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Abstract. Machine learning (ML) methods are increasingly being used
to predict pathologies and biological traits using neuroimaging data. Here
controlling for confounds is essential to get unbiased estimates of gen-
eralization performance and to identify the features driving predictions.
However, a systematic evaluation of the advantages and disadvantages
of available alternatives is lacking. This makes it difficult to compare
results across studies and to build deployment quality models. Here, we
evaluated two commonly used confound removal schemes—whole data
confound regression (WDCR) and cross-validated confound regression
(CVCR)-to understand their effectiveness and biases induced in gen-
eralization performance estimation. Additionally, we study the inter-
action of the confound removal schemes with Z-score normalization, a
common practice in ML modelling. We applied eight combinations of
confound removal schemes and normalization (pipelines) to decode sex
from resting-state functional MRI (rfMRI) data while controlling for two
confounds, brain size and age. We show that both schemes effectively
remove linear univariate and multivariate confounding effects resulting
in reduced model performance with CVCR providing better generaliza-
tion estimates, i.e., closer to out-of-sample performance than WDCR.
We found no effect of normalizing before or after confound removal. In
the presence of dataset and confound shift, four tested confound removal
procedures yielded mixed results, raising new questions. We conclude
that CVCR is a better method to control for confounding effects in neu-
roimaging studies. We believe that our in-depth analyses shed light on
choices associated with confound removal and hope that it generates
more interest in this problem instrumental to numerous applications.
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1 Introduction

A critical challenge in applied machine learning is controlling for confounding
effects as not removing them can lead to biased predictions and interpreta-
tions. This is especially true for biological data as common underlying processes
introduce shared variance between the measurements, giving rise to confounding
effects and blurring the boundaries between signals and confounds. Nevertheless,
when confounds can be identified, removing their effects can lead to unbiased
models and better understanding of the underlying biological processes.

In the field of neuroimaging, predictive analysis using machine learning has
gained popularity for decoding phenotypes with a clear application to under-
stand brain organization and its relationship to behavior and disease [9,14,41]
with a twofold aim, (1) to establish brain-phenotype relationship by estimating
the generalization performance, and (2) to identify brain regions explaining the
variance of the phenotype. Cross-validation (CV) is employed for the first goal
while the second goal is usually achieved by identifying predictive features, e.g.,
features with a high weight assigned by a linear model. Specifically, in addition
to information uniquely associated with the target (true signal) neuroimaging
features may also contain information from nuisance sources, e.g., brain size,
confounding the relationship between the neuroimaging signal and the target.
In this case, both goals can yield biased results as a successful prediction might
be driven by the confounding signal rather than the true signal (Fig. 1a). Thus,
the confounding effects need to be removed to estimate generalizability and to
gain interpretability in an unbiased way. Various alternatives exist for confound
removal and are integrated within ML pipelines. However, the pros and cons of
these possibilities are not well understood.

Confounding can be controlled in the experiment design phase before data
collection by randomization, restriction and matching [27]. However, this is not
always feasible, e.g. when all the confounds are not known. Confounds can be
controlled for after data acquisition. One way is to add them as additional predic-
tors to capture the corresponding variance. However, this approach is not suit-
able for predictive modelling because it is designed to control in-sample rather
than out-of-sample (OOS) properties. Another method is post-hoc counterbal-
ancing i.e., taking a subset in which there is no empirical relationship between
the confound and the target [35]. Advanced techniques such as the anti-mutual
information sampling [10] and stratification using pooling analysis by the Mantel-
Haenszel formula [38] have been proposed. However, these methods lead to data
loss and are not feasible with a small sample and a large number of confounds.
Specifically, when matching sexes according to brain size, these methods will
represent extremes of the population and not the whole population. Of note,
confound removal can be seen as supplementary to debiasing and fair learning
[2,16,18] but here we do not investigate this angle.

One of the most common confound control approaches while using all the data
is “regressing out” their variance from the features before learning, referred to as
confound regression [35] or image correction [28]. In this method, a linear regression
model is fitted on each feature separately with the confounds as predictors, and the
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corresponding residuals are used as new “confound-removed” features. This app-
roach can be implemented in two possible ways. The first scheme is whole data con-
found regression (WDCR), regresses out confounds from the entire dataset at once
[28,35,37] followed by CV to estimate the generalization performance. WDCR has
yielded inconsistent results, from a substantial drop in performance [17,37] to a
similar or slightly lower performance compared to the models without confound
control [28]. This discrepancy is possibly due to differences in the strength of the
relationship between the confounds, the features, and the target and implemen-
tation differences. WDCR leads to “data-leakage” as the information from the
whole data is used to create the confound-removed features before CV. However,
the “aggressive” confound removal by WDCR has been proposed to be desirable
[25].

To alleviate issues with WDCR, a CV-consistent scheme, cross-validated con-
found regression (CVCR) has been proposed in which the linear confound regres-
sion models are estimated within CV using only the training subset, and applied
to both the training and the validation subsets. This avoids information leaking
from training into validation sets. Although both WDCR and CVCR schemes
have been used in neuroimaging studies [20,35,45], there is a lack of information
regarding how they affect the generalization estimates and interpretability with
one study recommending WDCR [25] while another recommending CVCR [35].

Moreover, whether to apply a feature normalization and standardization pro-
cedures, like Z-scoring (Zero mean and unit-variance features), before confound
removal or after has not been investigated. It is known that in the specific case of
normalization using rank-based inverse normal transformation (INT) after con-
found regression may reintroduce confounding effects [24]. Such reintroduction
of confounding effects can be counterproductive for model generalizability and
interpretability. Furthermore, the ability of an algorithm to learn from the data
might differ depending upon when normalization is applied. This lack of under-
standing about the interaction between confound regression and normalization
makes it difficult to design ML pipelines. Lastly, building models when one sus-
pects a shift in the covariates and/or in the relationship between the confounds,
the features and the target has not been studied. Several design possibilities can
be imagined and need to be evaluated.

In this work we empirically investigate three facets of the confound removal
issue, (1) evaluation of the two confound removal schemes, WDCR and CVCR,
for their effectiveness in removing the confounding signal and estimation of gen-
eralization performance, (2) interaction of confound removal schemes with nor-
malization, and (3) model deployment when covariate and confounding effect
shift is suspected. We consider prediction of sex from resting-state functional
magnetic resonance imaging (rfMRI) data while controlling for two confounds,
brain size and age. We aim to answer an important biological question “are
male and female brains functionally different after controlling for the apparent
difference in brain size?”. With systematic evaluation of a real-world problem
reporting positive as well as negative results, we hope to attract the attention of
the machine learning community to the critical problem of confound removal.
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Fig.1. (a) Confounding effect: Confound Z influences both the features X and the
target Y. In the presence of Z, the actual relationship between X and Y is masked.
For sex classification, brain size is a confound (Z) as it is associated with both rfMRI
features (X) and sex (Y). (b) Significant sex difference in brain size in the three data
samples used in this study.

2 Sex Classification and Brain Size

There are reports on differences in cognition and psychopathology between sexes
[33], such as differences in spatial tasks [22], females being more vulnerable to
depression [26] and autism being more prevalent in males [42]. These differ-
ences may influence diagnostic practices and help developing sex-specific treat-
ments, making understanding neurobiology of sex differences essential. Accord-
ingly there has been an increasing interest in finding sex differences in structural
and functional properties of the brain [29,30,41].

Functional magnetic resonance imaging (fMRI) is a non-invasive technique
used to study functional-i.e. time dependent—changes in brain activity by taking
3D MRI images in succession. Even unregulated processes in the resting brain,
i.e., resting-state fMRI (rfMRI), show stable and individualized synchronies [12].
Such functional activities have been related to cognition and several phenotypes,
especially using the functional connectivity (FC) (see Sect. 4.2). Based on whole-
brain FC, the sex prediction accuracy of 75-80% was achieved with discrim-
inative features mainly located in the Default mode network (DMN) [41,45].
Another study with a lower prediction accuracy of 62% found discriminative FC
in motor, sensory, and association areas [6]. Smith and colleagues [34] reported a
higher prediction accuracy of 87%. A recent study reported sex prediction accu-
racy of 98% using multi-label learning, i.e., sex in conjunction with nine other
cognitive, behavioural and demographic variables [8].

Brain size is highly correlated with sex, with larger total brain volume in
males compared to females [4,29]; and is encoded in MRI data. Figure 1b shows
the difference in brain size between sexes for the data samples used in the current
study. In such a scenario, even if a model decodes sex from MRI data significantly
above chance, there is no clear understanding of the unique contribution of the
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functional features independent of brain size. It is likely that the prediction is
driven partly by brain size in addition to the functional differences. Zhang and
colleagues [45] have shown that the sex prediction accuracy drops from 80%
to 70% after regressing out brain size from FC, indicating an apparent effect of
brain size in sex prediction. Hence, there is clearly a need to study sex prediction
using rfMRI while controlling for brain size.

3 Experimental Setup

3.1 Study Design

With a limited and contrasting literature, there is a lack of knowledge of how
to perform confound removal. Here we aimed to evaluate two confound removal
schemes (WDCR and CVCR) and their interaction with the commonly used
Z-score feature normalization. We evaluated eight pipelines in total (Fig. 2a);

No confound removal, no Z-scoring (NCR-NZ)

No confound removal, with Z-scoring (NCR-Z)

WDCR, no Z-scoring (WDCR-NZ)

WDCR, Z-scoring after confound removal (WDCR-ZAC)
WDCR, Z-scoring before confound removal (WDCR-ZBC)
CVCR, no Z-scoring (CVCR-NZ)

CVCR, Z-scoring after confound removal (CVCR-ZAC)
CVCR, Z-scoring before confound removal (CVCR-ZBC)

P NSO W

We applied these pipelines for predicting an individual’s sex using features
derived from rfMRI data while controlling for two confounds brain size and
age. We performed two evaluations; (1) CV to estimate the generalization per-
formance and compared it with prediction on an OOS dataset, and (2) OOS
prediction with covariate and confound shift as a model deployment scenario.
The prediction performance was evaluated using AUC, Fl-score and balanced
accuracy.

For evaluation-1, we used a publicly available database (HCP, see Sect. 4.1)
and carefully derived sample-1 (N = 377) and sample-2 (N = 54). After standard
preprocessing two types of features were extracted from rfMRI data, Regional
Homogeneity (ReHo) and FC (see Sect. 4.2). Each feature set was analyzed
separately using Ridge Regression and Partial Least Square Regression with all
eight pipelines. The generalization performance was estimated on sample-1 using
10 times repeated 10-fold CV. The OOS performance was evaluated on sample-2.
By comparing the CV and OOS results, we can comment on whether the CV
procedure can reliably estimate the generalization performance.

As the confounds were linearly removed from the features in a univariate way
(see Sect. 3.2) multivariate confounding effects might still remain. We, therefore,
assessed the effectiveness of confound removal pipelines in removing univari-
ate and multivariate confounding effects. The Pearson correlation between each
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Fig. 2. a. The schematic diagram of various combinations of confound removal schemes
and Z-score for confound removal evaluated in the study. b. Whole data confound
regression (WDCR). c. Cross-validated confound regression (CVCR).

residual feature and the brain size was calculated to check for remaining univari-
ate confounding effects. The adjusted 72 of the multiple linear regression model
predicting the brain size using residual features was used to check for remaining
multivariate confounding effects.

In neuroimaging studies it is common that the data is acquired on different
scanners [40] and there may exist demographic differences between samples.
Such differences can lead to covariate shift [19] and by extension confound shift.
An ideal model should generalize well despite such differences. To evaluate this
(evaluation-2), we employed an additional sample (sample-3; N = 484) from a
public dataset (eNKI, see Sect. 4.1) where demographics, scanner parameters
and preprocessing are different than sample-1 and 2. We tested four ways to
remove confounds from OOS data.

1. Train-to-test: The confound removal models from the train data were
applied to the OOS data. This is the standard method.
2. Test WDCR: WDCR was performed on the OOS data.
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3. Test CVCR: CVCR was performed on the OOS data, i.e. confound regres-
sion was performed within CV for OOS data and the residuals were retained.

4. Train and test combined: WDCR was performed on the combined train
and OOS data. The data was then re-split into train and test.

Methods 2, 3 aimed to obtain confound-free OOS data, with the assumptions
that confound-removed models can perform well on confound-removed OOS data
as confounds are handled within a sample. Method 4 assumes that the confound
removal linear models can capture variance from both train and OOS data. Note
that 2, 3 and 4 can only be used with sufficiently large OOS data. WDCR models
trained on sample-1 were used to predict the confound-removed OOS data. The
sample-2 and sample-3 with similar and different properties to sample-1 respec-
tively were the OOS datasets. Note that for method 1, 2 and 3 trained models
(on sample-1) come from the above-mentioned pipelines used for evaluation-1.

3.2 Confound Regression

We tested two different versions of confound regression, WDCR and CVCR
(Fig. 2b and ¢). In WDCR, using multiple linear regression we regressed out
the confounds from each of the predictors from the entire dataset before the
cross-validated procedure. Note that, this procedure uses information from the
whole dataset leading to data-leakage. In CVCR, we regressed the confounds in
a similar way to WDCR but the confound removal models were estimated on
the training data and subsequently applied to both train and validation sets. In
this way, there is no leakage from train to test.

3.3 Predictive Modelling

We used two prediction models, Ridge Regression and Partial Least Square regres-
sion. Ridge Regression (RR) uses a sum of the square penalty on the model parame-
ters to reduces model complexity and prevent overfitting [15]. The balance between
the fit and the penalty is defined using a hyper-parameter A which we tuned in
an inner CV loop. PLS Regression (PLS) performs dimensionality reduction and
learning simultaneously, making it a popular choice when there are more features
than observations, and/or when there is multicollinearity among the features. It
has performed well in MRI-based estimations for cognitive, behavioural and demo-
graphic variables [8,45]. PLS searches for a set of latent vectors that performs a
simultaneous decomposition of predictors and the target such that these compo-
nents explain the maximum covariance between them [1]. These latent vectors are
then used for prediction. The hyperparameter for the PLS is the number of latent
variables which was tuned in an inner CV loop.

4 Data Samples and Features

4.1 Data Samples

This study included three samples. Sample 1 and 2 are two independent subsets
of the data provided by the Human Connectome Project (HCP) S1200 release
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[39]. Sample-1 contained 377 subjects (age range: 22-37, mean age: 28.6 years;
182 females), sample-2 comprised 54 subjects (age range: 22-36, mean age: 28.9
years; 28 females). As the HCP data contains siblings and twins, the samples were
constructed such that there were no siblings within or across the two samples, to
avoid biases due to any similarity in the FC of the siblings. Within each of the
two samples, males and females were matched for age, and education. Resting-
state blood oxygen level-dependent (BOLD) data comprised 1200 functional
volumes per subject, acquired on a Siemens Skyra 3T scanner with the following
parameters: TR = 720 ms, TE = 33.1 ms, flip angle = 52°, voxel size = 2 x 2 x
2 mm?, FoV = 208 x 180 mm?2, matrix = 104 x 90, slices = 72. Sample-3 was
obtained from the Enhanced Nathan Kline Institute-Rockland Sample (eNKI-
RS) [23] with 484 subjects (age range: 6-85, mean age: 41.9 years; 311 females).
Images were acquired on a Siemens TimTrio 3T scanner using BOLD contrast
with the following parameters: TR = 1400 ms, TE = 30 ms, flip angle = 65°,
voxel size = 2 x 2 x 2 mm?, slices = 64. Subjects were asked to lie with eyes open,
with “relaxed” fixation on a white cross (on a dark background), think of nothing
in particular, and not to fall asleep. The CAT-12 toolbox (http://www.neuro.
uni-jena.de/cat/) was used to calculate the brain size of each subject based on
T1-weighted images. Note the stark differences between sample-1, 2 and sample-
3 in terms of demographics as well as scanner parameters. This selection was
made to elucidate the common scenario of data heterogeneity.

Two-sample t-test revealed significant sex differences in the brain size across
all the samples (p < 0.001; Fig. 1b). This clearly demonstrates that brain size
is a confound in sex prediction. There was no difference in age between sexes in
sample-1 but significant differences was observed in sample-2 and 3 (p < 0.001).
Age is not expected to be related to sex but was included as a control confound.

4.2 Pre-processing and Feature Extraction

After standard rfMRI pre-processing we extracted two types of features based
on the voxel-wise time-series.

Preprocessing. The rfMRI data needs to be pre-processed so that the effects
of motion in the scanner are removed as well as the brain of each subject is nor-
malized to a standard brain template (e.g., MNI-152) so that they can be com-
pared across subjects. For samples 1 and 2, the pre-processed, FIX-denoised and
spatially normalized to the MNI-152 template data provided by the HCP S1200
release was used. There was no difference in the movement parameters (measured
as mean framewise displacement) between males and females in both the sam-
ples. No further motion correction was performed. For sample-3, physical noise
and effects of motion in the scanner were removed by using FIX (FMRIB’s ICA-
based Xnoiseifier, version 1.061 as implemented in FSL 5.0.9; [13,31]). Unique
variance related to the identified artefactual independent components and 24
movement parameters [32] were then regressed from the data. The FIX-denoised
data were further preprocessed using SPM8 (Wellcome Trust Centre for Neu-
roimaging, London) and in-house Matlab scripts for movement correction and
spatial normalization to the MNI-152 template [3].
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Regions of Interest (ROI). The Dosenbach atlas was used to extract 160 ROIs
from the whole-brain data. These ROIs are spheres of 10 mm diameter, identified
from a series of meta-analyses of task-related fMRI studies and broadly cover
much of the cerebral cortex and cerebellum [11]. This atlas has been utilized in
several brain network analyses including for sex prediction [5,45].

Feature Space 1: Regional Homogeneity (ReHo) measures the similarity
of the time-series of a set of voxels and thus reflects the temporal synchrony
of the regional BOLD signal [44]. ReHo for each subject and each of the 160
ROIs was calculated as the Kendall’s coefficient of concordance between all the
time-series of the voxels within a given ROI resulting in 160 features per subject.

Feature Space 2: Functional Connectivity (FC) is the correlation between
the time-series of different brain regions [36]. For each subject, the time series
of all the voxels within a ROI were averaged and FC was calculated as the
Pearson’s correlation coefficients between them for all pairs of ROI. These were
then transformed using Fisher’s Z-score. Each subject had a feature vector of
length 12,720 after vectorization of the lower triangle of the 160 x 160 FC matrix.

5 Results

We compiled the results from two viewpoints. We first asked which of the
pipelines incorporating confound removal provides more realistic generalization
performance estimates. Then we assessed the efficacy of the confound removal
schemes in a model deployment scenario with data heterogeneity.

5.1 Generalization Performance Estimates

CV is commonly used to estimate generalization performance. However, it is not
without caveats [7]. Therefore, we compared CV performance of the pipelines
with “true” OOS performance. In this case, the CV was performed on sample-1
and sample-2 was used as the OOS data. PLS generally performed better than
RR, so in the following we focus on the PLS results.

As expected, the CV performance was highest without controlling for con-
founds (Table 1). AUC and F1-scores for sex prediction with ReHo were 0.838
and 0.754 and with FC were 0.874 and 0.787, respectively. Both the schemes
WDCR and CVCR showed reduced performance in line with previous studies
[25,35]. As brain size is highly correlated to sex, regressing it out from every
feature can remove sex-specific information, resulting in a lower performance.

WDCR provided lower generalization estimates than CVCR, with the bal-
anced accuracy dropping close to chance level with WDCR. One might expect
higher generalization performance with WDCR as it causes data leakage from
the train to the validation set violating the crucial assumption of independence
in cross-validated analysis. However, in this case, it leads to worse performance.
This might be because WDCR, is performed on the whole dataset and hence
is more aggressive in removing the confounding signal than CVCR leading to
poorer performance. When the trained models were applied to OOS data, we
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Table 1. Comparison of the pipelines using RR and PLS. Models were trained on
sample-1 and out-of-sample/test performance was tested on sample-2.

CR Z-score | Feat. Ridge regression Partial least squares
CV: Sample-1 Test: Sample-2 CV: Sample-1 Test: Sample-2
AUC| F1 |Acc. |[AUC F1 |Acc.|AUC| F1 |Acc. AUC| F1 | Acc.

NCR NZ ReHo|0.750/0.667/0.662|0.751 0.690/0.688|0.776{0.714|0.712 0.808/0.759|0.760
FC |0.857|0.763|0.757|0.823 0.728/0.725/0.874|0.787|0.785 0.835|0.762|0.761
NCR Z ReHo|0.829/0.749|0.746|0.832 0.759|0.758|0.838/0.754/0.751 0.860/0.778/0.776
FC |0.860(0.772/0.768/0.841 0.765/0.762/0.860/0.781/0.779 0.813|0.765|0.762
WDCR NZ ReHo|0.477/0.490{0.490{0.511 0.500/0.500/0.476/0.4940.494 0.685|0.647|0.647

FC |0.466|0.488/0.496|0.607 0.500/0.500/0.417/0.454|0.455 0.685|0.661|0.654
ZAC ReHo|0.528/0.523|0.522|0.501 0.500(0.500/0.553/0.5480.546 0.735/0.685|0.683
FC |0.467/0.482|0.483|0.611 0.500/0.500|0.409|0.444/0.446 0.677|0.578|0.577
ZBC ReHo|0.528/0.528{0.526|0.501 0.500(0.500/0.553/0.5460.545 0.735/0.685|0.683
FC |0.456/0.476|0.478|0.611 0.500/0.500|0.407|0.444/0.445 0.677|0.578|0.577
CVCR NZ ReHo|0.552/0.522{0.519{0.511 0.500/0.500/0.569/0.553/0.553 0.685|0.647|0.647
FC |0.516{0.500/0.500(0.607 0.500/0.500/0.595|0.576|0.575 0.685|0.661|0.654
ZAC ReHo|0.632/0.589|0.585(0.577 0.611/0.518|0.668/0.6370.634 0.694|0.666|0.665
FC |0.543|0.532/0.529/0.661 0.592/0.582/0.588/0.565|0.563 0.705|0.595|0.595
ZBC ReHo|0.634/0.591|0.587|0.577 0.611|0.518/0.6690.635/0.633 0.703|0.666|0.665
FC |0.547(0.532/0.529/0.662 0.592/0.582/0.586|0.564|0.563 0.705|0.595|0.595

found that OOS performance was higher than the CV estimates for most of the
pipelines. This might happen if the OOS data is easier to classify. The OOS per-
formance was closer to the generalization performance estimated with CVCR.
This result suggests that CVCR is a better way to do confound removal in pre-
dictive analyses with neuroimaging data.

We then checked whether the confound removal was happening as expected.
First, in a univariate way we correlated the residuals (new features) with the
confounding variables. We found no significant correlation with both confound
removal schemes indicating effective univariate removal of the confounding signal
from the features. However, as multivariate effects might still be remaining, we
used multiple linear regression to predict brain size from the residual features.
With CVCR and WDCR, these models on the training sets revealed negative
adjusted 72. This indicates that there were no remaining linear multivariate
confounding effects with both WDCR and CVCR. Thus the models trained
with the residual features contained no information from the confounds.

These trends were similar for both ReHo and FC. Z-scoring improved the
model performance with ReHo but not with FC. There was no effect of Z-scoring
the features before (raw features) or after (residuals) confound removal.

5.2 Predictive Features

One of the main objectives of a decoding analysis is to identify predictive features
(brain regions) explaining the variance in phenotype. As the confounding effect
can impact predictive features selection, it is important to compare them with
and without confound removal. The Z-scored feature weights (the absolute value)
averaged across CV runs were used to select predictive features. We found that
predictive features with and without confound removal were different (Fig. 3).



Confound Removal and Normalization in Practice 13

a. 404 ReHo * NCR-NZ b.
35 o  WDCR- ZAC
x  CVCR- ZAC
304
o 2] XX M X X KHXX MK K X x
2
g
5 o ol @| 00 ®Woo @ o o
104 |
5| * ok Kk vm\ Kok Mk hh ok M * kK
| | | ,
o -0.4 -0.3 -0.2 -0.1
700 FC * NCR-NZ
— o  WDCR- ZAC
x  CVCR- ZAC
500
=
S 400 x X SHOO0K X
3
O 300 o ™ DOCCO O
200
100 ek - * ‘.J.‘ Ml ok
' alll L o,

Pea;scé)zn corr&étion boe'otween (‘é.rlle raw géatures
and brain size
Fig. 3. a. Pearson correlation between the raw features and the brain size as histograms.
The dots show the correlations of the selected features (jittered); 25 for ReHo (top)
and 70 for FC (bottom) for NCR-NZ, WDCR-ZAC and CVCR-ZAC pipelines. b. Brain

regions associated with the selected features; ReHo (top, relative weights), and FC
(bottom), both with the CVCR-ZAC pipeline.

We compared 25 ReHo and 70 FC features with highest absolute weights
from 3 pipelines, NCR-NZ, WDCR-ZAC and CVCR-ZAC (Fig. 3a). The features
selected without confound removal had relatively higher positive or negative cor-
relation with brain size. However, after confound removal (WDCR and CVCR),
for FC the features with lower correlation were selected. This suggests that the
features selected after confound removal represent the functional signal predic-
tive of sex. We then identified features selected after confound removal (CVCR-~
ZAC) but not selected without confound removal (NCR-NZ) (Fig. 3b). With ReHo,
selected regions were in dorsolateral prefrontal cortex, inferior parietal lobule,
occipital, ventromedial prefrontal cortex, precentral gyrus, post insula, parietal,
temporoparietal junction and inferior cerebellum, in line with a study identify-
ing regions in the inferior parietal lobule and precentral gyrus [43]. In contrast,
another study found sex differences in right hippocampus and amygdala [21]. We
found important FC features widespread across the entire brain with strong inter-
hemispheric connections. In contrast to the study by Zhang and colleagues [45] we
did not find many intra-network FC in the DMN. Z-score feature normalization
before or after confound removal did not affect selected features.

5.3 Out-of-Sample Performance

To study how a model deployment would work, especially in the presence of data
heterogeneity common in neuroimaging studies, we tested four different ways
to remove confounds from the OOS data including, applying confound models
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from train to OOS data using CVCR-ZAC pipeline, self-confound removal on
the OOS data using WDCR and CVCR, and WDCR on the combined train and
OOS data. The Z-score normalization was performed after the confound removal
(ZAC) and PLS was used for prediction.

For sample-2, train-to-test confound removal showed best performance com-
pared to other three methods (Table 2). This is expected as the properties of
these two samples are expected to be similar (i.e., no data shift). Even though,
residual correlations were observed in the OOS data after applying confound
models from train data (Fig. 4a), the training models were confound-free so this
performance cannot be driven by confounding effects.

For sample-3 (data shift expected), we observed mixed results. For ReHo, the
combined WDCR, model (learned on the train data) gave highest performance
(Table 2b). However, significant correlation was present between the residual
features and brain size in both train and OOS data (Fig. 4b). This might indicate
that the performance is driven by confounding effects. A similar model using FC
was lowest performing. With combined WDCR, it seems like the dataset with
higher variance dominates leaving the other part correlated, indicating it might
be suboptimal. Predictions on self-confound removed OOS data (sample-3) (Test
WDCR and Test CVCR) were similar to when the confound models from sample-
1 were applied (Table 2a). However, the OOS performance using ReHo dropped
compared to CV while that of FC improved.

Table 2. Comparison of confound removal schemes on out-of-sample/test data. a.
Confound models learned from the train data (sample-1) applied to test data (sample-
2 and 3), WDCR and CVCR performed only on test data. b. WDCR on the combined
train and test data.

a. Method Feat. | CV: Sample-1 Test: Sample-2 Test: Sample-3

AUC |F1 Acc. |AUC |F1 Acc. |[AUC |F1 Acc.
Train-to test: |ReHo|0.668|0.6370.634|0.694 | 0.666|0.665|0.549|0.528 | 0.527
CVCR-ZAC FC 0.588|0.565|0.563|0.705|0.595|0.595|0.637 |0.6280.619
Test WDCR: |ReHo|0.553|0.5480.546|0.5620.573|0.573|0.524|0.530 | 0.531
WDCR-ZAC FC 0.409|0.444/0.446|0.632|0.576 |0.576 | 0.635|0.592|0.595
Test CVCR: |ReHo|0.668|0.6370.634|0.582/0.591{0.591|0.505|0.508 | 0.509
CVCR-ZAC FC 0.588/0.565|0.563|0.603|0.578 0.577|0.634|0.597|0.601

b. Feat. | CV: Sample-1 Test: Sample-2 CV: Sample-1 Test: Sample-3

AUC |F1 Acc. |AUC |F1 Acc. |AUC |F1 Acc. |AUC |F1 Acc.
ReHo 0.533/0.538/0.5380.580|0.5580.560|0.870/0.788|0.786|0.614|0.577|0.502
FC 0.450/0.459/0.461|0.387/0.4090.412|0.8710.779|0.777|0.541|0.502 | 0.501

Taken together, we found that train-to-test application of confound removal
models and self-confound removal to be better strategies but inconsistent across
feature spaces. This raises questions regarding optimal confound removal strate-
gies when data heterogeneity is present. Based on the results, we also speculate
that covariate and confound shift is more pronounced in ReHo compared to FC.
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Fig. 4. Correlation between the residual features and brain size: for out-of-sample/test
data when training confound removal models were applied (orange), and for train
(purple) and test (green) data when combined train and test WDCR was performed.
(Color figure online)

6 Conclusion

In this study, several confound removal pipelines were tested on the task of
rfMRI data based sex classification. As expected, the two confound removal
schemes (WDCR and CVCR) could effectively remove the signal corresponding
to confounds leading to a substantial drop in prediction performance compared
to without confound removal. Analyses on the residual features after WDCR
and CVCR revealed that there were no remaining univariate and multivariate
confounding effects. Thus, both these confound removed models should not have
confound-related information encoded. We found CVCR to be a better method
compared to WDCR as CVCR estimated generalization performance was closer
to OOS performance. As WDCR leads to data leakage, one might expect it to be
over-optimistic. However, our results point to the opposite. This is likely due to
the aggressive confound removal. Our findings provide further corroboration to
the idea of applying data analysis operations within the CV loop. In this work
we focused on the sex prediction problem and whether our results apply to other
problems remains to be seen.

The Z-score normalization of the features before or after confound removal
did not affect model performance. We recommend to normalize after confound
removal, as some learning algorithms might benefit from well-scaled features.
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We also found that the OOS performance was best when the confound models
from the train data were used, provided that the sample properties between train
and test are similar but results were inconsistent with data shift. Although we
used multiple regression to test for remaining multivariate confounding effects,
we are not aware of a method that can directly remove multivariate effects. This
calls for further investigations and development of new methods.
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