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ABSTRACT

The structural simplicity and ability to capture serial
correlations make Markov models a popular
modeling choice in several genomic analyses,
such as identification of motifs, genes and regula-
tory elements. A critical, yet relatively unexplored,
issue is the determination of the order of the
Markov model. Most biological applications use a
predetermined order for all data sets indiscrimin-
ately. Here, we show the vast variation in the per-
formance of such applications with the order. To
identify the ‘optimal’ order, we investigated two
model selection criteria: Akaike information criter-
ion and Bayesian information criterion (BIC). The
BIC optimal order delivers the best performance
for mammalian phylogeny reconstruction and motif
discovery. Importantly, this order is different from
orders typically used by many tools, suggesting
that a simple additional step determining this order
can significantly improve results. Further, we
describe a novel classification approach based on
BIC optimal Markov models to predict functionality
of tissue-specific promoters. Our classifier discrim-
inates between promoters active across 12 different
tissues with remarkable accuracy, yielding 3 times
the precision expected by chance. Application to the
metagenomics problem of identifying the taxum
from a short DNA fragment yields accuracies at
least as high as the more complex mainstream
methodologies, while retaining conceptual and
computational simplicity.

INTRODUCTION

Genomes are complex hierarchically organized entities
shaped largely through the forces of evolution. As a
result, the primary sequence of a genome contains both
short- and long-range correlations (1). Short-range correl-
ations on the scale of a few base pairs are usually
associated with the machinery for gene expression and
its control (2,3), whereas long-range correlations are
typically related to the properties of chromatin organiza-
tion (4,5). Furthermore, functionally distinct genomic
elements, such as promoters, introns, exons, intergenic
regions, repetitive elements and regulatory elements are
known to possess distinct sequence features (6,7).
Moreover, genomes that are well separated during evolu-
tion have unique statistical characteristics of their own (8).
These distinct statistical properties of genomes are often
studied using probabilistic models.

A simple probabilistic model of a genomic sequence
assumes independent, identically distributed genomic
alphabet {A,C,G,T} occurring with specific probabilities.
This model, however, does not account for correlations
within a sequence. A more general model that captures
sequential correlations in a systematic manner is a
Markov model. In the genomic context, Markov models
are specified in the form of a matrix of conditional
probabilities connecting the set of all length-k genomic
words to the genomic alphabet. In other words, under a
Markov model, the probability of observing a particular
nucleotide at a given position along a sequence depends
only on the previous k nucleotides. This prespecified word
length k is referred to as the order of the Markov model.
If this probability also depends on the position within the
sequence, the model is called an inhomogeneous Markov
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model. In this work, we focus on homogeneous Markov
models, where all positions in the sequence are described
by the same set of conditional probabilities.

Markov models have been used extensively in a variety
of genomic sequence analysis contexts, such as probabil-
istic motif discovery (9), prediction of CpG islands
through discrimination (10), computational gene finding
(11), searching for RNA structures (12), sequence similar-
ity measures (13,14), alignment-free sequence comparison
(15) and genome segmentation (16).

A critical statistical issue, often overlooked in biological
sequence analysis contexts, is the determination of an
optimal value for the order k of the Markov model.
While a higher order model allows greater complexity to
be captured in the model, too high an order leads to
overfitting. In contrast, simpler low-order models tend
to be better determined from data, but too low an order
may miss out on essential sequence features in the data.
While in some cases, such as motif discovery, a higher
order Markov model is shown to yield more accurate
motifs (17), the question of which order will perform the
best has not been addressed systematically thus far.

Here, we have treated the problem of identifying the
optimal Markov order as a problem of selecting an
optimal model to describe a given sequence data set. We
used two well-known model selection criteria to tackle this
problem; namely, the Akaike information criterion (AIC)
(18) and the Bayesian information criterion (BIC), also
known as the Schwarz criterion (19). In both approaches,
each model in the set of models being considered is scored
using the difference of two terms; namely,

(1) the likelihood of the data under the model, i.e. how
well the model describes the training data and

(2) a monotonically increasing penalty on the number of
model parameters, i.e. the complexity of the model.

The difference between AIC and BIC scores lies in the
second term: while the AIC incorporates, as penalty, a
simple linear function of the number of parameters, the
BIC weighs the number of parameters by the size of the
training data. The model with the minimum score is con-
sidered optimal under the criterion used. The optimal
model therefore attempts to strike a balance between
complexity and descriptive ability over the set of models
considered, following the spirit of Occam’s razor.
The AIC-predicted optimal (APO) and BIC-predicted
optimal (BPO) orders are obtained by evaluating a score
(AIC or BIC) for all model orders under consideration.
The order that minimizes a given score is considered
optimal.

Considering the wide-spread use of Markov models in
genomic sequence analysis, this naturally leads to the fol-
lowing key questions:

(1) how do different genomic sequence analysis methods
behave with respect to the Markov order used?

(2) which model selection method leads to more bio-
logically relevant results in typical genomic
sequence analysis contexts? and

(3) how does the optimal order change with respect to
the size of the sequence data?

In this study, we investigated the behavior, as a function
of the model order, of the Markov model-based genomic
sequence analysis methods in three broad biological
contexts; namely, phylogeny reconstruction and meta-
genomics, probabilistic de novo motif discovery and func-
tional classification of genomic sequences. In each case
studied, we found that Markov models of the BPO
order deliver the best performance. We argue that using
the optimal order can make a significant difference to the
results of genomic sequence analyses and, specifically,
such order selection considerations can have serious reper-
cussions in the context of metagenomics. We also show
that a simple multiclass classifier incorporating the BPO
order yields surprisingly accurate results for the
challenging problem of distinguishing between promoters
of tissue-specific genes, as well as for the binning problem
of metagenomics, i.e. the identification of a prokaryote
from a short DNA fragment. This demonstrates how
simple homogeneous Markov models of genomic
sequences, when built using the BPO order, can be re-
markably informative.

MATERIALS AND METHODS

Building Markov models from DNA sequence data

Markov modelMk of order k representing a set of DNA
sequences is represented in the form of a 4k� 4 matrix of
conditional probabilities Pðbjb1b2 . . . bkÞ of a single base b
to follow the length-k base sequence b1b2 . . . bk. Here, b
and bi,1 � i � k, take values from the DNA alphabet
A ¼{A,C,G,T}. An order 0 Markov model thus corres-
ponds to the aggregate probabilities of occurrence of the
four DNA bases. By construction, elements of each row of
the Markov matrix are non-negative and add up to 1.
Given a set S consisting of N genomic sequences

Sj � b
ð j Þ
1 . . . b

ð j Þ
Lj

of length Lj, 1 � j � N, the log-likelihood
for S under the modelMk takes the form

�ðS;MkÞ ¼
X

b,b1,...,bk2A

nðb1 . . . bkbÞ logPðbjb1 . . . bkÞ

where nðb1 . . . bkbÞ is the total number of occurrences of
the genomic word b1 . . . bkb in the sequence set S. There
are a total of 4k� 3 free parameters in such a model, which
we estimate using the standard maximum likelihood
approach. See Supplementary Methods for further details.

Markov model order selection using AIC/BIC

For a set of models cMk,0 � k � kmax, estimated from the
same sequence set S, the AIC and the BIC are defined,
respectively, as

AICðkÞ ¼ �2�ðS;cMkÞ+2jMkj ð1Þ

BICðkÞ ¼ �2�ðS;cMkÞ+jMkj log jSjk, ð2Þ

where jSjk is the data size, i.e. the total number of length-
(k+1) words in S. If a sequence in S contains the charac-
ter N representing an undetermined base, we consider this
sequence as being broken up into smaller fragments
devoid of Ns. Optimal order k� is found by minimizing
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AIC(k) or BIC(k) with respect to 0 � k � kmax, where kmax

is an arbitrary upper bound on the order k. see
Supplementary Methods for further details.

2.3 Multiclass classification using Markov models

Consider a sequence set S composed of two subsets S1
and S2 assumed to be modeled with Markov modelscMð1Þk and cMð2Þk , respectively, of order k. Consider the
problem of identifying the label l (1 or 2) of sequence
S in S. Durbin et al. (10) use the log odds criterion,
which is equivalent to assigning the label as:

lðSÞ ¼ 1, if �ðS;cMð1Þk Þ > �ðS;cMð2Þk Þ
2, otherwise:

�

In the multiple class situation, this amounts to predict-
ing the label l (¼ 1, . . . ,C) for sequence S 2 S, where the
sequence set S ¼ S1 [ S2 . . . [ SC consists of C classes of
sequences. Assuming we have corresponding modelscMð1Þk , . . . ,cMðCÞk , we generalize the above prescription to

lðSÞ ¼ argmax
c

�ðS;cMðcÞk Þ: ð3Þ

This prescription is built on the intuitive notion of
selecting a class label corresponding to the model under
which the test sequence has the greatest probability
of occurrence. Further details can be found in the
Supplementary Methods. In principle, this approach can
be extended to compare models of different orders, but
this adds a layer of complexity to the formalism and the
computation, which needs to be evaluated for its effective-
ness. Therefore, in this article, we build our classifiers
using the same order for all classes.
We evaluate the classifier using 5-fold cross-validation.

In the metagenomics problem, we use only those clades

that have genomic sequences for at least 10 organisms.
The accuracy in the case of the promoter classification
problem is computed as the total percentage of promoters
predicted correctly. Since the number of promoters in
each class (tissue) is the same, we do not need to normalize
this quantity. In the metagenomics context, however,
we use the class-normalized sensitivity (20) as a measure
of accuracy, since the number of species in each clade is
highly variable (see Supplementary Results).

RESULTS

APO and BPO orders for select eukaryotic genomes

To explore the behavior of the AIC- and BIC-based model
selection methods, we computed the AIC and BIC scores
for a selection of eukaryotic genomes. The behavior of
these scores as functions of the model order is illustrated
in Figure 1 for the fruitfly, chicken, zebrafish, opposum and
human genomes. Both methods lead to trends showing
a dip that identifies the optimal order. Table 1 further
provides the APO and BPO orders for a number of add-
itional genomes. For each genome explored here, the BPO
order is strictly smaller than the APO order because of the
larger penalty in the BIC. Generally, larger genomes tend
to result in larger optimal orders under either criterion.

We also explored the utility of whole-genome Markov
models for the purpose of reconstructing phylogeny
via clustering. For illustrative purposes, we used 10 mam-
malian genomes across 4 different taxonomic orders.
Detailed results of this exercise are included in
Supplementary Results. Our reconstructed phylogeny
matches the known biological classification for models
constructed using orders 9 and above. Interestingly, the
BPO order for all these genomes is 10 (Table 1), which
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Figure 1. The AIC- and BIC-based order selection procedure illustrated. The y-axis represents the (A) AIC or (B) BIC score minus its minimum
value for given genome. The order that minimizes a given score is considered optimal; this is the AIC- or the BIC-predicted optimal order. Optimal
orders for these and other complete genomes are listed in Table 1.
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suggests that the BPO order acts as a lower bound on the
order to be used in such clustering exercises.

In the context of phylogeny reconstruction, Markov
models are usually part of more complex methods that
also capture the rate of substitution (10). Our results
suggest that even simple Markov models, constructed
using an appropriate order (i.e. BPO order in this case),
can capture the structure of the phylogeny to a remarkable
degree.

An application to metagenomics

Motivated by the success of our classifier for phylogeny
reconstruction, we looked at the ‘binning’ problem faced
in metagenomic contexts. Metagenomic studies typically
explore the uncultured microbial world by shotgun
sequencing DNA samples from various natural environ-
ments. The binning problem arises in the post-processing
step, where the goal is to classify the sequence fragments
taxonomically. Phylopythia (20) and phymm (21) are
two popular methods developed for this purpose, which
do not rely on sequence alignment. Phylopythia uses
support vector machines (SVMs) based on frequencies
of oligonucleotides of different sizes, whereas phymm
uses interpolated Markov models to characterize the
variable-length oligonucleotide frequencies specific to
different taxa. The former has been shown to work well
for reads of at least 1000 bp length, whereas the latter
for lengths as low as 100 bp. We explored the possibility
of whether the variable length oligonucleotide frequencies

are really necessary, or using plain Markov models of
appropriate but fixed order will work equally well.
We therefore used the script supplied by phymm that

downloads all current bacterial and archaeal genomic and
taxonomic data from RefSeq (22). This resulted in 1470
different genomes across 2 domains, 14 phyla, 21 classes,
39 orders and 27 genera, which contained genomic infor-
mation for at least 10 species in each clade. We built
Markov models of orders ranging from 0 to 10 for each
clade at each taxonomic rank.
To evaluate the power of our models in describing taxa

of known organisms and in determining the taxum of an
unknown organism, we performed a standard 5-fold
cross-validation test: Markov models were built using
full genomic sequences of 4/5th of the species belonging
to each clade at each taxonomic rank, and tested on the
left out 1/5th as follows. To emulate real-life situations,
instead of using the learned Markov models to score the
full genomic sequences of the left out 1/5th species, we
scored 10 randomly chosen fragments of lengths 100 and
1000 bp from the genomes. The clade corresponding to the
Markov model that scored the fragment the highest was
assigned to the fragment. The class-normalized accuracy
was computed as described before (20) for each taxonomic
rank and at each Markov order (Figure 2). Cladewise
average sensitivity results are available in the
Supplementary Results. The APO order for the full set
was 12, whereas the BPO order was 9. The performance
of the classifier was best at orders close to 9, indicating
that the BPO order is indeed most informative in this
context. Supplementary Figure S2 through Supplementary
Figure S5 display the behavior of the sensitivity–specificity
and precision–recall pairs attained at all orders, which
further support this observation. Furthermore, this
accuracy is comparable with that achieved by phylopythia
and phymm (Table 2).

Motif discovery

The problem of motif discovery is encountered frequently
in genomics and proteomics. Examples include finding the
sequence specificity of a transcription factor (TF) from
co-regulated regions, conserved patterns in a family of
protein sequences, signals at splice junctions, etc.
Computationally, the problem can be posed as identifying
short overrepresented patterns within a set of biological
sequences. A plethora of tools have been developed for
this purpose over the years (23). Most of these methods
assume that the input sequences can be described with a
Markov model. Motifs that are most different from this
‘background’ Markov model are then identified using
deterministic (24) or stochastic (25) approaches. While
higher order Markov models have been shown to
perform better in practice (17), most tools arbitrarily
choose an order, typically 3 or 5, based on its performance
on a few test cases. We systematically applied AIC- and
BIC-based order selection methods to the background
Markov model for yeast and human data sets generated
through high-throughput chromatin immunoprecipitation
(ChIP) experiments before performing motif discovery.

Table 1. APO and BPO orders for a number of genomes, arranged

by the increasing genome length

Genome (UCSC Version) Length
(Mb)

APO
order

BPO
order

Yeast (sacCer2) 12.2 7 4
Nematode (ce6) 100.3 10 7
Fruitfly (dm3) 120.3 9 7
Fugu (fr2) 351.2 11 8
Stickleback (gasAcu1) 446.6 11 8
Chicken (galGal3) 984.9 11 8
Zebra Finch (taeGut1) 1112.7 11 8
Xenopus (xenTro2) 1359.4 12 10
Zebrafish (danRer5) 1523.3 13 10
Cat (felCat3) 1642.7 12 10
Lizard (anoCar1) 1741.5 12 10
Platypus (ornAna1) 1842.2 12 10
Dog (canFam2) 2385.0 12 10
Horse (equCab2) 2428.8 12 10
Rat (rn4) 2533.3 12 10
Mouse (mm9) 2558.5 12 10
Macaque (rheMac2) 2646.7 12 10
Guinea pig (cavPor3) 2663.4 13 10
Cow (bosTau4) 2731.8 12 10
Orangutan (ponAbe2) 2788.0 12 10
Chimp (panTro2) 2802.8 12 10
Human (hg18) 2858.0 12 10
Marmoset (calJac1) 2929.1 12 10
Opossum (monDom5) 3501.7 13 11

Genome source: UCSC Genome Browser (http://genome.ucsc.edu/).
Maximum order considered for selection: 14; only one strand was
used. Optimal order (AIC or BIC) generally increases with the length
and the complexity of a genome.
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We used priority (26), a Gibbs sampling-based motif
discovery program that allows users to define the back-
ground Markov model of their choice. While priority was
originally developed to incorporate additional informa-
tion in the form of positional priors, it can also be used
with a non-informative uniform prior, which is how
we employed it here. Use of EM-based tool meme (27)
for low background orders led to results displaying a
similar trend as priority (data not shown). However,

meme does not appear to support large orders, since we
encountered run-time errors for background model orders
greater than 7.

A motif reported by priority was considered ‘correct’ if
the Euclidean distance between the learned motif and the
literature consensus motif was less than a predetermined
cutoff (26,28). Being a stochastic algorithm, priority can
yield different results during each run. To account for this
variability, we ran priority on each data set 20 times and,
following Gordân et al. (29), report the median number of
successes for each order.

Motif discovery in yeast
We examined the ChIP-on-chip data published by
Harbison et al. (28), which consists of several TFs
profiled in multiple environment conditions. The APO
and BPO orders for the sequence spotted on the micro-
array were 7 and 5, respectively.

To assess whether the APO or the BPO orders were
informative background models for motif discovery, we
built Markov models of order 0 through 9 for the same
set. Using each of these models as the background model,
we used priority to identify the most enriched motif in 156
sequence sets with known TF-specific binding motifs, i.e.
motifs that have been characterized in the literature and
used previously for assessing motif discovery methods
(26,30). The performance of priority with background
Markov orders from 0 through 9 is shown in Figure 3A.
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Figure 2. Class-normalized sensitivity at each taxonomic level for 100 bp fragments tested across classifiers built from 13 different Markov orders.
Thirteen models were built during each of the 5 folds of cross-validation. The held out set of organisms was tested with each model (‘Materials and
Methods’ section) to identify their taxa, by taking 10 random fragments of length 100 bp from their genome. The best average sensitivity for all five
taxonomic levels is achieved at orders between 8 and 10. The BIC-predicted optimal order is equal to 9.

Table 2. Class-normalized accuracy of three taxa predictors in

percentages

Rank Markov Markov Phylopythia Phymm
(100 bp) (1000 bp) (1000 bp) (100 bp)

Domain 73.0 (2) 85.2 (2) 57.7 (3) N/A
Phylum 38.1 (14) 56.8 (14) 40.6 (14) 36.7 (14)
Class 35.6 (21) 60.9 (21) 30.7 (22) 37.4 (21)
Order 31.3 (39) 60.2 (39) 6.4 (29) 32.8 (34)
Genus 48.1 (27) 75.0 (27) 4.4 (31) 25.0 (53)

The numbers in the parenthesis indicate the number of clades con-
sidered by the program. The highest accuracy (class-normalized sensi-
tivity; Supplementary Methods) achieved for lengths 100 and 1000 bp
using Markov models is shown in the first two columns.
Class-normalized sensitivity as published by phylopythia for lengths
1000 bp and those computed from phymm (21; Supplementary Tables
S7–S11, therein) for 100 bp are shown in the adjacent columns.
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Two different distance cutoffs, namely, 0.18 (as used by
Harbison et al.) and 0.24 [as used by Linhart et al. (31)]
yield similar trends: the maximum number of successes is
achieved at order 5 or 6. This matches closely with the
BPO order.

It is interesting to note that with 0.24 as the distance
cutoff, we find well over 60 motifs correctly at the BPO
background model order of 5. This is close to the best
performance of priority with the inclusion of positional
priors; i.e. about 70 correctly found motifs with 0.25 as
the distance cutoff (29). This suggests that a combination
of optimal background order with appropriate prior in-
formation may further enhance the performance of motif
discovery methods.

Motif discovery in human promoters
To assess the role of order selection in motif discovery for
more complex genomes, we examined the human
promoter data set compiled by Linhart et al. (31). This
data consist of 20 human promoter sets bound by TFs
in different ChIP experiments conducted by multiple
laboratories. The respective TF binding motifs are listed
in transfac (32). To build background Markov models, we
used the full human promoter set compiled by Linhart
et al. The APO and BPO orders for this set turned out
to be 9 and 7, respectively.

Figure 3B shows the number of motifs predicted
correctly by priority in these 20 sequence sets. The order
at which priority finds the maximum correct motifs at
either cutoff is 7, which is the BPO order for the back-
ground model. Interestingly, orders 3, 4 and 5 that are the
typical defaults in motif discovery tools give the worst
results.

Functional classification of promoters

We next explored the possibility of building a Markov
model-based classifier to predict the functionality of
human promoters. We considered genes in the human
genome that are tissue specific, i.e. specifically expressed
in only one tissue. From gene expression data published
by Su et al. (33), Schug et al. (34) report genes that are
specifically expressed in one or few of the 25 tissues.
Of these 25 tissues, 12 tissues had at least 50 genes express-
ing in only that tissue based on their recommended cutoff.
These tissues included cerebellum, corpus callosum,
cortex, heart, liver, lung, pituitary gland, placenta,
spleen, testis, thymus and thyroid. We examined the
12 promoter sets corresponding to the 50 genes in each
of these 12 tissues, and built Markov models for each
promoter set. The BPO order for all tissues except liver
was 3. In case of liver, the BPO order was 2, with 3 being a
close second.
To evaluate the descriptive power of the Markov

models, we built a multiclass classifier to distinguish pro-
moters across these 12 sets. Each promoter sequence was
scored using each of the 12 Markov models. The down-
stream gene was considered to be specific for the tissue for
which the log-likelihood had the largest value.
We first applied this procedure to the training data

itself; i.e. all the promoters on which the models were
trained (Figure 4; gray curve, right scale). As expected,
the accuracy of the classifier went up with the order of
the Markov model, with all 600 promoters predicted cor-
rectly beyond the sixth order. This implies that more
complex models fit the training data better.
To assess the performance of the classifier against

unseen data, we used the standard 5-fold cross-validation
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Figure 3. Number of motifs identified correctly by priority for yeast and human promoter data sets. Priority was run on each promoter set 20 times.
A barplot of the number of times the returned motifs matched the literature consensus motif is shown here for each order. A match is determined by
the condition that the Euclidean distance between a found motif and the literature consensus motif be less than a predetermined threshold; we used
0.24 and 0.18 as the thresholds. The highest number of matches occurs at (A) order 5 or 6 for the 156 yeast promoter sets (BIC-predicted optimal
order=5) and (B) order 7 for the 19 human promoter sets (BIC-predicted optimal order=7).
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procedure. That is, the model is trained on 4/5th of the
sequences and evaluated on the left out 1/5th of the se-
quences; this whole procedure is carried out five times with
each sequence being tested once. The results are shown in
Figure 4 (solid black curve, left scale). The highest number
of correctly classified promoters (122, corresponding to an
accuracy of �0.2) occurs for the BPO order, i.e. 3. Note
that a non-informative classifier that assigns tissues to
each promoter randomly will correctly predict an
average of only 50 promoters. Indeed, the binomial
P-value of predicting at least 122 promoters correctly for
this data set, under the assumption of uniform probability
of success across the 12 sets, is less than 10�20.
The accuracy of our classifier drops sharply beyond

order 5 primarily due to singularities in the probability
matrix (Figure 4; solid black curve, left scale). This is an
outcome of overfitting: many words of length �7 are not
represented in the training set, but appear in the test se-
quences. We also, therefore, repeated our classification
exercise after adding a pseudocount of 1 to the word
counts, which is a standard practice for estimating
probabilities when there are relatively few observations.
With the pseudocount added (Figure 4; dashed curve,
left scale), the accuracy of our classifier goes up signifi-
cantly for orders greater than 4, but cannot match that of
the BPO order. Interestingly, for orders �9, the accuracy

of our classifier with pseudocount approaches that of a
random-guess classifier; this point is further elaborated
upon in ‘Discussion’ section.

DISCUSSION

In this study, we demonstrated that the performance of
genomic sequence analysis methods employing Markov
models is highly dependent on the order of the model
used. We described the utility of two well-known model
selection methods (AIC- and BIC based) for identifying
the optimal order for Markov models in biological
contexts. Although Markov models have been widely
employed in modeling biological sequences, the issue of
which order to use is typically ignored.

For instance, order 3 or 5 is used as defaults by many
motif discovery tools. While these orders might work for
less complex genomes, such as yeast, our results revealed
that order 7 worked the best for human sequence data.
Moreover, for both genomes (yeast and human), the BPO
order led to the most accurate results. Interestingly, we
found the first- and the second-order Markov models
also to perform well for human TF motif discovery
(Figure 3B). We believe that chromatin structure around
a promoter might be involved here, as nucleosome pos-
itioning has been shown to have first-order correlations
(35). This is an important implication of this study and
needs to be investigated further.

We demonstrated that mammalian phylogeny can be
reconstructed successfully using whole-genome Markov
models of the BPO order. Admittedly, our algorithm for
phylogenetic tree construction is primitive and does not
have a clear interpretation in terms of evolutionary dis-
tances. However, the fact that it can learn true relation-
ships across species has significant implications in the
areas of phylogenetics and metagenomics. First, phylogen-
etic trees are typically built using multiple alignments (36)
and more complex probabilistic approaches (10) that
capture evolutionary rates across various parts of the
genome. While such methods undoubtedly yield more in-
formative trees, our results show that simple Markov
models of appropriate orders can capture the structure
of the phylogeny to a remarkable degree.

We also demonstrated that BPO models are useful for
classification purposes in the context of metagenomics.
Even for short fragments of length 100, a simple classifier
built using these models lead to accuracies comparable
to, if not better than, the more complex programs
phylopythia and phymm. We note, however, that the
actual data sets on which the three methods were tested
are different: phymm is trained on more data than
phylopythia, while our method is evaluated on more
data than phymm. This changes the number of clades at
each level and also the number of genomes in each clade.

Markov models have been used before as classifiers for
identifying functional genomic regions; e.g. CpG islands
and coding regions (10). However, to the best of our
knowledge, the present study is the first attempt to imple-
ment a multiclass classifier to identify the functionality of
a mammalian tissue-specific promoter. Specifically, we
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Figure 4. Accuracy of tissue-specificity classifiers based on Markov
models of different orders. Here, accuracy is defined as the number
of tissue-specific promoters predicted correctly by a classifier at a
Markov order divided by the total number of promoters. Total
number of tissues: 12, number of tissue-specific promoter sequences
for each tissue: 50. On the full training set, the accuracy of the classifier
increases with the order and reaches the maximum at order 6 (gray
curve, right scale). On test data, however, the order 3 classifier performs
the best (solid black curve, left scale), with the predictive power van-
ishing order 6 onward. Addition of a pseudocount while computing the
probability distribution, as described in ‘Materials and Methods’
section, improves the performance of the classifier at higher orders
(dashed curve, left scale), but cannot surpass the performance of the
without pseudocount classifier at the BIC-predicted optimal order equal
to 3.
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showed that the performance of simple Markov models of
the BPO order is admirable in identifying which tissue a
given promoter is most likely to be expressed in.
Furthermore, Markov models are generative in nature;
i.e. a new/synthetic sequence can be generated using the
probability distribution defined by a Markov model. Our
results therefore have significant implications in designing
synthetic tissue-specific promoters.

The behavior of our classifier for tissue prediction
deserves a deeper look for the case when pseudocount of
1 was added (Figure 4; dashed curve, left scale). Such clas-
sifiers predict around 1/12th of the promoters correctly
for largeMarkov orders. A random-guess procedure will re-
sult in a similar accuracy; e.g. by rolling a dodecahedron-
shaped fair die, and assigning a tissue label corresponding
to one of the 12 numbers that shows up. In terms of
Bayesian statistics, addition of the same pseudocount for
all words is equivalent to incorporating a flat prior during
parameter estimation (37). As the data, i.e. word counts,
become sparse at high Markov orders, the uniform prior
starts dominating, making the classifier behave similar to a
random-guess classifier. Middle-order Markov models
(orders 5–7) benefit the most from the addition of a
pseudocount, because it helps to regularize the probability
distributions; however, their accuracy never reaches that of
the BPO order. Since the BIC already incorporates a strong
penalty for model complexity, it indirectly penalizes models
based on sparse word counts and obviates the incorpor-
ation of pseudocounts.

We noted earlier that the accuracy of our classifier for
the metagenomic binning problem (Table 2) is comparable
with that achieved by phylopythia (20) and phymm (21).
This behavior can be understood as follows. Phylopythia
builds SVMs using frequencies of oligonucleotide of
lengths between 2 and 6. Going to larger lengths result
in an exponential increase in the size of the parameter
space, making SVM-based learning infeasible. It is likely
that our simpler method outperforms phylopythia because
it can capture information in longer oligonucleotides.
Phymm, in contrast, also has a more complex model,
but includes models of lengths up to 12. We suspect that
the oligonucleotides of these larger lengths are primary
contributors to the success of phymm.

Table 1 shows that for the same sequence data, the APO
order is generally larger than the BPO order. In other
words, the BIC order selection procedure tends to select
simpler models with greater parsimony. This is expected,
as indicated by Equations (1) and (2) (‘Materials and
Methods’ section): the BIC procedure puts a heavier
penalty on model complexity. Similar differences in the
APO and BPO orders for the same sequence data are
also seen in other genomic sequence analysis contexts
explored in this study.

Before we conclude, we make two methodological
remarks.

First, an alternate model selection criterion called AICc

(38,39) is often recommended in place of AIC. In fact, AICc

is AIC corrected for data sizes that are small relative to the
number of parameters in the model. In genomic contexts,
the small data size problem is expected to show up at suf-
ficiently high Markov orders. However, for the data we

used in this article, order selection based on the AICc did
not lead to optimal orders that were much different from
the APO orders (Supplementary Table S1). Specifically, for
the motif discovery and phylogeny background data, the
APO and AICc optimal orders turned out to be identical.
For the metagenomics data, the AICc optimal orders were
not too different from the APO orders. In comparison, the
BPO orders were, by and large, 2 or 3 less than the APO
orders. This implies, post facto, that the choice between
AIC and AICc is perhaps not relevant in the genomic
contexts we have explored. From a fundamental viewpoint,
the form of the small sample correction to AIC is not uni-
versal because it inherently depends on the class of models
and the nature of noise in the data. Therefore, it is not clear
if the standard AICc form, which was originally derived for
linear models with normal noise, continues to be either
valid or useful for Markov models. While (38) recommend
using a small sample corrected form of AICc instead
of AIC, other experts (39) recommend using this particular
AICc form with caution outside of the realm of models for
which it has been explicitly derived or demonstrated.
Second, it is important to note that while AIC and BIC

scores [Equations (1) and (2) in ‘Materials and Methods’
section) appear to have similar mathematical forms, they
originate from entirely different considerations. The AIC
procedure, which does not assume that the true but
unknown model is necessarily included in the set of
models considered, attempts to find the model within
this set that is closest to the true model that generated
the data. The AIC procedure therefore tries to minimize
the prediction error over the set of models, but is also
known to be inconsistent; i.e. the APO order may over-
shoot the true order with non-zero probability (40). The
BIC procedure, on the other hand, is designed to find the
true model under the assumption that the true model is
included in the set of models considered, and is known to
be strongly consistent (40). Therefore, the model selection
method itself needs to be chosen with reference to the
context and goals of the downstream analysis (41).
In all the applications explored here, however, the

BIC clearly produces results that are optimal from a bio-
logical perspective. Given a set of input sequences,
computing the BPO order is relatively straightforward.
We conclude that this small additional step before
embarking upon motif discovery, phylogeny reconstruc-
tion, taxum identification in metagenomics or eukaryotic
tissue-specific promoter modeling, can lead to remarkable
improvement in the outcome.

SUPPLEMENTARY DATA
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