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Abstract: Traditionally, the sensory properties of wine were characterized using a trained panel and
descriptive analysis (DA)—a static sensory evaluation method. As wine is a complex mixture, with
evolving sensory properties, a way to capture these changes is needed in order to fully describe
the sensory experience of wine perception. In this study, temporal check-all-that-apply (TCATA),
a dynamic sensory evaluation method, was used to characterize model wine samples reminiscent
of a white, hybrid wine. Twelve model wines varied in levels of ethanol, glycerol, and caffeic acid,
representing commercial levels in Pennsylvania. Samples were evaluated for up to three minutes by a
trained TCATA panel (n = 12) for flavor, taste, and mouthfeel attributes. In general, the experimental
factors, ethanol and glycerol, along with interactions between factors, had the greatest temporal effects,
with significant differences in flavor attributes occurring within the first 30 s of evaluation, while taste
and mouthfeel attributes showed significant differences throughout the evaluation period. Overall,
ethanol had the greatest impact on temporal wine perception. The findings of this study further
suggest that a temporal evaluation method, like TCATA, should be paired with DA to completely
characterize a complex and evolving sample. Further, changes in wine matrix components affect
sensory perception both in direct and indirect ways—the latter indicated by taste-taste suppression
and cross-modal interaction effects.
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1. Introduction

Complex mixtures, such as wine, have shown considerable mixture effects. Both non-volatile
and volatile components of the wine matrix are affecting each other through interactions. Further,
these interactions affect wine perception on multiple levels: (i) on a chemical level, it has been shown
that matrix components affect the partitioning of certain aroma compounds into the headspace [1];
(ii) on a perceptual level, it is known that taste sensations often suppress each other, while cross-modal
interactions can lead to antagonistic or synergistic behavior [2].

In addition, major matrix components like ethanol as well as non-volatile phenolic compounds
and glycerol all have been shown to affect wine flavor: ethanol has been shown to decrease citrus
aroma and increase bitter taste in white wines [3], and phenolic compounds (i.e., hydroxycinnamates,
flavanols, and flavan-3-ols) have been shown to increase astringency, viscosity, hot mouthfeel, and
bitterness [4], while glycerol has been shown to increase volatile compound partitioning in situations
where ethanol is absent; this change in partitioning has been shown to affect aroma perception [1].

Further, these factors do not act in isolation, but rather interactively with each other as well as with
aroma compounds [5]. For example, both C13-norisoprenoids (e.g., β-damascenone and β-ionone) and
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dimethyl sulfide have been independently shown to enhance fruity aromas, while ethanol suppresses
them [6].

The effect of matrix components on wine sensory perception has mostly been studied using
DA, where a trained sensory panel makes qualitative and quantitative single point measurements
of sensory attributes. While this approach provides valuable information, wine matrix factors have
also been shown to affect wine sensory attributes in a dynamic fashion—that is, the perception of
a sensory attribute changes from one moment to another, e.g., during the duration of a single or
multiple sips [7]. These dynamic changes are caused by multiple product- as well as human-inherent
factors, for example, chewing and breathing, and differences in individual saliva composition [8,9].
As wine is exposed to oxygen, chemical reactions taking place have been shown to change the sensory
perception [10]. Therefore, studying these temporal sensory changes is critical to understand what
compositional factors are driving the overall sensory experience during wine consumption.

In the recent past, two major temporal methods have been applied to dynamically assess wines,
namely, temporal dominance of sensation (TDS) and temporal check-all-that-apply (TCATA) [7,11–16].
In TDS, participants are given a list of product-relevant sensory attributes and are asked to select
the most “dominant” attribute at any time, the one that “catches the attention at a given time”, not
necessarily the one that is the most intense [15]. Comparing DA to TDS, it was found that TDS should
be paired with DA for precise measurements as DA does not capture temporal aspects and TDS does
not provide intensity ratings [11], and that while TDS cannot replace a complete sensory profile, it
is easy to use and particularly useful for products with a “weak sensory difference” [7]. Work by
Frost et al. confirmed that TDS captures the sensory aspects of wines that are not captured by DA or
instrumental methods [14,15].

While TDS, as a temporal evaluation method, has been shown to elucidate differences in dynamic
vs. static wine flavor perception, the major limitation of this method is that it only provides information
on the most dominant attribute. For a complex product like wine, focusing on the dominant attribute
over time may not be enough, as more than one attribute may be present and, thus, needs to be
captured to understand its contribution to overall flavor [17]. TCATA overcomes this limitation, as it is
an extension of the commonly used check-all-that-apply (CATA) method: participants are provided
with an attribute list salient for a particular product and asked to select any of the listed attributes that
they perceive over the period of evaluation (e.g., a single sip). While the collected frequency data does
not necessarily equate to intensity ratings, Campo et al. showed for Pinot Noir wines that attributes
selected most often in CATA were also rated highest in intensity using classical DA [18]. Comparing
TDS to TCATA, Ares et al. [17] and Meyners and Castura [19] concluded that TCATA may lead to
better product differentiation, as more than one attribute at a time can be checked. However, both
methods were found to be complementary to each other.

Past studies looked at the temporal effects of major matrix factors in wine: ethanol, for example,
was shown to affect both bitter taste intensity and duration over the period of a single sip, leading to
both increased bitter intensity and duration with increasing ethanol content in German white wines [11].
Using TDS, the authors showed that bitter taste persistence, an aspect that was not picked up by the
DA panel, was able to explain the differences between the wines. Additionally, they were able to link
bitter taste persistence over the duration of a sip to not only ethanol, but also to changes in fructose
concentration. TDS revealed that fructose inversely affected the duration of bitter dominance more
than ethanol, in that increasing levels of fructose led to a shorter duration of bitter dominance [11].

Similar results were seen in red Syrah wines, where higher levels of ethanol not only increased
perceptions of warmth, astringency, bitter taste, spice and dark fruit flavors, but also led to a longer
total duration of wine finish (88 vs. 76 s for the low-alcohol wines), as assessed by TCATA [12].
In contrast, the low-alcohol wines were characterized by high red fruit perception during the first part
of evaluation, followed by high citation levels of green flavors in the middle part, and a lasting sour
taste towards the end of the evaluation of a single sip [12]. The reported flavor changes over time
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indicated that ethanol is affecting flavor attributes that are not directly tied to the perception of ethanol
in indirect ways, through cross-modal interactions and/or taste-taste suppression.

The effects of carbonation levels in sparkling wines were similarly studied with TCATA.
Carbonation is an important quality attribute of sparkling wine, and the authors found that lowering
carbonation (i.e., less CO2 present in the wine) resulted in muted perception for all sensory attributes
throughout the entire evaluation period, except for bitter and sour taste, which were unaffected by
carbonation. For the highest level of carbonation, the duration of numbing and tingling sensations
increased from 46 to 65 s, and interestingly, for the high carbonation treatment (7.5 g/L CO2), an increase
in sour taste between 45 and 60 s was observed [13]. This is interesting as sourness was initially (0–45 s)
higher in the lower carbonation treatments but flipped after that—an observation that was only made
due to the use of a temporal sensory evaluation method.

It was found that combining static DA with a temporal assessment allows for a comprehensive
understanding of wine flavor perception [14,15]. For example, the effects of changing tannins, acidity,
and ethanol levels in red Merlot wines not only led to significant flavor differences as evaluated by DA,
but also changed aroma, flavor, taste, and mouthfeel attributes to a different degree over time (90 s) [15].
For example, varying tannin concentration either to a high or low level (over 1000 vs. ~725 mg/L
catechin equivalents), in combination with pH (5, 6, and 7) and ethanol (14%, 14.5%, and 15% v/v),
affected sour taste, bitter taste, and astringent mouthfeel. While static DA revealed that sour taste
increased with increasing levels of acidity, TDS additionally found that tannin concentration also
affected sour taste perception at the beginning of evaluation (0–15 s), where sourness was higher in
the higher tannin samples. Using TDS, bitter taste was found to not be the dominant attribute at the
end of evaluation (~the final 15 s) for the high tannin samples, while it was dominant at the end of
evaluation for the low tannin samples. This indicates the suppressing effects of bitter and sour taste [20].
Last, for astringency, increased tannin concentration led to increased astringency in the DA, and TDS
indicated that this increase could be explained by astringency being perceived earlier. This implies
that for astringency, the onset and duration of the sensation seems to drive the increased DA ratings.
The authors also confirmed that TDS captures sensory aspects of wines that are not captured by DA or
instrumental methods [14].

Despite the information on how different wine matrix components (e.g., ethanol, CO2, etc.) affect
temporal flavor perception of wines, it is unclear how these matrix components interact with each
other and aroma compounds and affect flavor perception over time in a white wine matrix. Thus, in
this study, model white wine samples were evaluated by TCATA to assess the dynamic changes in
sensory perception as a function of varying wine matrix components, such as ethanol, glycerol, and
phenolics. The objective of this study was to identify the factors that significantly affect the temporal
perception of a white, hybrid model wine. Based on prior literature, we hypothesized that TCATA
would identify different experimental factors than DA that are responsible for observed temporal
sensory differences. Further, we hypothesized that ethanol content would lead to the greatest changes
in temporal sensory perception, both in duration and citation frequency.

2. Materials and Methods

2.1. Model Wine Samples

For this study, 12 different model wine samples were used (Table 1), varying in levels of ethanol,
caffeic acid, and glycerol, while keeping pH, titratable acidity, protein concentration, and aroma
concentration constant. The levels of ethanol (200 proof, Decon Labs, King of Prussia, PA) and glycerol
(>99%, Sigma-Aldrich, St. Louis, MO, USA) were chosen to cover the ranges observed in Pennsylvanian
white wines. The greatest phenolic fraction in white wines are hydroxycinnamates [21], found in
white wines at around 64 mg/L (range 17–130 mg/L) [22]. The hydrocinnamate caffeic acid (>98%,
Sigma-Aldrich, St. Louis, MO, USA) was selected as the model phenolic compound, as it is safe
for human consumption [22,23] and found in wines in the range of 2.4–40 mg/L [24]. Additionally,
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the samples also contained 0.5 g/L bovine serum albumin (BSA) (>98%, Sigma-Aldrich, St. Louis,
MO, USA). Although BSA, with a size of around 66 kDa, is about double the size of typical wine
proteins [21], it has previously been used as a model protein for wine research [8], as it is safe for
human consumption [25–27]. Potassium hydrogen tartrate (99%, Spectrum Chemical, Gardena, CA,
USA) was added to achieve a titratable acidity of 7.5 g/L and a pH of 3.5. Last, the same level of an
aroma fraction (Table 1b) was added to all model wine samples. The composition was based on a 2017
research Traminette wine [28] and Chardonnay [3].

For sample production, reverse osmosis water was combined with ethanol and potassium
hydrogen tartrate in 5 gallon buckets, which were aliquoted and mixed with the remaining components,
except for the aroma fraction. Model wines were measured into 500 mL glass canning jars (Ball,
Broomfield, CO, USA) and stored at 4 ◦C until the day of sensory training or testing (max. 6 weeks).
One milliliter of the aroma fraction was added to the 500 mL samples 5 h prior to use.

Table 1. (a) Major wine components and levels used in the model wines, and (b) composition of the
aroma fraction, prepared in 200 proof ethanol, which was added to all model wines (1 mL/500 mL).

(a)

Component Levels

Ethanol (% v/v) 10 12 14
Glycerol (g/L) 5 15

Phenolics (mg/L, caffeic acid) 20 60
pH (−) 3.5

Protein (g/L, bovine serum albumin) 0.5
Titratable acidity (g/L, potassium hydrogen tartrate) 7.5

(b)

Compound Concentration (µg/L) Compound Concentration (µg/L)

Ethyl Acetate 50,000 Ethyl Hexanoate 1250
Acetic Acid 40,000 Hexyl Acetate 790

Phenethyl Alcohol 14,000 Ethyl Butanoate 450
Octanoic Acid 9100 Phenethyl Acetate 450
Hexanoic Acid 8100 β-Damascenone 415

Isoamyl Acetate 3200 Linalool 165
Ethyl Octanoate 1700 Geraniol 15
Ethyl Decanoate 1600

2.2. Sensory Evaluation by Temporal Check-All-That-Apply (TCATA)

A trained panel of 12 participants (8 females and 4 males, aged 23–65) was recruited for this study
from the participant database of the Sensory Evaluation Center (SEC) at Penn State, based on prior
participation in trained panels or involvement in grape and wine research. Panelists were screened for
availability, white wine consumption (min of 2–3 times/month), food allergies, health concerns, and
taste or smell defects. Penn State’s IRB reviewed and oversaw the study (STUDY00010095).

On the day of training and testing, 1 mL of the aroma fraction was added to 500 mL model wine
samples. Twenty milliliters were poured approximately 1 h before evaluation into clear ISO wine
glasses and covered with a disposable, polystyrene Petri dish (60 × 15 mm, VWR International, Radnor,
PA). Wine glasses were labeled with a randomized three-digit blinding code on the stem.

Panelists received three, 90 min training sessions, where they were familiarized with the basic
taste, mouthfeel, and flavor references (Table 2). Attributes were selected based on a prior DA on the
same set of wines [29], and included three flavor (apple, pear, citrus), three basic taste (sweet, sour,
bitter), and two mouthfeel (astringent, warm/hot) attributes. An “other” option was also provided to
prevent potential “dumping” bias [30].
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Table 2. References used for training of sensory attributes. All standards were prepared in 10% (v/v)
ethanol (Decon Labs, King of Prussia, PA), unless otherwise noted.

Attribute Reference Standard

Apple 1 green apple jolly rancher (Hershey’s, Hershey, PA);10.0 g fresh Granny Smith apple
(Wegmans, State College, PA) in 30 mL

Pear 30.0 g fresh green pear (Wegmans) in 20 mL; 5.0 g fresh Granny Smith apple; 20.0 g of fresh green
pear in 20 mL

Citrus 3 × 2 cm fresh orange peel (Wegmans) in 20 mL; 3 × 2 cm fresh orange peel; 3 × 2 cm fresh lemon peel
(Wegmans); 2 × 1 cm fresh lime peel (Wegmans) in 20 mL

Sour 1.5 g/L tartaric acid (>99.7%, Sigma-Aldrich, St. Louis, MO, USA) in deionized water
Sweet 30 g/L sucrose (Domino Foods Inc., Yonkers, NY, USA) in deionized water
Bitter 0.8 g/L caffeine (Sigma-Aldrich) in deionized water

Astringent 1.5 g/L alum (McCormick, Hunt Valley, MD) in deionized water
Warm/Hot 6% (v/v) ethanol (Decon Labs) in deionized water

Panelists also received training on the TCATA method through multiple methods. First, they
completed a guided practice example of TCATA, as provided by Compusense (Compusense Cloud,
Academic Consortium, Guelph, ONT, CA). Panelists were instructed to imagine that they were tasting
a cherry flavored beverage. After starting the timer, instructions popped up on the screen telling them
what sensory attributes they were perceiving and when to select or deselect them. Panelists were
allowed to complete this exercise as many times as they wished.

In the next training session, a selection of music was played (“Somebody to Love” by Queen).
This song was selected because it incorporated multiple instruments and vocals—many of which
are present simultaneously. When the music began, panelists started their timer and selected the
different elements that they heard in the music (e.g., “lead vocals”, “backup vocals”, “guitar”, “piano”,
“drums”). After familiarizing themselves with the method, panelists began practicing evaluating the
model wine samples using TCATA.

Training success was assessed by (i) having panelists evaluate blind duplicate samples in a
consistent and similar manner, and (ii) correctly identifying the references that they had been trained
on. To assess training success, the difference curves of two different duplicate samples were checked;
as no significant differences between the blind duplicates were found, the panel was deemed trained.

Following training, the 12 white, hybrid model wine samples were evaluated in three sensory
replicates in six 60 min evaluation sessions. Evaluation was conducted in individual booths at room
temperature under white light. Each panelist evaluated six model wine samples in each individual
evaluation session. A modified Williams-Latin square design was created so that panelists saw the
same six wines in any given evaluation session but counterbalanced in order within a session.

For the sample evaluation, panelists were first instructed to take a sip of water to cleanse their
palate. Panelists then took a sip of the sample and started the onscreen timer. They were instructed to
begin selecting and deselecting attributes immediately after starting the timer (no auto-deselect option).
After 10 s of moving the wine sample around in their mouth, they were instructed to expectorate.
This 10 s time period was discussed during the training and panelists decided that they needed no
more time than that; similar in-mouth evaluation periods (10–15 s) have been used previously for wine
assessment with TCATA and TDS [12–14]. The evaluation of the sample continued for up to three
minutes. Panelists were not allowed to stop the timer early, but they could deselect all attributes if they
were no longer perceiving any of them.

In between individual samples, panelists had a forced 60 s break, during which they were
encouraged to cleanse their palate with deionized water and unsalted soda crackers (Mondeléz Global
LLC, Deerfield, IL, USA). Additionally, after the third sample (halfway through an evaluation session),
panelists had a forced 10 min break to avoid fatiguing. During this break, panelists were encouraged
to leave the test booth and walk around.

All sensory data were collected using Compusense Cloud software.
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2.3. Statistical Analysis

All statistical analysis was conducted using RStudio (ver. 1.1.383, Boston, MA, USA) and R
software (ver. 3.4.3, R Foundation for Statistical Computing, Vienna, Austria), with the additional
packages tempR (ver. 0.9.9.12) [31] and ggplot2 (ver. 2.2.1) [32]. Statistical significance was defined as
p ≤ 0.05 for all analyses.

Initial analyses assessed panelist and panel agreement, as suggested by [19,33,34], to ensure that
panelists agreed with each other, and with themselves for the replicate samples. Panelist agreement
with themselves was checked for all samples and attributes. Panelist agreement with the rest of
the panel was checked for selected attributes (citrus flavor, sweet taste, and warm/hot mouthfeel)
and samples, to cover all different sensory modalities and include high, medium, and low intensity
attributes. Selected samples were 14% and 10% ethanol levels with low levels of caffeic acid (20 mg/L)
and glycerol (5 g/L).

For panelist agreement, the similarity between one panelist and the rest of the panel was quantified
by comparing a matrix of TCATA data for one panelist to a matrix of TCATA data for the rest of the
panel, and expressed as an index between 0 and 1, with 1 indicating perfect similarity. Second, panelist
consistency across the three sensory replicates was quantified as the similarity between repeated
evaluations of a single panelist, and expressed as an index between 0 and 1, with 1 indicating perfect
panelist consistency.

Data resulting from a TCATA study is binary, meaning that it is a series of zeros and ones
for each attribute, sensory replicate, and panelist. Every second where an attribute is selected gets
marked as a one. If the attribute is not selected, it gets marked as a zero. To assess the effects of our
experimental factors—ethanol, glycerol, and caffeic acid levels, the TCATA data was treated as count
data. This approach is similar to a prior study where proportions of selections were used for data
analysis by calculating the proportion of panelists who selected an attribute at any given moment
during evaluation [13]. The authors used citation proportions for each sensory attribute for every 0.1 s,
which was their selected time segmentation. Similarly, to test which experimental factors (ethanol,
glycerol, and caffeic acid) and interactions significantly affect the sensory attributes throughout the
three-minute evaluation period, Analysis of Variance (ANOVA) was run for each of the 9 attributes,
using 30 s time bins. These 30 s time segments should be small enough to detect temporal changes
during the 3 min evaluation period, but allow to test for significant differences due to the experimental
factors without being affected by slightly different selection times of the individual panelists, similar to
the procedures described by [35,36].

A trajectory principal component analysis (PCA) was created to visualize the temporal changes
of each sample during the 3 min evaluation period. This type of PCA can be understood as the
super-positioning of individual PCAs run at every time segment; the resulting lines, or trajectories,
indicate how each sample changes throughout the evaluation period. Such a visual depiction of global
changes allows one to follow and better understand the sensory changes of each sample throughout
time as well as enables one to compare samples to each other. It is a very powerful and elegant
visualization method that presents several thousands of data points into one easy-to-understand
figure [13].

3. Results

3.1. Panelist Consistency and Panel Agreement

Assessments of panel consistency and panel agreement were first conducted to ensure data
quality and validity. For panel agreement, three sensory attributes (citrus flavor, sweet taste, warm
mouthfeel) and two different ethanol levels (10% and 14%) were selected, allowing for the testing of
panel agreement for all three sensory modalities (retronasal aroma, basic taste, mouthfeel) and the
most extreme samples, i.e., the ones one would expect to significantly differ. Second, the repeatability
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of each panelist was assessed to test whether panelists were consistent in their evaluations across the
three sensory replicates.

Overall, the panelists were in good agreement with the rest of the panel, with agreement indices
of 0.60 and higher (Table 3). In a previous study [34], agreement values ranged from 0.69 to 0.74, while
median agreement values for this study were 0.71 and higher, except for Panelist 1, who showed the
least agreement with the rest of the panel (values between 0.16 and 0.60). As participants are human
subjects, there is always variability between people, and it is not unexpected that someone may stray
from the group. However, as the majority of panelists were in high agreement, all data were kept for
analysis, and no panelist was removed from the data.

Table 3. Panelist repeatability for the 12 panelists and panel agreement for three sensory attributes at
10% and 14% (v/v) ethanol.

Panelist
Citrus Flavor Warm/Hot Mouthfeel Sweet Taste

Repeatability
10% 14% 10% 14% 10% 14%

1 0.48 0.46 0.46 0.60 0.16 0.16 0.78
2 0.73 0.78 0.54 0.62 0.79 0.80 0.85
3 0.65 0.75 0.68 0.73 0.75 0.78 0.82
4 0.75 0.76 0.65 0.75 0.79 0.82 0.88
5 0.76 0.69 0.61 0.74 0.72 0.82 0.77
6 0.74 0.79 0.64 0.58 0.79 0.82 0.87
7 0.74 0.74 0.67 0.75 0.79 0.78 0.75
8 0.71 0.77 0.65 0.72 0.77 0.80 0.86
9 0.53 0.78 0.55 0.67 0.76 0.75 0.81
10 0.73 0.79 0.61 0.75 0.8 0.76 0.86
11 0.71 0.76 0.64 0.75 0.67 0.82 0.81
12 0.76 0.75 0.65 0.75 0.67 0.57 0.79

Second, the repeatability index can take values between 0 and 1, where 0 is not repeatable and 1 is
completely repeatable. As seen in Table 3, all panelists showed very high consistency across the three
sensory replicates as repeatability indices ranged from 0.75 to 0.88. Overall, the TCATA panel showed
both very high panel agreement and repeatability across sensory replicates, indicating high quality
TCATA data.

3.2. Visualization of Temporal Sensory Perception of Model Wines Varying in Ethanol, Glycerol,
and Caffeic Acid

To provide a visual overview of the observed temporal changes across the 12 model wines, varying
in ethanol, caffeic acid, and glycerol concentrations, and to identify the major drivers of sensory
perception over time, a trajectory principal component analysis (PCA) biplot was generated (Figure 1).

Plotting the first two dimensions of the resulting PCA, close to 95% of the total variance is captured,
with the first principal component (PC 1) explaining 85%, thus, capturing most of the variability. It
becomes apparent that PC 1 is capturing the temporal nature of the data: starting from the left-hand
side of the plot, indicating the start of the evaluation, sample trajectories trend towards the right-hand
side of the PCA plot before curling back towards the left as panelists reach the end of the evaluation
period of 180 s and perceive less and less sensory attributes.

In Figure 1, samples are shown separated by ethanol levels, with time markers for the 10 s
expectoration prompt and for every 15 s throughout evaluation. For most of the samples, the panelists
perceived sweet and sour tastes, apple, citrus, and pear flavors fairly quickly (within the first 15–30
s) while bitter taste, and astringent and warm/hot mouthfeels were perceived later (45–60 s), as the
latter attributes are located more towards the right and bottom side of the plot, close to the “backward”
trajectories. Also apparent is a grouping of samples by ethanol content along the second principal
component (PC 2), with the 14% ethanol samples positioned at the bottom (Figure 1c), the 10% ethanol
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samples on the top (Figure 1a), and the 12% ethanol samples in-between (Figure 1b). The PCA
also shows that bitter taste and warm/hot mouthfeel are located on opposite ends along the second
dimensions from sour taste, with highest citation frequencies for bitter and warm/hot in the samples
with the highest ethanol levels.

Similarly, sweet taste was mostly associated with the lowest ethanol level samples and was
positioned opposite from bitter taste on PC 2, indicating potential taste-taste suppression.

Looking at samples within an ethanol level (Figure 1a–c), one can see that the higher glycerol
samples (G) are closer positioned to the fruity flavors of apple and pear as well as the sweet taste
attribute than the lower glycerol samples (g). Further, this effect is apparent at all ethanol levels, where,
even at the 14% ethanol concentration, the two samples with high levels of glycerol (14 CG and 14 cG)
are both positioned closer to sweet taste and apple and pear flavor than both 14 Cg and 14 cg wines.
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3.3. Analysis of Variance Reveals Compositional Drivers of Temporal Perception of Wine

To obtain a more detailed picture of the major drivers of the observed sensory changes over the
evaluation period, Analysis of Variance (ANOVA) was conducted, using a model that included the
experimental factors of ethanol, glycerol, and caffeic acid and all interactions. Neither individual
panelists nor the replicates were included in this model, as panelists agreed with one another and were
consistent across the three replicates. ANOVA was run on all attributes, using 30 s time bins, and
results are shown in Table A1.

Generally, varying the compositional factors of ethanol, glycerol, and caffeic acid, led to both
direct and indirect changes in sensory perception. Besides the expected direct effects on the taste and
mouthfeel attributes of bitter, sweet, and warm/hot, we also observed indirect effects on all three flavor
attributes of apple, pear, and citrus, due to changes in ethanol and glycerol levels. Changing levels of
caffeic acid did not lead to any significant differences in temporal perception, most likely due to the
comparatively small differences between the high and low level in caffeic acid.

Overall, varying ethanol levels led to most changes in all three modalities (flavor, taste, mouthfeel):
for both apple and citrus flavor, the different ethanol levels significantly affected perception of these
flavor attributes for the first 30 and 60 s, respectively. From Figure 1, we can deduce that increasing
ethanol levels led to a decrease in apple and citrus flavors. Additionally, citrus flavor also showed a
significant ethanol effect from 120 to 149 s. For sweet taste, similar to apple flavor, changing ethanol
levels significantly affected the first 30 s of evaluation, indicating potential cross-modal correspondence
of apple flavor and sweet taste perception. Samples lower in ethanol were perceived as having more
sweetness and apple flavor (Figure 1).

In contrast, bitter taste, as expected, was affected by varying ethanol level in a more lasting manner,
with a significant ethanol effect for nearly 2/3 of the evaluation period, from 0 to 119 s. Ethanol also
affected, as expected, the perception of warm/hot mouthfeel, showing a significant contribution of
ethanol to that perception for the complete evaluation period, except for a brief pause between 120 and
150 s. For both attributes, higher ethanol levels led to increased citation frequencies (Figure 1).

The second most common effect was found for the glycerol factor, significantly affecting pear flavor
perception from 30 to 59 s, leading to increased pear flavor with increasing glycerol. This observation
could be explained by another cross-modal correspondence of a retronasal aroma of pear and sweet
taste elicited by glycerol. Glycerol significantly affected sweet taste perception for the first 120 s, while
for bitter taste, different glycerol levels affected this taste from 0 to 89 s. Last, astringent mouthfeel
showed a significant glycerol effect for the first 60 s. Generally, higher glycerol content led to increased
sweet taste frequencies and lower frequencies of bitter taste and astringent mouthfeel.

Of particular interest for this study were interactions between the compositional factors—the
perception of bitter taste was significantly affected by the interaction of ethanol with glycerol for the
last 30 s of evaluation, from 120 to 180 s, where, for the 14% ethanol samples, greater differences were
observed for the high vs. low glycerol samples, compared to the 10% ethanol samples, where both
glycerol levels were perceived as very similar (Figure 1).

4. Discussion

This study demonstrated that major wine matrix components, namely, ethanol, glycerol, and
caffeic acid, affect the dynamic perception of sensory attributes, both directly as well as interactively.
Some factors and interactions even affect multiple sensory attributes, indicating intra-modal taste-taste
and cross-modal flavor–taste interactions.

Overall, ethanol had the greatest effect of all compositional factors on the temporal perception of
the model wines, both in number of affected attributes (apple and citrus flavor, sweet and bitter taste,
and warm/hot mouthfeel) as well as how long that effect lasted.

Varying glycerol levels led to significant effects for pear flavor, sweet and bitter taste, and astringent
mouthfeel; compared to ethanol, the effects of glycerol were lower, both in number of attributes affected
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as well as duration. Last, the effect of caffeic acid variation was not found to be significant for any
attributes at any time during the evaluation.

Taking these results together, the observed effects could be explained by both inter- and intra-modal
phenomena: for example, glycerol had a significant effect on both pear flavor and sweet taste during
the 30–59 s time segment. Both pear flavor and sweet taste were cited more frequently when glycerol
was higher. Prior studies indicate that glycerol, at levels typically found in wines (7–10 g/L), affects
sweet taste [37,38].

While glycerol by itself has been described as sweet tasting [37], the changes in pear flavor
perception can only be explained by cross-modal perceptual interactions, as none of the experimental
factors in the study should have caused an increase in fruity, e.g., pear, flavors. Hort and Hollowood’s
findings from 2004 suggest that the perception of fruity flavors is directly linked to the sweetness
level [39], providing further evidence for cross-modal interaction between glycerol-induced sweet taste
and increased apple flavor perception. The close positions of sweet taste to the fruit flavors of apple
and pear would also suggest cross-modal interactions, where fruits and their flavors are learned to be
associated with sweet taste [39].

Glycerol also significantly affected bitter taste: while sweet taste increased with increasing levels
of glycerol, bitter taste decreased, suggesting taste-taste suppression. Jones et al. [3] similarly reported
bitter taste suppression by glycerol, most likely due to the sweetness that it provides.

Taste-taste interaction could also explain the effects that ethanol has on both bitter taste and sour
taste. For the high ethanol samples, higher frequencies of bitter taste and warm/hot mouthfeel were
found; ethanol has been shown to elicit both bitter taste and a warming mouthfeel [40]. However, we
also found that sour taste frequencies were low at high ethanol levels. We believe that the bitter taste
elicited by the high ethanol levels is suppressing sour taste perception, similarly to prior literature
for ethanol solutions [41] and white wines [42] where sour taste was suppressed by the bitterness of
increased ethanol levels. Similar to bitter-sour interaction effects, sweet taste perception is known to
be suppressed by bitter stimulants and vice versa [16]. For solutions of ethanol and sucrose, Martin
and Pangborn [41] report increased sweetness ratings at 8% (v/v), but this effect flips at the higher
tested concentrations of 12 and 24% (v/v). In line with the argument by Lanier et al. [43], lower levels of
ethanol are perceived as sweet, therefore, the observed opposite positioning of sweet and sour taste
to bitter taste and warm/hot mouthfeel could be explained by both direct (i.e., sweet taste receptor
activation by low ethanol levels), as well as indirect effects (i.e., sweet-bitter mixture suppression).

Ethanol also seems to be responsible for cross-modal flavor–taste interactions at the beginning of
the temporal evaluation, namely, a decrease in apple flavor citation frequency at increased ethanol levels,
accompanied by increased bitter taste frequencies. A similar, cross-modal fruit flavor suppression by
increased bitter taste perception was reported for red model wines [44].

Addressing one of our initial hypotheses, the use of a temporal evaluation method, namely, TCATA,
in this study provides novel insight into wine matrix effects on sensory perception. As mentioned in
the introduction, wine sensory attributes have traditionally been described using classical descriptive
analysis. Using TCATA as an evaluation method does unveil similarities to DA but it also picks up on
temporal changes that classical DA cannot.

One similarity that can be seen with both static DA and dynamic TCATA is in the astringent
mouthfeel attribute: Our earlier study characterized the same model wine samples by DA. Comparing
the DA results [29] to the findings of the TCATA study, both uncovered a significant effect of ethanol
and glycerol on astringent mouthfeel, with counter-acting effects: Increasing levels of ethanol led to
more astringency and increasing levels of glycerol led to less astringency. The TCATA results show
that these significant effects were perceived immediately, within the first 5 s of evaluation. This is
consistent with the DA results, most likely due to the fact that DA ratings were made immediately
after tasting the samples.

However, for factors and interactions that had a significant effect later in evaluation, for example,
past 60 s, the DA results do not match up well with the TCATA results. As an example, there are
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significant differences in warm/hot mouthfeel and bitter taste well past 60 s. This is not surprising
as these attributes can linger for quite a while. These temporal differences in mouthfeel and taste
attributes were generally caused by ethanol, glycerol, and the interaction between the two factors.
These significant effects are not uncovered using DA, as the significant differences may not appear
until at least a minute after the DA ratings are already made. As we know that wine is a complex
sample with sensory qualities that change over time, a temporal method of evaluation must be used to
capture these changes and completely describe the sample.

While we do see similarities between DA and TCATA results, there are also instances where
they do not agree. These discrepancies mainly occurred for the taste attributes, but not the flavor
or mouthfeel attributes. For example, the DA revealed significant differences in citrus flavor due
to the interaction between ethanol and glycerol [29]. From the TCATA results, however, significant
differences in citrus flavor perception were caused by ethanol, and in addition, these differences were
seen for the first 60 s and then again towards the end of the evaluation (120–149 s).

Besides the difference in duration of assessment (one minute maximum in DA vs. up to three
minutes in TCATA), these discrepancies could also be method-inherent. For example, it could be that
panelists could take a couple of seconds to select present attributes at the start of TCATA evaluation.
This could mean that differences that are present from the start are not immediately picked up because
the attributes are not immediately selected. However, as flavor differences are perceived for a longer
period (over 30 s), this delay in attribute selection may not be a great contributing factor. Secondly,
differences could also be explained by the “grainier” nature of data collection in TCATA, compared to
DA. DA results are nominal data of intensity ratings of sensory attributes, while TCATA results are
binary (present-not present), that get converted into frequencies across participants. While previous
studies have shown that intensity data is generally highly correlated with frequency data [19], the two
methods will not produce identical results. Comparing DA and TCATA, the latter is a less refined
method as it allows for only two outcomes (present or absent), while a scale, as used in DA, allows for
more nuanced evaluations, and thus, smaller changes might not be picked up by TCATA.

In summary, it was found that changing major wine matrix components, such as ethanol and
glycerol, affect temporal sensory perception of flavor, taste, and mouthfeel attributes both in direct
and indirect manner. Taste-taste as well as cross-modal flavor–taste interactions were most likely the
cause for our findings, providing further evidence of the complex nature of wine perception. Future
work will validate these results in a real white, hybrid wine in order to fully understand the complex
interactions between wine matrix components and aroma compounds.
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Appendix A

Table A1. Degrees of freedom (DF) and F-values for the compositional factors ethanol (E), caffeic acid
(C), glycerol (G) and all interactions, for each sensory attribute and 30 s time bins (bold = p ≤ 0.05).
Mean squares are listed for the residuals (Res.).

Apple Flavor Citrus Flavor
Factor E C G E:C E:G C:G E:C:G Res. E C G E:C E:G C:G E:C:G Res.

DF 2 1 1 2 2 1 2 420 2 1 1 2 2 1 2 420
0–29 s 3.56 0.44 1.52 0.63 0.22 0.20 0.36 106.22 6.38 0.69 3.72 3.80 0.59 1.15 0.36 93.32

30–59 s 0.09 0.55 0.94 0.12 0.98 0.02 0.19 179.29 3.16 0.39 0.07 0.48 0.11 0.20 0.09 173.18
60–89 s 0.37 0.14 0.87 0.10 0.45 0.09 0.17 152.82 0.48 0.00 0.27 0.09 1.08 0.07 0.02 139.48
90–119 s 0.03 0.17 1.40 0.31 0.13 0.28 0.25 105.53 1.59 0.03 0.69 0.07 0.21 0.01 0.19 79.92

120–149 s 0.03 0.08 1.23 0.23 0.04 0.15 0.91 80.89 4.24 0.13 1.28 0.12 0.02 0.36 0.16 48.23
150–180 s 0.06 0.01 0.81 0.21 0.26 0.03 0.80 76.69 2.51 0.29 1.79 0.42 0.39 0.00 1.88 23.27

Pear Flavor Sweet Taste
Factor E C G E:C E:G C:G E:C:G Res. E C G E:C E:G C:G E:C:G Res.

DF 2 1 1 2 2 1 2 420 2 1 1 2 2 1 2 420
0–29 s 0.93 0.93 10.98 1.47 0.52 0.19 1.32 107.51 6.75 0.43 25.64 0.02 0.26 0.38 0.21 97.64

30–59 s 0.89 0.37 4.34 1.22 0.77 0.37 1.13 178.36 1.38 0.00 11.73 0.44 0.64 1.04 0.90 173.24
60–89 s 1.02 0.21 2.22 0.05 0.95 0.63 0.53 190.24 0.68 0.00 8.51 0.34 0.24 0.87 0.71 139.77
90–119 s 1.54 0.49 2.00 0.17 0.28 0.62 0.11 149.76 0.316 0.03 5.033 0.11 1.02 0.15 0.176 103.34

120–149 s 1.21 1.73 1.14 0.13 0.56 0.12 0.15 119.15 0.23 0.17 0.954 0.17 0.25 0.07 0.038 78.63
150–180 s 0.20 0.81 0.29 0.01 0.42 0.35 0.06 100.94 0.00 0.00 0.03 0.01 0.00 0.00 0.01 75.90

Sour Taste Bitter Taste
Factor E C G E:C E:G C:G E:C:G Res. E C G E:C E:G C:G E:C:G Res.

DF 2 1 1 2 2 1 2 420 2 1 1 2 2 1 2 420
0–29 s 2.16 2.44 0.546 0.11 0.08 0.83 0.117 80.78 11.96 0.03 12.79 0.39 0.52 0.06 0.83 88.17

30–59 s 0.26 0.62 0.035 1.05 0.5 0 0.432 165.24 11.99 0.24 5.01 1.18 1.33 1.77 0.94 154.39
60–89 s 0.08 0.02 0.096 1.03 0.08 0.05 0.257 146.44 8.38 1.41 5.18 0.65 0.51 0.17 0.91 170.78
90–119 s 1.72 0.12 0.146 0.21 0.27 0.1 0.062 81.98 3.10 1.17 2.73 0.34 1.64 0.37 0.51 102.08

120–149 s 0.66 0.02 0.036 1.27 0.37 0.5 0.367 50.27 2.03 1.25 0.72 0.12 5.12 0.02 0.05 25.40
150–180 s 0.03 0.64 0.749 1.16 0.12 0.12 0.877 31.51 1.06 0.22 1.05 1.57 3.50 2.92 0.22 5.07

Astringent Mouthfeel Warm/Hot Mouthfeel
Factor E C G E:C E:G C:G E:C:G Res. E C G E:C E:G C:G E:C:G Res.

DF 2 1 1 2 2 1 2 420 2 1 1 2 2 1 2 420
0–29 s 1.87 0.08 4.71 0.48 0.22 0.07 0.12 93.36 19.16 0.22 0.03 0.55 0.73 0.84 0.45 71.65

30–59 s 1.42 0.02 4.24 0.08 0.10 0.04 1.22 181.02 24.99 0.62 1.578 0.05 0.86 0.47 0.44 78.97
60–89 s 0.38 0.04 0.10 0.02 0.09 0.02 0.05 202.58 20.59 0.37 3.08 0.18 0.17 0.10 0.55 142.09
90–119 s 0.21 0.09 0.42 0.32 0.19 0.14 0.34 182.60 8.52 0.10 0.00 0.30 0.11 0.36 0.42 185.57

120–149 s 0.22 0.74 0.15 0.26 1.06 0.32 0.93 155.33 2.43 0.08 0.43 0.08 0.08 0.37 1.02 154.26
150–180 s 0.14 0.64 0.00 0.02 0.41 0.19 0.88 109.71 4.67 0.22 0.05 0.12 0.25 1.00 0.41 93.19
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