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ABSTRACT
Acute myeloid leukemia (AML) is the most common type of leukemia and has 

a 5-year survival rate of 25%. The standard-of-care for AML has not changed in the 
past few decades. Promising immunotherapy options are being developed for the 
treatment of AML; yet, these regimens require highly laborious and sophisticated 
techniques. We create nanoTCEs using liposomes conjugated to monoclonal antibodies 
to enable specific binding. We also recreate the bone marrow niche using our 3D 
culture system and use immunocompromised mice to enable use of human AML and 
T cells with nanoTCEs. We show that CD33 is ubiquitously present on AML cells. The 
CD33 nanoTCEs bind preferentially to AML cells compared to Isotype. We show that 
nanoTCEs effectively activate T cells and induce AML killing in vitro and in vivo. Our 
findings suggest that our nanoTCE technology is a novel and promising immuno-
therapy for the treatment of AML and provides a basis for supplemental investigations 
for the validation of using nanoTCEs in larger animals and patients.

INTRODUCTION

Acute myeloid leukemia (AML) is the most 
common type of leukemia; it is characterized by the 
overproduction of immature myeloid stem cells in the 
bone marrow and has a 5-year survival rate of around 
25% [1, 2]. The survival curves for AML patients have 
remained stagnant in the past decades due to the lack 
of newly approved therapies for AML. However, recent 
development in novel therapeutics and technologies have 
shown promising results in preclinical and clinical settings 
[3–5]. 

Exciting immunotherapy technologies that are being 
investigated for AML include chimeric antigen receptor 
T (CAR-T) cells and bispecific T cell engagers (TCEs). 
CAR-T cells are autologous T cells that have been virally 
transfected to express an engineered CAR construct, 
containing a synthesized fragment that targets the desired 

surface antigen on the target cell [6]. However, the main 
disadvantages of this technology relative to traditional 
therapies include toxicity, the long-term safety profile 
of the viral vector, the need for frequent quality control 
testing throughout production, the high costs due to the 
need of extensive labor and expensive facility, complex 
production, and the inability to target multiple tumor 
antigens with one CAR-T cell [7, 8]. 

In addition to CAR-T cells, T cell-based therapy 
can be pursued with TCEs. TCE consists of two single 
chain variable fragments which are connected by a protein 
linker. One of the domains recognizes a tumor-associated 
surface antigen, while the other recognizes the T cell 
CD3 receptor [9]. This enables the TCE to redirect the 
T cell to the tumor and induce subsequent activation and 
expansion of the T cell. TCEs stimulate endogenous T 
cells and demonstrate high potency and efficacy against 
tumor cells [10–12], circumventing certain limitations 
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of genetically engineering extracted patient T cells to 
express CARs. This immunotherapeutic option has been 
shown to be successful for both solid and liquid tumors, 
but is mostly known for the treatment of hematological 
malignancies [13]. The disadvantages of TCEs, however, 
include toxicity, expensive costs for labor and production, 
complex production, poor pharmacokinetics profile (t1/2 ~ 
2 hours), and the inability to target multiple cancer surface 
markers [10, 14, 15].

We have previously developed a nanoparticle-based 
T cell engagers (nanoTCEs) technology that is based on 
conjugation of two monoclonal antibodies (mAbs) to the 
surface of a liposomal nanoparticle; one antibody is against 
a cancer antigen and the other is against the CD3 receptor 
on T cells [16]. NanoTCEs utilize existing mAbs which 
we conjugate to the surface of a nanoparticle, therefore 
taking advantage of the high specificity of existing mAb-
based therapies, to engage and direct robust responses 
from the immune system (T cells). NanoTCEs have been 
shown to have clear advantages compared to both CAR-T 
cells and TCEs; nanoTCEs are: 1) simple to produce – 
the production of nanoparticles and chemical conjugation 
of readily available mAbs takes only a few hours; 2) 
prolonged pharmacokinetic profile (t1/2 ~ 60 hours), 3) 
modular platform allowing customizable targeting of 
multiple tumor and immune cell antigens [16]. Moreover, 
nanoTCEs has demonstrated therapeutic efficacy in 
endogenous T cell activation as well as T cell-directed 
cancer cell lysis, both in vitro and in vivo. Therefore, 
the nanoTCE technology represents a facile platform for 
development of T-cell engagement immunotherapy using 
any existing anti-cancer mAbs.

There is a long-standing interest in CD33-targeted 
therapies AML. CD33 is a myeloid-associated marker 
found mainly on cells committed to the myeloid lineage 
and its expression is absent on non-hematopoietic cells 

[17]. High CD33 expression has been reported on AML 
blasts; data show as much as 85–90% of blasts express 
CD33 in AML patients [18, 19]. Moreover, CD33 
expression positively correlates with stage of the disease 
[2]. Several therapy options using CD33 as a target have 
been under development pre-clinically and clinically. The 
CD33-directed antibody-drug conjugate, gemtuzumab 
ozogamicin is FDA approved for AML [20]. Studies on 
CD33-targeted TCEs for treatment of AML have also 
demonstrated efficacy potential. CD33 x CD3 bi-specific 
TCE, AMG 330, is currently in Phase I clinical trial for 
relapsed/refractory as well as minimal residual disease 
positive AML (NCT02520427) [21–23]. Additionally, 
CD33 x CD3 tandom diabody, AMV564, is under Phase I 
clinical trial for relapsed/refractory AML (NCT03144245) 
[24, 25]. CD33-targeted CAR-T cells have also been 
explored and proven effective [26, 27]; CD33-CART cells 
are being explored in multiple clinical trials for children 
and adults with relapsed/refractory AML (NCT03971799, 
NCT03927261). Thus, a plethora of evidence validates 
CD33 as a targetable biomarker for immunotherapy in 
AML.

In this study, we sought to create a nanoTCE 
targeted to CD33 for the treatment of AML, as a versatile 
T-cell engagement platform.

RESULTS

CD33 is a valuable target for the treatment of AML, 
therefore, we first validated the presence of the marker 
in our experimental setup. We measured the fluorescent 
intensity and percent of CD33 in four different human 
AML cell lines. For all cell lines, CD33 was expressed 
in high levels (Figure 1A) and uniformly on 90–100% of 
the cells (Figure 1B), indicating that CD33 is a promising 
surface marker for nanoTCE targeting.

Figure 1: CD33 expression on AML cell lines. (A) Mean fluorescent intensity and (B) percent expression on K052, MOLM-14, 
NOMO-1, and THP-1. Data is represented as mean ± standard deviation.
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Next, we developed AML-targeting CD33/
CD3 nanoTCEs and prepared Isotype/CD3 nanoTCEs 
as control. A schematic of the liposomal CD33/CD3 
nanoTCE production process is shown in Figure 2A. We 
characterized the physicochemical properties of these 
nanoTCEs, including diameter, polydispersity index 
(PDI), and zeta potential which are shown in Table 1. We 
found that the properties are in accord with our previous 
report [16], in which the size of the nanoTCEs was about 
140 nm, with low PDI indicating the uniformity of the 
particle size, and with close to neutral net charge. 

We then tested the binding of CD33/CD3 nanoTCEs 
to T cells and AML cell lines compared to Isotype controls. 
The CD33/CD3 nanoTCEs bound to T cells at 2-fold higher 
than Isotype (Figure 2B), and bound to AML cell lines 
around 2- to 3-fold higher compared to Isotype (Figure 2C). 

To demonstrate the therapeutic efficacy of nanoTCEs 
in vitro, we investigated the effect of nanoTCEs on 
activation of T cells as well as T cell-mediated killing 
of AML cell lines in our 3DTEBM culture model [28]. 
3DTEBM is a patient-derived 3D cell culture system 
that mimics the leukemic bone marrow niche, in which 
it recapitulates the tumor microenvironment and drug 
resistance superior than classic 2D cultures [29]. Activation 
of T cells was observed as increase in CD69 upregulation 

in CD4 (Figure 3A) and CD8 T cells (Figure 3B) following 
co-culture of T cells with AML cell lines with CD33/CD3 
nanoTCEs, but not with Isotype/CD3 TCEs. We have 
shown previously that the nanoTCE is not able to activate T 
cells alone; this is shown by the use of the Isotype/CD3. T 
cells do not activate following the binding of the nanoTCE 
alone; it only works following the engagement of the T 
cell and the target cell via nanoTCE which aligns with the 
kinetic segregation model for T cell receptor triggering [16, 
30]. Consequently, no T cell-mediated killing of AML cells 
was observed following treatment with Isotype/CD3 TCEs, 
while 50–75% killing was observed following treatment 
with CD33/CD3 nanoTCEs for 4 days (Figure 3C). 

To demonstrate the therapeutic efficacy of 
nanoTCEs in vivo, we injected human AML THP-1 cells 
genetically engineered to express luciferase in an NCG 
immunocompromised mice model. At Day 7 of tumor 
inoculation, we injected human primary T cells to the mice 
and treated with nanoTCEs weekly thereafter. Mice treated 
with CD33/CD3 nanoTCEs had significantly lower tumor 
burden at all time points compared with Isotype/CD3 
nanoTCEs (excluding Day 6) (Figure 4A). Additionally, 
100% of the CD33/CD3 cohort was alive at the end of 
the study, while only 40% of Isotype/CD3 cohort survived 
past Day 62 and none past Day 66 (Figure 4B). 

Figure 2: Development of nanoTCEs for AML. (A) Schematic of CD33/CD3 nanoTCEs production process. (B) Liposomal binding 
of Isotype and CD33/CD3 nanoTCEs to T cells. (C) Liposomal binding of Isotype and CD33/CD3 nanoTCEs to AML cell lines. Statistical 
significance between CD33/CD3 and Isotype is indicated by *(p < 0.05).  Data is represented as mean ± standard deviation.
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DISCUSSION

AML is associated with low survival rates and 
novel therapeutics are direly in need. In this study, we 
validated that CD33 is an abundant and relevant marker 
on AML cells, and demonstrated that our CD33/CD3 
nanoTCE technology can induce T-cell directed cytotoxic 
activity against AML. The CD33/CD3 nanoTCEs bound 
preferentially to AML and T cells; this enables specific 
binding to only these cells and prevents binding to other 
hematopoietic cells to reduce off-target toxicities. T cell 
activation and T cell-mediated AML cell lysis was induced 
following the use of the nanoTCEs in vitro and in vivo.

Our nanoTCE platform uses nanoparticles to 
create a relatively simple to produce, reproducible, and 
off-the-shelf solution to overcome the major limitations 
associated with current immunotherapy techniques such 
as TCEs and CAR-T cells. Importantly, this technology 
is highly customizable and provides the flexibility to 
engage any immune cell for the treatment of the cancer 
of interest. In this study, we report a CD33/CD3 nanoTCE 
that targets the CD33 antigen with high specificity 
using mAbs, which enables a potent and efficacious 
immunotherapy treatment against AML. Future studies 
are warranted to investigate this therapy in combination 
with chemotherapy, the extent this technology eliminates 

Figure 3: Efficacy of nanoTCEs in vitro. The effect of Isotype/CD3 and CD33/CD3 nanoTCEs treatment on activation of (A) CD4 
and (B) CD8 T cells, and on (C) survival of AML cell lines, in 3DTEBM after 4 days. Statistical significance between CD33/CD3 and 
Isotype is indicated by *(p < 0.05). Data is represented as mean ± standard deviation.

Figure 4: Efficacy of nanoTCEs in vivo. (A) Tumor progression and (B) Kaplan-Meier survival comparison between mice treated 
with Isotype/CD3 (grey; n = 5) or CD33/CD3 nanoTCEs (green; n = 5). Statistical significance between CD33/CD3 and Isotype is indicated 
by *(p < 0.05). Tumor progression data is represented as mean ± standard deviation for tumor progression.
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minimal residual disease and relapse, as well as its 
efficacy in AML patients. 

MATERIALS AND METHODS

Materials and reagents

Antibodies and Pan T Cell Isolation Kits were 
purchased from Miltenyi Biotec (Bergisch Gladbach, 
Germany). RPMI-1640, 0.25% trypsin, L-glutamine, and 
penicillin-streptomycin were purchased from Corning 
(Corning, NY). Fetal bovine serum, lipophilic tracers, 
collagenase, and counting beads were purchased from 
Life Technologies (Carlsbad, CA). 1,2-dipalmitoyl-sn- 
glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-
glycero-3-phosphoethanolamine-N- [amino(polyethylene 
glycol)-2000] (DSPE-PEG2000), and extrusion 
membranes were purchased from Avanti Polar Lipids 
(Alabaster, AL). Cholesterol was purchased from Millipore 
Sigma (Burlington, MA). Streptavidin conjugation kit was 
purchased from Abcam (Cambridge, United Kingdom). 
Lipophilic tracer DiO was purchased from Invitrogen 
(Eugene, OR).

Cell culture and 3DTEBM

K052, MOLM-14, NOMO-1, and THP-1 cell lines 
were all obtained from the lab of John DiPersio. Peripheral 
blood mononuclear cells (PBMCs) were isolated from 
healthy donors using Ficoll-Paque PREMIUM (Millipore 
Sigma), and T cells were separated using a Pan T cell 
isolation kit. Cell lines were cultured in RPMI-1640 
supplemented with 10% fetal bovine serum, 2 mM of 
L-glutamine, and 1% penicillin-streptomycin. All cell 
cultures were cultured in NuAire water jacket incubators 
(NuAire, Plymouth, MN) at 37°C and in 5% CO2. 

3D tissue engineered bone marrow (3DTEBM) 
cultures were established in 96-well plates by cross-
linking fibrinogen in patient bone marrow supernatant at 
a concentration of 1 and 4 mg/mL calcium chloride and 
tranexamic acid [28]. The 3DTEBM was supplemented 
with media on top after gelling. At time of analysis, cells 
were retrieved by digesting 3D scaffolds with collagenase 
(Gibco, Life Technologies) for 2 h at 37°C.

Preparation and characterization of nanoTCEs

The procedure of making nanoTCEs has been 
previously described [16]. Briefly, nanoTCEs were 

prepared with three components: cholesterol, DPPC, 
and DSPE-PEG2000 with a molar ratio equivalent to 30: 
65: 5. Lipids were mixed and solubilized in chloroform, 
and evaporated through a rotary evaporator (Heidolph, 
Schwabach, Germany) to form a thin lipid film. The 
film was then hydrated, and the resulting suspension was 
extruded using the Avestin LiposoFast LF-50 (Ottawa, ON, 
Canada) with 100 nm polycarbonate membranes [31, 32]. 
The biotinylated antibodies (Isotype, CD3, and/or CD33) 
were conjugated to the liposomes using streptavidin 
and biotin reaction [33]. Malvern Zetasizer Nano ZS90 
(Malvern, Worcestershire, United Kingdom) was used 
to determine zeta potential, diameter, and polydispersity 
index. Fluorescent liposomes were prepared by dissolving 
DiO in the lipid/chloroform mixture before film formation. 

Protein expression

Cells were stained with anti-CD33 APC antibody in 
4°C for one hour, washed, and analyzed by flow cytometry 
using MACSQuant Analyzer 10 (Miltenyi Biotec) with 
an Ex/Em of 635/655–730 nm. Cells were gated using 
forward and side scatter and analyzed for relative mean 
fluorescent intensity (MFI) of APC using BD FlowJo 
Software [34, 35].

Liposomal binding

Each nanoTCE were prepared with a lipophilic 
fluorescent tracer DiO. Cell lines and T cells were treated 
with Isotype/Isotype or CD33/CD3 nanoTCEs (3.7 nM) 
for two hours at 37°C. Cells were spun down, washed, 
and analyzed by flow cytometry with Ex/Em of 488/525 
± 25 nm. Cells were gated using forward and side scatter 
and analyzed for MFI of DiO using BD FlowJo Software.

Activation of T cells and T cell-mediated killing 
of AML in vitro

Cell lines were cultured with healthy donor T 
cells in the 3DTEBM and treated with Isotype/CD3 or 
CD33/CD3 nanoTCEs at a concentration of 3.7 nM for 
4 days. Cultures were digested, and cells were retrieved 
and stained with anti-CD3 PE, anti-CD4 FITC, anti-CD8 
Violet, and anti-CD69 APC antibodies for one hour at 4°C. 
Samples were analyzed by flow cytometer with Ex/Em of 
488/585 ± 20, 488/525 ± 25, 405/450 ± 25, and 635/655-
730 nm, respectively. Cells were gated using forward and 
side scatter followed by double positive CD3+/CD4+ or 

Table 1: Characterization of nanoTCEs1

Formulation Diameter (nm) PDI2 Zeta Potential (mV)
Isotype/CD3 140.5 ± 1.0 0.11 ± 0.02 0.9 ± 0.2
CD33/CD3 141.3 ± 1.0 0.07 ± 0.01 1.1 ± 0.1

1Mean ± standard deviation; 2polydispersity index (PDI).
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CD3+/CD8+, both of which were analyzed for % of cells 
positive for CD69 using BD FlowJo Software.

T cell-mediated Killing of AML in vitro

Cell lines (pre-labeled with DiO) were incubated 
with healthy donor T cells in the 3DTEBM and treated 
with Isotype/CD3 or CD33/CD3 nanoTCEs at a 
concentration of 3.7 nM for 4 days. Counting beads were 
added to the culture before matrix digestion. The cells 
were retrieved and analyzed by flow cytometry. Number of 
AML cells were analyzed as DiO+ cells and normalized to 
the number of counting beads using BD FlowJo Software. 

T cell-mediated Killing of AML in vivo

Immunodeficient NCG mice (strain: 572), female, 
50–56 days old, were purchased from Charles River 
(Wilmington, MA), and all experiments using these 
rodents were in compliance with the Institutional Animal 
Care and Use Committee at Washington University. 
Human AML cell line, THP-1 CBR cells (1 × 106/
mouse) were injected intravenously (i.v.) into 10 
NCG mice. One week after tumor inoculation, human 
T cells (5 × 106/mouse) were injected i.v. Mice were 
randomized into two groups (n = 5) and were treated 
i.v. with Isotype/CD3 or CD33/CD3 nanoTCEs (0.5 
mg/mouse) weekly for a total of four weeks. Tumor 
progression was tracked by weekly bioluminescent 
imaging. Mice were injected with D-luciferin (150 µg/
kg) intraperitoneally, and tumor burden was detected 
using an IVIS 50 bioluminescence imaging system 
(PerkinElmer, Waltham, MA, USA) 10 minutes post-
luciferin injection, and images were analyzed using 
Living Image 2.6 software (PerkinElmer). Mice were 
monitored on a daily basis to record survival.

Statistical analyses

All experiments were independently replicated 
three times and performed in quadruplicates, and animal 
experiments consisted of five mice per group; data from 
in vitro and in vivo experiments were expressed as means 
± standard deviation. Statistical significance was analyzed 
using a Student’s t-test, one-way, or two-way analysis of 
variance. Log-rank test was used to compare the Kaplan 
Meier curves. P-values less than 0.05 were used to indicate 
statistically significant differences.
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bone marrow.
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