benzoxazine-based resins and
verified on the example of N,N-bis(3,5-dimethyl-2-hydroxybenzyl)methylamine as model
dimer (Figure 24B) [116,120]. These hydrogen bonds can induce the formation of curled
structures, the presence of which hinders tight packing of the polymer chains. Correspond-
ingly, stronger hydrogen bonding results in increased expansion, while the strength of the
hydrogen bonds was found to depend on the substituent R at the nitrogen atom.

The effect of different catalysts on the volumetric expansion of the benzoxazine BA-a
was investigated by Liu et al. (Figure 25) [121]. Four different benzoxazine systems were
cured at 160 ◦C: BA-a without catalyst, BA-a with oxalic acid, BA-a with N,N-dimethyl
benzylamine as well as BA-a with 10 wt.% epoxy resin E44 and N,N-dimethyl benzylamine.
Density measurements of the monomers and the cured polymer networks revealed ex-
pansions in the range from +1.19 to +1.48 vol.%. However, by following the volumetric
changes during isothermal curing at 160 ◦C with a silicon oil-based dilatometer, shrinkage
was observed for all formulations. While the pure benzoxazine exhibited curing shrinkage
of 4.23 vol.%, the presence of the catalysts oxalic acid or N,N-dimethyl benzylamine leads
to slightly reduced curing shrinkage of 3.53 and 4.10 vol.%, respectively. In addition,
the presence of the catalysts accelerated the crosslinking reaction, resulting in shorter
gelation times.
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Lofti et al. investigated the mechanical properties and biocompatibility of poly(benzoxazine)-
based composites reinforced with zirconia ZrO2 micro- and nanoparticles [122]. The composites
were prepared by the curing of homogenized mixtures of BA-a (Figure 25) and different amounts
of ZrO2 at 220 ◦C without a catalyst. Simulation of the volumetric changes during polymer-
ization with the Materials Studio software revealed curing shrinkage of 2.8 vol.%. According
to nanoindentation measurements, the elastic modulus and the hardness increased upon the
addition of ZrO2 particles compared to the unfilled poly(benzoxazine). The biocompatibility of
the composites was tested by an MTT assay with MG63 cells and revealed high cell viabilities
of 97%.

The effect of curing conditions on the density and the Tgs of poly(benzoxazine)s
derived from the bisphenol A-based monomer BA-a and its fluorinated analogue BAF-
a was investigated by Ishida and coworkers (Figure 25) [123]. Isothermal curing was
performed without a catalyst in temperatures in ranging from 135 to 185 ◦C. During
polymerization, both monomers showed expansions of 1–2 vol.%, while the expansion
increased with the degree of conversion. At a curing temperature of 185 ◦C, nearly complete
conversion and maximum Tgs of 170 ◦C for BA-a and 220 ◦C for BAF-a were reached. In
addition, poly(BAF-a) exhibits higher temperature stability than poly(BA-a).

Wiesbrock and Windberger described the thermally initiated copolymerization of
benzoxazines with CCs upon volumetric expansion (Figure 26) [124]. The homopoly-
merization of the benzoxazine monomers occurred with slight expansion in the range
of 1 to 3 vol.%. During copolymerization with cyclic carbonates such as ethylene and
propylene carbonate, unexpectedly high expansion rates of up to 30 vol.% were observed.
Highest expansion rates were observed if the molar ratio of the benzoxazines and cyclic
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carbonates was n:n = 1:1. The mechanical properties of the obtained poly(benzoxazine)-co-
poly(carbonates) can be adjusted from highly brittle to rubber-like materials by variation
of the carbonate content. Benzoxazine monomers that contain olefinic groups enabled the
preparation of pre-cured polymer networks by UV-induced by thiol-ene click reaction at
room temperature prior to the ring-opening copolymerization with the CCs.
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Saiev et al. developed a model for the calculation of the thermomechanical properties of
benzoxazine thermosets [125]. Three monomers, namely 4,4′-(p-phenylene)-bis(3,4-dihydro-
6-ethyl-2H-1,3-benzoxazine), 4,4′-(p-phenylene)bis(3,4-dihydro-2H-1,3-benzoxazine) and
bis(3,4-dihydro-6-phenyl-2H-1,3-benzoxazinyl)isopropane were used for the simulations in
this study. Molecular dynamic simulations were performed based on a newly developed
crosslinking algorithm for thermal curing and enabled to monitor the evolution of the molec-
ular structure during the polymerization reaction. Physiochemical and thermomechanical
properties such as molecular weight, crosslinking density, coefficient of thermal expansion,
Tg, Young modulus and shear modulus were calculated and correlated with the network
topology of the polymers. According to density calculations, the volumetric expansion
during polymerization increased with the degree of conversion, e.g., volumetric expansion
of +2.5 vol.% at 80% conversion.

6. Expanding Thiocycles

The anionic polymerization of six-membered cyclic thiocarbonates bearing norbornene
and norbornane groups was investigated by Endo and coworkers (Figure 27A) [126]. The
polymerizations were performed in bulk or in solutions of N,N-dimethylformamide DMF
and toluene in the presence of DBU as initiator at 120 ◦C. Polymers with Mns in the range
from 7.1 to 15.2 kDa were obtained with relatively low yields between 22 to 38%. For both
monomers, similar expansion rates of 12.3 and 12.6 vol.% were observed. The Tg of both
poly(thiocarbonate)s was 82 ◦C.
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The same authors reported the cationic polymerization of a five-membered cyclic
thiocarbonate bearing an adamantyl group [127]. The polymerizations were carried out in
CH2Cl2 at 30 ◦C with 2 mol% of TfOH, TfOMe, triethyloxonium tetrafluoroborate Et3OBF4,
or BF3·OEt2 as cationic initiator. During polymerization in the presence of BF3·OEt2,
volumetric expansion of 14 vol.% was observed, and polymers with a Mn of 10.6 kDa and
Ð of 1.44 were obtained.
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A tetrathio-SOC with seven-membered rings showed volumetric expansion of 5.2 vol.%
during polymerization at 150 ◦C in the presence of tetramethylene sulfonium hexafluoroan-
timonate (Figure 27B) [13].

7. Applicability of Expanding Monomers in Novel Products and Materials

The common structural motif of the prominent classes of expanding monomers pre-
sented in this review is the presence of cyclic and even oligocyclic units. With the exception
of benzoxazines, oxetanes, cyclic carbonates, and (selected) vinylcyclopropanes, the ex-
panding monomers are not commercially available on economic price scale. Due to the
limited availability of expanding monomers, strategies to enable their industrial applica-
bility are expected to focus on the commercially available monomers and/or high-end
applications with comparably low material consumption such as dental fillings (see the
examples hereinabove). This shortcoming of materials’ availability, unfortunately, does not
meet the plethora of diverse application fields, in which geometric accuracy of fit is highly
favored in order to avoid the formation of microcracks, microvoids, internal mechanical
stresses or even delamination.

On the other hand, due to the intentional volumetric expansion, comparably low
Tgs and E modulus are commonly observed in (co-)polymers obtained from expanding
monomers. One straight-forward strategy to overcome the decreased thermomechanical
properties is the usage of bifunctional monomers that, on the one hand, exhibit shrink-
age in the course of radical-induced polymerization or crosslinking and, on the other,
cationic-induced expansion due to ring-opening reactions. In particular the vinylcyclo-
propanes, norbornenes with cyclic carbonate groups as well as olefinic SOEs, SOCs, CCs,
and benzoxazines reported hereinabove belong to this class of bifunctional monomers.
Depending on the ratio of radical-induced polymerization or crosslinking and cationic-
induced ring-opening, shrinkage, volume-neutral curing, or expansion can be observed.
Notably, the extent can of radical-induced polymerization or crosslinking can be increased
by copolymerization with other olefinic monomers that do not bear additional groups that
can undergo cationic ring-opening.

Notably, in this context, bifunctional monomers, of which one of the two functionalities
can be cured upon volumetric expansion, have been evaluated for applicability in novel
product generations most recently. Prominent research foci comprise photopolymerizations
with low or no volumetric shrinkage during curing [36,50,53,58–60,90–95,128,129], dental
fillings with low or no volumetric shrinkage during curing [21,75,98,100–102,111] and the
3D printing with unrivaled alignment of the geometry of the printed object with the CAD
drawing [51,73].

8. Summary

Several cyclic monomers, such as cycloalkanes and cycloalkenes, oxacycles, benzox-
azines, as well as thiocyclic compounds are so-called expanding monomers due to the fact
that they show volumetric expansion during ring-opening polymerizations, in contrast
to the vast majority of other monomers that exhibit volumetric shrinkage, which can re-
sult in the formation of microcracks, microvoids, and delamination of the polymer-based
materials from adjacent surfaces. In the most recent times, in particular spiroorthoesters,
spiroorthocarbonates, cyclic carbonates and benzoxazines have attracted scientific attention
as expanding monomers.

Volumetric shrinkage originates from the shortening of the Van der Waals equilibrium
distance of two molecules to the length of a covalent bond. The volumetric expansion
of expanding monomers (or, alternatively, reduced volumetric shrinkage) is due to the
opening of rings with dense atomic packing in the course of the curing reaction. Due to
the less dense atomic packing in linear structures (compared to cyclic structures), a higher
degree of segmental flexibility is likely to occur in the corresponding (co-)polymers, which,
correspondingly, often exhibit decreased E modulus and glass-transition temperatures.
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Poly(benzoxazine)s with a comparably rigid polymer structure and comparably high
glass-transition temperatures are prominent counterexamples of this phenomenon.

Based on the current state-of-the-art knowledge compiled in this review, the three
future trends of the research area of expanding monomers listed hereinafter are prognosed:
(i) Focus on the thermomechanical properties (e.g., glass transition temperature, E modulus)
of polymers and composite materials (eventually with high filling degrees); (ii) Correlation
of the polymerization stimulus (thermally triggered vs. UV induced) with the material
properties; (iii) Detailed screening of initiators and activators, enabling the parallel as
well the sequential occurrence of crosslinking and ring-opening reactions (two-step vs.
dual-stage curing mechanisms).
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Abbreviations

1H-NMR proton nuclear magnetic resonance
AIBN azobisisobutyronitrile
BF3·NEt3 boron trifluoride triethylamine
BF3·OEt2 boron trifluoride diethyl etherate
bis-GMA bisphenol A glyceroate dimethacrylate
BOE bicyclic orthoester
CAD computer-aided design
CC cyclic carbonate
CH2Cl2 dichloromethane
CROP cationic ring-opening polymerization
Ð dispersity index
DBU 1,8-diazabicyclo[5.4.0]undec-7-en
DFT density-functional theory
DGEBA bisphenol A diglycidyl ether
DIC digital image correlation
DMF N,N-dimethylformamide
EPOX 3-ethyl-3-phenoxymethyl oxetane
Et3OBF4 triethyloxonium tetrafluoroborate
FT-IR Fourier-transformed infrared
GPE phenyl glycidyl ether
La(OTf)3 lanthanide triflate
LOI limiting oxygen index
LS linear shrinkage
MEK methyl ethyl ketone
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Mn number-average molecular weight
Mw weight-average molecular weight
PDAC 9-phenyl-9,10-dihydroanthracen-10-ylium cation
PPh3 triphenylphosphine
PSOE 2-phenoxymethyl-1,4,6-trioxa-spiro[4.6]undecane
ROMP ring-opening metathesis polymerization
ROP ring-opening polymerization
RROP radical ring-opening polymerization
Sc(OTf)3 scandium triflate
SOC spiroorthocarbonate
SOE spiroorthoester
TEGDMA tri(ethylene glycol) dimethacrylate
Tetra-SOCs tetrafunctional SOCs
TfOH trifluoromethanesulfonic acid
TfOMe methyl triflate
Tg glass-transition temperature
THF tetrahydrofurane
TMA thermomechanical analysis
SnCl4 tin(IV) chloride
UDMA urethane dimethacrylate
UV ultraviolet
VCP-adamantyl 1,1-bis[(1-adamantyloxy)carbonyl]-2-vinylcyclopropane
VCP-Ph 1,1-bis(phenoxycarbonyl)-2-vinylcyclopropane
VS volumetric shrinkage
Yb(OTf)3 ytterbium triflate
ZrO2 zirconia
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