
micromachines

Article

A Bandwidth Control Arbitration for SoC
Interconnections Performing Applications with
Task Dependencies

Salvador Ibarra-Delgado 1,2,*,†,‡,§ , Remberto Sandoval-Arechiga 1,†,§ ,
José Ricardo Gómez-Rodríguez 1,† , Manuel Ortíz-López 2,‡,§ and María Brox 2,‡,§

1 Center of Research, Innovation and Development in Telecommunications (CIDTE), Academic Unit of Electrical
Engineering, Autonomous University of Zacatecas, Zacatecas 98000, Mexico; rsandoval@uaz.edu.mx (R.S.-A.);
jrgrodri@uaz.edu.mx (J.R.G.-R.)

2 Department of Electronic and Computer Engineering, University of Cordoba, 14071 Córdoba, Spain;
z72ibdes@uco.es or el1orlom@uco.es (M.O.-L.); el1brjim@uco.es (M.B.)

* Correspondence: sibarra@uaz.edu.mx
† Current address: Lopez Velarde S/N, Zacatecas, Zacatecas 98000, Mexico.
‡ Current address: Campus Universitario de Rabanales, Córdoba, 14071 Andalucia, Spain.
§ These authors contributed equally to this work.

Received: 6 November 2020; Accepted: 29 November 2020; Published: 30 November 2020
����������
�������

Abstract: Current System-on-Chips (SoCs) execute applications with task dependency that compete for
shared resources such as buses, memories, and accelerators. In such a structure, the arbitration policy
becomes a critical part of the system to guarantee access and bandwidth suitable for the competing
applications. Some strategies proposed in the literature to cope with these issues are Round-Robin,
Weighted Round-Robin, Lottery, Time Division Access Multiplexing (TDMA), and combinations.
However, a fine-grained bandwidth control arbitration policy is missing from the literature. We propose
an innovative arbitration policy based on opportunistic access and a supervised utilization of the bus
in terms of transmitted flits (transmission units) that settle the access and fine-grained control. In our
proposal, every competing element has a budget. Opportunistic access grants the bus to request even if
the component has spent all its flits. Supervised debt accounts a record for every transmitted flit when it
has no flits to spend. Our proposal applies to interconnection systems such as buses, switches, and routers.
The presented approach achieves deadlock-free behavior even with task dependency applications in
the scenarios analyzed through cycle-accurate simulation models. The synergy between opportunistic
and supervised debt techniques outperforms Lottery, TDMA, and Weighted Round-Robin in terms of
bandwidth control in the experimental studies performed.

Keywords: System-on-Chip; arbiter; interconnection; bandwidth control; quality of service

1. Introduction

Embedded applications on Systems on Chip (SoC) present task dependencies and share resources
such as memories, peripherals, and accelerators. Real application tasks have data needs that translate
into dependencies (expressed as graphs where nodes are the tasks, and the links are the dependencies
with data rates as weights) [1]. The system assigns application tasks into one or more processing elements

Micromachines 2020, 11, 1063; doi:10.3390/mi11121063 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
https://orcid.org/0000-0003-4009-7145
https://orcid.org/0000-0002-2129-5667
https://orcid.org/0000-0003-2430-1484
https://orcid.org/0000-0001-8312-1729
https://orcid.org/0000-0002-4002-3253
http://dx.doi.org/10.3390/mi11121063
http://www.mdpi.com/journal/micromachines
https://www.mdpi.com/2072-666X/11/12/1063?type=check_update&version=2


Micromachines 2020, 11, 1063 2 of 27

transforming its dependencies to data transactions among processing elements. However, more than one
application can run on SoC, which complicates sharing the interconnection and other resources.

The central performance bottleneck of current Systems on Chip resides in the on-chip interconnection
rather than in the processing of its elements [2–6]. The electronics industry can presently integrate many
processing cores, memories, and IP cores in a single chip, which intensifies this problem. The bottleneck
becomes even tighter when the processing elements need to share resources (buses, memory, ports,
hardware accelerators, etc.) and cause contentions.

An SoC design must fulfill requirements and constraints imposed by the applications running in the
system (such as guaranteeing a delivery time, ensuring specific bandwidth allocation, reducing energy
consumption, minimizing area and size, etcetera) [7]. It is then necessary to have control mechanisms
in the interconnection system that allow the fair coexistence of the different processing elements in an
SoC. In a system composed of various hardware accelerators, the critical factor is the containment of the
memory controller [8]. If this controller regulates memory access, the accelerators will meet the Quality of
Service (QoS) requirements.

The options for interconnections in the SoC are diverse and depend on the application. Interconnection
systems impact directly on the performance of the SoC. The literature then proposed numerous
interconnection architectures that increase performance (buses, crossbars, routers, and combinations).
However, there is no single solution to the SoC interconnection problem [9,10].

The different interconnection systems are suited to specific applications and scenarios. The bus-based
systems are the alternative for SoCs that integrate a small number of processing elements. Benini and
Michele in [11] pointed out that buses work well in systems that incorporate four to eight processing
elements. On the other hand, crossbars switches become the right choice when the number of processing
elements is in the order of tens, as indicated by Ahmed et al. in [4]. Finally, the so-called Network on Chip
(NoC) is the commonly used alternative when the number of processing elements is in the order of tens to
hundreds or thousands, as Wang et al. declared in [12].

Regardless of the interconnection system used, all the proposed alternatives require an arbitration
system that controls shared resources access. In a bus-based interconnection system, the processing
elements compete to obtain access to the bus. In crossbars, two or more masters contend for a slave port. In
the case of NoC, two or more flows fight for access to a link. The arbitration system and its policy become
a fundamental part of the interconnection system within the SoC.

Arbitration systems traditionally focused on achieving fair access, but to regulate the bandwidth
allocated is essential too. In collaboration with other components, they can control the utilization of
the processing elements to fulfill QoS requirements of the system. A desirable characteristic of an
arbitration system is controlling the bandwidth assigned to each of the processing elements [2]. Different
SoC companies present very robust alternatives to interconnect processing elements. However, their
implementations are more focused on bringing great flexibility than safeguarding the bandwidth solicited.
For example, the interconnection systems used by the company Xilinx called SmartConnect [13] use
Round-Robin (RR) as the primary arbitration system. While this ensures fair access to shared elements,
it does not allow for regulation of their use. Therefore, it is difficult for this configuration to provide the
bandwidth required by any hardware accelerator and meet its QoS requirements.

Despite the extensive literature about buses and arbitration, we believe that bandwidth allocation in
arbitration systems is not entirely analyzed. Different studies propose solutions to meet QoS requirements
for applications running in SoCs such as [14–24]. Most of these works incorporate additional control
elements to the arbitration system to regulate the bandwidth and access to resources. However, the effect
that arbitration policies have on regulating bandwidth allocation to resources is not fully studied. This
paper evaluates the behavior of different arbitration policies commonly used in SoC in terms of their ability
to regulate the use of a resource (access, and throughput/bandwidth) and how it impacts the overall



Micromachines 2020, 11, 1063 3 of 27

performance of the system. Besides, we propose a new arbitration policy (and its architecture) that controls
the bandwidth allocation of a shared resource to meet its bandwidth requirements.

This paper makes the following contributions:

• A cycle-accurate framework to model arbitration policies in a bus-based SoC using SystemC.
• Performance analyses of different arbitration policies regarding their possibility of granting and

regulating the allocated bandwidth of a bus-based interconnection.
• Derived from the analyses above mentioned; we identify conditions where Weighted Round-Robin

policy causes a deadlock in applications with task dependencies.
• A novel deadlock-free arbitration policy with fine-grained bandwidth control based on budgets for

every communication transaction.
• Analysis of the architecture of the budget policy implemented in FPGA.

We present the rest of this work as follows: Section 2 shows the related work. Section 3 describes
the System Model. Section 4 identifies some issues that have standard arbitration policies in terms of
bandwidth control. Section 5 shows our proposal. Section 6 presents the results. The discussion of the
results obtained is in Section 7, and finally, Section 8 integrates the conclusions and future work.

2. Related Work

This section classifies the related work in two parts: the first one, literature regarding QoS metrics,
and the second one, regarding arbitration policies. An effective arbitration policy must have the following
features [2]:

• to grant fast high-priority access to the shared resource while avoiding starvation for low priority
transactions.

• to enable a delicate control of the communication bandwidth assigned to every processing element.
• to overcome the sensitivity of system performance to various communication patterns generated by

the SoC applications.

2.1. Quality of Service Metrics

Most studied QoS metrics are access, latency, utilization, Equality of Service (EoS), and bandwidth.
Arbiters assign resources with fair, prioritized, or regulated policies, which impact on the metrics above.
Every policy or allocation technique has pros and cons affecting applications running on the SoC. Here,
we use buses to explain arbitration policies, but switches and routers use them too. Table 1 condenses the
most significant related work to our knowledge in terms of arbitration policies. The following is a brief
explanation of the aim of each of the metrics used in the classification:

• Access.
Starvation is a result of unfair access arbitration (an entity requesting necessary resources never gets
access). The fair access policies overcome the starvation problem guaranteeing an allocation technique
where resources are accessible to every request.

• Latency.
Latency is a measure for QoS for real-time applications. Arbitration policies must guarantee
application response latency within a specified time constraint.

• Utilization.
This metric focuses on maximizing the utilization of the interconnection within an SoC and increasing
the performance of the system to comply with the restrictions established to the applications running
within the SoC.



Micromachines 2020, 11, 1063 4 of 27

• EoS.
Equality of Service comprises several QoS metrics; it refers to the overall experienced service for every
processing element attached to the interconnection system. This metric has a more significant impact
on NoCs due to the diverse spatial traffic patterns that affect different parts of the NoC.

• Bandwidth.
As we mentioned above, SoCs need fine-grained bandwidth control. This bandwidth control will
permit a bandwidth to every processing element and accurately predict latencies and throughput to
applications running in the SoC.

2.2. Most Used Arbitration Policies for Bandwidth Control

The second classification indicates the arbitration policy used by the different proposals to reach the
QoS metric. Many works studied well-known arbitration policies: Round-Robin, probabilistic access such
as Lottery or derivatives, Time Division Access Multiplexing (TDMA), static or dynamic priority access.
According to the established scenario, other approaches base their proposal on reconfiguring traditional
arbitration policies (Round-Robin, TDMA, Priority, Lottery). Finally, many papers integrate additional
monitoring, scheduling, control, etc., to conventional arbitration policies to help meet QoS requirements.
In Table 1, we present our classification according to the established metrics. However, below we focused
on the more relevant works concerning bandwidth control.

Table 1. Related Work: Arbitration Policy & QoS Metrics

QoS Round-Robin Probabilistic TDMA Priority Reconfig. Others

Access [25–30] [31]

Latency [16,18,19,32,32] [33] [32] [34,35] [16,18,19,24,32,33]

Utilization [12,36,37] [17,38,39] [17] [4,36–39]

EoS [14] [40] [14]

Bandwidth [2,15] [41] [2,17] [15,17,21–23] [8,20]

Poletti et al. [2] present a slot reservation technique, a combination of TDMA and Round-Robin
policies. A high priority master safeguards bandwidth by periodically assigning a slot. In contrast, a
Round-Robin arbiter grants access to the other masters to avoid starvation. The authors present a simple
solution that guarantees the bandwidth to one master in the system. We observe that a fine-grained
bandwidth control for every master is still missing.

Xu et al. [31] present a work that aims to control dynamically the bandwidth assigned to the processing
elements of an SoC with the AMBA-AHB interface. In their work, they propose to modify the Lottery
ticket generator; the more waiting time accumulated in the previous contests, the more tickets assigned to
a processing element. Although the authors show that their proposal distributes the bandwidth better than
other arbitration policies such as Round-Robin or Lottery, the tests they carried out work in a dense traffic
situation. The probabilistic arbiters behave best in these scenarios. We notice the absence of experimental
studies where bandwidth control corresponds to ticket assignation in the proposed technique. Section 6 in
this paper carries out the missing experimentation.

To provide a proportional bandwidth allocation, Li et al. [21] present a dynamically adaptive priority
arbitration algorithm. The arbitration policy records the number of requests generated by a particular
master and the whole number of requests generated in the system. The weight assigned to a master is
(number of master requests)/(number of requests in the system). The arbiter system calculates this value
and reassigns it periodically. In their proposal, the authors present a scheme with two levels of priority:



Micromachines 2020, 11, 1063 5 of 27

the first level adopts the adaptive arbitration algorithm; the second level adopts a fixed priority scheme to
prevent starvation.

In this approach, we perceive that there is no regulatory element in the system. The more bandwidth
a master demands, the higher weight it gets. Besides, the system suffers from inertia because it works with
the values calculated in the previous period. The system cannot know a priori the demand for bandwidth
that a master can make in a given period. While the paper indicates that a proper time selection can satisfy
practical applications, it is not well suited to applications transmitting data bursts.

Akesson et al. [22,23] present a regulator system based on network calculus called Credit-Controlled
Static-Priority that aims to program and regulate access to the shared resources in an SoC. This system
tries to avoid over-assignment to masters that generate a large number of requests. The control system
consists of a regulator that imposes restrictions on service rate and a static priority planner. The regulator
determines which service requests are eligible for scheduling at a particular time. For its operation, the
regulator takes into account the number of transactions performed by a master. The transactions assigned
to a requester consists of two parameters: the burstiness and service rate. Three restrictions must be met
for a configuration to be valid: first, the given service rate must be at least equal to the average application
rate; second, it is not possible to assign more transactions than the resource can service in a given time
–to keep the system in a stable state and a finite buffer size–; third, the assigned burstiness must be large
enough to accommodate a unit of service. We observe that regulation effects in system performance shown
are not entirely studied.

In [17], the authors proposed a bus arbitration for shared memories called Priority Division (PD).
Their work aims to achieve high bus utilization while ensuring a fixed bandwidth. They accomplish this
by combining a fixed-priority arbitration policy with TDMA. Unlike TDMA, a timeslot does not belong to
a master; a master has a priority on a timeslot. To guarantee bandwidth to all masters, each master must
have the highest priority on at least one timeslot. The master with the highest rank in the timeslot takes it
when it requires and only gives it out when it is inactive. Although this work ensures maximum utilization
of the bus, we notice that it missed studies of how slot priorities influence the precise bandwidth control
for each of the masters in the system.

Yang et al. [15] describe an asynchronous arbiter called Adaptive Priority Round-Robin to provide
each master its bandwidth needs. Supporting Round-Robin arbitration, the system has a unit called
Priority Module, which assigns each master a weight to fulfill the bandwidth requirements. When a master
obtains the bus, its weight value is decreased by one; if this value equals zero, it reaches its bandwidth
requirement and no longer enters the contest. Access is only allowed to those competitors who have not
met their quota. In terms of bandwidth distribution, this approach behaves relatively well, especially in
extreme traffic scenarios mentioned by the authors. However, the paper does not present evidence of how
bandwidth distribution relates to system performance.

Slijepcevic et al. [20] report an arbiter that achieves fair bandwidth sharing with different size
transactions. The authors propose a Credit-Base Arbitration to ensure fairness among processing elements
in terms of the number of clock cycles they hold the bus. To achieve this, they assign a maximum credit
that each candidate can have. This credit starts at zero and is increased proportionally in each clock cycle
according to the bandwidth ratio that each processing element wishes to obtain. Only when they reached
their maximum credit elements can contend. When a processing element gets access to the bus, its credit
decreased proportionally.

Although this paper shows a scheme to distribute the bandwidth, we observe that it lacked indications
of how the bandwidth spreads among the masters or how this affects the total performance of the system.

Pagani et al. [8] introduce a bandwidth reservation scheme for the AMBA-AXI standard. An AXI
Budgeting Unit (ABU) attached to each master in the SoC is responsible for the bandwidth reservation
by tracking the number of transactions issued by the master. Also, at a general level, the ABU Controller



Micromachines 2020, 11, 1063 6 of 27

is in charge of providing and adjusting the ABU budget. When a master spends its quota, he can no
longer make transactions until the system reloads its credit. The mechanism presented by the authors,
which they call traffic modeler, regulates the rate at which traffic arrives at the arbitration instances in the
interconnection system. Although this work essentially contains the traffic of the masters on the AXI bus,
there is no evidence of how the regulator affects its overall performance and how much bandwidth has
each master.

While all of the above approaches allow for compliance with the bandwidth requirements established
for them, they do not specify the contribution of the arbitration policy to bandwidth distribution. There is
no evidence of how the arbitration policy influences bandwidth allocation. Here we present an arbitration
policy that resolves the fine-grained bandwidth control effectively.

With the arrival of new paradigms for on-Chip interconnection systems such as Networks-on-Chip,
the literature opened several research lines in this area. However, most researchers have devoted their
efforts to study and propose solutions to the new challenges that Networks-on-Chip present (mapping,
switching, routing, etcetera). Typical implementations of channel arbitration for Networks-on-Chip routers
commonly use Round-Robin since it is simple, fast, and uses fewer resources. Researchers set their mind
to Round-Robin, which provides fair access, avoids starvation, and left the arbitration issues to a second
term. Our contribution is to return the attention of the researchers to arbitration issues since there are still
gaps in the literature to be filled in this sense. We aim to develop a new arbitration policy that provides
fine-grained control of a resource bandwidth’s share that increases SoCs’ performance predictability.

3. System Model

To evaluate the behavior of arbitration policies in terms of their ability to allow for a differentiated
use of a shared resource, we developed in SystemC a system that simulates an SoC with a bus-based
interconnection system. The system works cycle-accurate. In Figure 1, we can see the architecture of the
evaluation system developed. The system establishes the communication between its elements through a
multiplexed bus with 32 bits wide. The main elements of the evaluation system are:

• Bus Controller (BC) is the central element of the interconnection system. Three elements constitute it:
the first one is the arbiter, who according to the implemented policy, is in charge of granting access to
one of the masters who request the media; the second one is the Bus Statistics Generator, which is in
charge of keeping the accounting of the bus utilization at a general level and for each master. Also,
it registers the execution time for both applications and masters; the third element is the Data Bus
Controller in charge of establishing the route so that a master can carry out a transaction.

• Network Interface (NI) is in charge of the communication with the other elements of the bus; it is the
one that requests the bus to the arbiter and transmits the information when having the bus control.
It is in charge of releasing the bus when it is no longer needed.

• Masters are responsible for running the SoC applications; they transmit the results of the tasks
performed to the interconnection system through the NI they have connected. Each of the masters
can execute a set of tasks from a specific application. The configuration unit tells the master which
subset to use, and it takes the corresponding trace file from a trace database per master.

• Config and Report Controller (CRC), this element has two functions: first, to set configuration
parameters with which the Bus Controller will operate; secondly, to collect the operation statistics of
the Bus Controller. Table 2 shows the parameters with which the Bus Controller will work. It also
shows the statistical variables that are collected.

• Trace File Adapter Tool as a result of the mapping process established in [1], each scenario generates
a trace file. We take this file with this tool and produce a separate trace file for each master in
the application.



Micromachines 2020, 11, 1063 7 of 27

Figure 1. System architecture used for performance evaluations. Databases, Trace File Adapter Tool, and
CRC use software implementations.

Table 2. Operational parameters and metrics used in evaluations.

Acronym Name Meaning

P Politics
This parameter establishes the policy that will operate in the
interconnection system 0- Round-Robin, 1-Weighted Round-Robin
Modified [6], 2-SuDO (our proposal).

Wi Weight
There is one entry for each master in the system, indicating the
desired proportion of bandwidth the master must have. This
parameter must have an integer value between 1000 and 10000 flits.

Ub Bus Utilization
This variable accumulates the total number of clock cycles the bus
is in use in a simulation.

Ib Idle Bus
This variable accumulates the total number of clock cycles the bus
is idle in a simulation.

Tappexec(i)
Application execution

time
It is the time in clock cycles it takes an application(i) to execute all
the tasks that compose it.

Tmasterexec(i, j) Master execution
time

It is the time in clock cycles it takes the master(j) to transmit the flits
generated by the tasks of the application(i)

Tx f lits(i, j) Transmited Flits
time

Is the amount of flits that are transmitted by the master(j) when
running the application(i) tasks.

To evaluate the performance of the arbitration policies, we established the following assumptions
and metrics:

• m(i) is the number of masters running the application(i).
• n is the number of applications running in the SoC.



Micromachines 2020, 11, 1063 8 of 27

• Master throughput, is the throughput in bits/cycle of the master(j) running the application(i). And
is given by:

Thmaster(i, j) =
Tx f lits(i, j) · f litsize

Tmasterexec(i, j)
(1)

• Master bus utilization percentage, is the percentage of bus utilization that the master(j) used when
running the application(i). And is given by:

Umaster(i, j) =
Tx f lits(i, j)

Ub + Ib
· 100 (2)

• Total running time, is the total time it takes the set of applications running in a scenario to complete
all the tasks. And is given by:

Ttotal =
n

max
i=1

Tappexec(i) (3)

• Application throughput, is the throughput in bits/cycle of the application(i). It is given by:

Thapp(i) =
mi

∑
j=1

Thmaster(i, j) (4)

• Application bus utilization percentage, is the percentage of bus utilization when running the
application(i). And is given by:

Uapp(i) =
mi

∑
j=1

Umaster(i, j) (5)

• Overall throughput, is the total system throughput in bits/cycle when all applications running. It is
given by:

Thoverall =
n

∑
i=1

Thapp(i) (6)

• Overall bus utilization percentage, is the total percentage of bus utilization when all applications
running. It is given by

Uoverall =
n

∑
i=1

Uapp(i) (7)

A set of interdependent tasks correspond to the applications that run on our system. A Task
Communication Graph (TCG) expresses the tasks and their relationships for every application. A TCG
consists of a set of linked nodes (the tasks) and communication links through which the data flow between
the tasks. Figure 2 shows the task graph of one application. Each node executes a task at a specific time
(the values in red), and when it concludes, it transmits an amount of data (the values in black) to its child
nodes. A node can not execute its task until it receives data from the parent nodes. An application begins
its execution in the root node (node 0) and finishes when all the nodes leaves have finished operating
(nodes 8, 9, 10).

An application can exploit the computing power within an SoC by using a set of processing elements
to execute tasks that constitute it. To do this is necessary to use a technique that allows mapping the
task graph of an application within the processing elements attached to the interconnection system of
the SoC. Figure 2 shows the result of mapping the task network of an application using two different
techniques [42].



Micromachines 2020, 11, 1063 9 of 27

Figure 2. Example of mapping an application using two different techniques [42].

The distribution made by each technique can significantly affect the traffic generated in the
interconnection system. Our study does not delve into the mapping techniques for a bus-based
interconnection system. We use the trace files generated by the suite presented in [1]; in this paper,
the authors use a mapping focused on load balancing. This suite does not produce specific traffic patterns
for bus-based interconnection systems. However, we can use this mapping because, in our case, the effect
we want to measure is the ability to control access to the bus when interdependent tasks use it.

In [1], the authors generated the traffic patterns after the mapping and scheduling process and
performance evaluation process. Each application for each topology generates a trace file. This file contains
all the information regarding the topology, number of processors, number of tasks, number of links,
execution times, message sizes, and interdependencies. We take the trace file generated by the suite and
divide it into m files according to the number of processing elements involved in the mapping. Each of our
files contains the information of the tasks to execute: initial tasks, final tasks, time of execution of the tasks,
size of the messages generated by each task, dependencies of each task, and children nodes of each task.
When starting the simulation process, each master obtains from the CRC an IDappmaster that tells it which
trace file to load and execute.

4. Bandwidth Control Problems with Common Arbitration Policies

As stated above, one of the objectives of this study is to understand the degree to which an arbitration
policy can regulate the bandwidth allocations in the interconnection of an SoC. This section exposes some
drawbacks in the arbitration policies used in the literature to implement a fine-grained bandwidth control.

When in an SoC, there are one or several applications with dependent tasks running, and also, it is
necessary to make a differentiated use of resources, traditional policies have limitations. Below are some
facts that cause these limitations.

• Round-Robin (RR), is a policy that does not have a control mechanism to allow differentiated bus
utilization or bandwidth allocation. Round-Robin focuses its efforts on allowing fair access to the bus.

• Lottery (LTY) [41] is a policy with a probabilistic approach that complicates the ticket allocation
computation that ensures the bus bandwidth distribution in proportion to the assigned tickets. We



Micromachines 2020, 11, 1063 10 of 27

can approximate this computation with a stochastic characterization of the task dependencies, packet
size, packet generation times, and so forth.

• Time Division Multiple Access (TDMA), this policy allows the differentiated use of the resources but
generally at the cost of decreasing overall performance with coarse-grained bandwidth control.

• Weighted Round-Robin (WRR) [6], in scenarios with dependent tasks, with this policy, there is the
possibility of deadlock. A task cannot start its execution until it has received all the messages from its
predecessors. For example, an application mapped in two masters. Assuming that the taskx in the
master0 to run needs the message of the tasky that is in the master1. If the master1 has consumed its
associated weight, it cannot send the message because the arbiter does not grant it access. On the
other hand, the master0 is unable to continue working because it has not received the tasky message,
which causes the application to freeze.

• Weighted Round-Robin Modified (WRRM) [6], this policy allows the bus to a master who
has exhausted his quota as long as no master who still has weight is requesting it. This
policy aims to increase the utilization of the bus. However, by doing so, the most demanding
masters are overcompensated, which prevents them from making an assignment following the
established weights.

Given the gap described above, we present Supervised Debt Opportunistic (SuDO), a new arbitration
policy that allows contenders for a shared resource to make a differentiated use of it. Our proposal achieves
fine-grained bandwidth control avoiding reduction in the overall performance of the system.

5. Supervised Debt Opportunistic Arbitration: A Novel Policy

Our policy achieves fine-grain control of the bandwidth – or utilization—assigned to every master in
the system. It utilizes counters to record every clock cycle used for every master in the system. The policy
manages an accounting balance of the bandwidth assigned. It controls the bandwidth manipulating the
value assigned to the counter at the beginning of the process. We describe the arbitration method here.

We start setting a –different or equal– budget for every master in terms of the number of flits allowed
to transmit as its share of bandwidth. In a contention round, the masters with the largest number of flits
enter to compete in a Round-Robin policy. If only one master has the highest budget, it gets the bus.
For every flit transmitted or clock cycle that the master uses, we decrement its value by one unit until it
finishes its transaction or runs out of flits. A debt record starts and increments for every flit used until it
completes its transaction. If a master runs out of flits or it has a debt, and if no other master requests the
bus, it acquires it. However, the arbiter policy records the flits used in this event as a debt. Once every
master runs out of flits, they get the budget again. When the master obtains more flits, we subtract the
debt, and the result remains as flits to spend. With this mechanism, we ensure that the mean bandwidth
assigned stays the same over an observation window.

Our policy has two main features, debt supervision and an opportunistic bus allocation. Debt
supervision refers to the accounting of the debt every time we reassigned the budget. Opportunistic
behavior refers to the resource allocation to a master that requests the bus when no other masters do, even
when the master has no flits to spend.

We use the number of transmitted flits for each master as the metric for utilization or bandwidth.
We translate clock cycles to flits defining a flit size as the bus data width. This assumption may change
depending on the architecture because a flit transmission may take one or more clock cycles. In Networks
on Chip, the one flit equals one clock cycle assumption is commonly valid. We can then transform the flits
per clock cycle to bits per clock cycle to have a metric associated with bandwidth allocation.



Micromachines 2020, 11, 1063 11 of 27

5.1. Architecture

Figure 3 shows the architecture of the proposed SuDO arbiter. The architecture consists of two
elements: The SuDO filter and a Round-Robin arbiter. The function of the SuDO filter is to process
the request signals coming from the masters so that at the output, only those whose number of flits
corresponds to the highest budget detected among the competing elements are active. The Round-Robin
arbiter resolves ties coming from the SuDO filter, which happens when the account of two or more masters
corresponds to the highest budget detected.

Figure 3. SuDO Arbiter architecture.

For the SuDO filter to operate, it is necessary to provide the budget each master has. The source
of these values can come from different sources: a simple set of registers or a processor that allows
the dynamic control of these weights under a Software-Defined Network-on-Chip philosophy as in the
proposal made by Sandoval-Arechiga et al. in [43]. The number of flits assigned to a master corresponds
to the number of clock cycles of the bus. This amount is what enables a differentiated use of the bus.

Figure 4 describes the internal architecture of the SuDO filter. We show an architecture for eight
masters because it is a typical size in commercial developments. However, we can extend this architecture
up to 32 masters; we present the eight master version for simplicity and explanation purposes. The
Down-Counter Unit accounts for the balance of the budgets and debts for every master in the system. We
use two branches to find the highest and lowest values in the system. The superior tree,Greater-Budget,
finds the highest amount for flits to spend among the budget of the masters. The inferior tree, Lower-Debt,
selects the master with the lowest accumulated debt. The Equal-Comparator Units choose the requests
from the master that corresponds to the input value to compare. The multiplexor selects the requests from
one of the branches. If we have at least one master with zero debt, the OR gate sets the upper input to
the multiplexor.



Micromachines 2020, 11, 1063 12 of 27

Figure 4. SuDO filter architecture for eight masters.

The Down-Counter Unit consists of m elements of the Down-Counter type one for each master in
the system. Figure 5a shows the case for eight masters. The budget of the masters originally specified sets
the initial value for each Down-Counter. This number will decrease by one unit each clock cycle that the
enable signal is active. The enable signal is activated by the grant signal from the RR, indicating that the
master associated with this signal has control of the bus. Every Down-Counter accounts for the budget
and debt for a master, and it has three outputs:

1. budgetout, which indicates the number of flits that a master has to spend at a given time.
2. budget0, this output means when the internal counter of the Down-Counter is equal to zero; this

indicates that the master has consumed all its flits.
3. debt signal specifies the number of debt flits.

When the budget0 signal from all Down-Counters is active, the load signal is activated, and all
Down-Counters recharge their flits again. An external configuration unit manages this budget value.
Moreover, at each recharge, the CRC Unit could modify the number of flits. When the internal counter of
a Down-Counter reaches zero but still requires the bus because the associated master is transmitting a
packet, the budget0 signal is activated. The budget counter value stays at zero. A debt record starts, and it
allows the master to conclude with the current transaction.



Micromachines 2020, 11, 1063 13 of 27

(a) Down-Counter Unit (b) Greater-Budget Tree

(c) Equal-Comparator Unit

Figure 5. Main SuDO filter units for eight masters.

A Down-Counter cell has two registers to record the budget left (superior block) and accumulated
debt (inferior block), respectively, as Figure 6a shows. The TC blocks are the Two’s complement functions
to implement subtraction. The left subtraction block accounts for the budget initialization process to
balance the accumulated debt. Every clock cycle that enable/grant signal is high; the subtraction block at
the right of Figure 6a decrements the budget. Finally, the lower register behaves as an accumulator when
the budget0 signal is high.

SuDO filter uses two comparator trees: Greater-Budget to get the maximum budget value, and
Lower-Debt to obtain the minimum debt value. They differ in the comparison operators, but internally
they have the same structure. Here we explain the Greater-Budget tree’s architecture but can be easily
translated to the Lower-Debt changing the > operator for < and budget(m) for debt(m) signals. The
Greater-Budget has its first level with m/2 comparators called Greater-Request, which present the greater
of the two entries at the output. In this comparator, we add the request inputs to indicate whether the
next stage of comparators use this value or not. If the signal is high, the data goes into the comparator;
otherwise, the value zero. This action makes sense because comparators should only consider the budget
of the masters applying for access. We present a cell of this type of element in Figure 6b. In the next tree



Micromachines 2020, 11, 1063 14 of 27

levels, we use traditional comparators to obtain the highest budget of those masters at the end of the
last stage.

The value of the highest budget obtained is compared individually with the budget of each
master. A set of comparators named Equal-Comparator perform the comparison. Figure 5c shows
their architecture. Equal-Comparator generates the output equal=1 if the two values are equal. Finally, the
module applies an and operation between the output of these comparators and the original request signal
from the associated master. A positive outcome of this operation indicates that the master requests the bus
and has the most budget. All outputs are directed to the RR to resolve a tie if one exists.

(a) Down-Counter Slice (b) Greater-Request Slice

Figure 6. Slices of Down-Counter and Greater-Budget Units.

5.2. SuDO Policy Considerations

For its operation, the SuDO policy takes into account the following considerations:

• All masters are assigned a starting budget in terms of flits.
• In an arbitration round, the winning master is the one with the most flits.
• If two or more masters have the same amount of flits to spend that corresponds to the highest number

of flits detected in the system, the Round-Robin policy resolves the tie.
• A master who has obtained access to the bus decreases one unit for each transmitted flit.
• A master who runs out of flits will be allowed to complete the current transaction, but a debt

record starts.
• A master gets the bus if it requires it even if it has used up his budget, as long as there is no other

master with flits to spend is requesting it.
• If two or more masters who have used up their budget apply simultaneously for the bus, the one with

less debt gets it.
• If the accumulated debt is the same for all, Round-Robin breaks the tie.
• If a master who has no budget takes the bus, this master accumulates debts in terms of the number of

flits used by the bus.
• The arbitration policy reloads the original budget when all masters’ accounts reached zero.
• The policy subtracts the assigned budget and the accumulated debt; the remaining are the flits

to spend.



Micromachines 2020, 11, 1063 15 of 27

6. Results

The characteristics of the applications running on the SoC condition the interconnection performance.
To establish scenarios that allow us to make an objective evaluation, we identified features that enable us
to classify the applications.

According to how the applications running in the processing elements of an SoC, we identify two
types of applications:

1. Application with independent tasks: in this type of application, each of the processing elements
executes tasks whose operation does not depend on the execution of another task. Once the processing
elements transmit a packet with the task result, they can continue executing pending tasks. There is
no need for a response. In this way, they have the possibility of requesting access to the bus again
when they complete the execution of their new task.

2. Application with dependent tasks: the applications have tasks that communicate with each other to
execute an algorithm. The tasks are distributed in different processing elements to take advantage of
their ability to work in parallel and obtain better performance in the processing of the application.
The tasks communicate with each other through the interconnection system. A task only can run if it
has received all the data from the anterior tasks on which it depends.

According to the type of traffic generated by the applications running on the processing elements of
an SoC. We classify the traffic as:

1. Homogeneous traffic: All the masters generate transactions with a similar size payload.
2. Heterogeneous traffic: The size of the packets transmitted by each of the masters varies significantly

between them.

The size of the packets transmitted through the interconnection system depends on the application
running. Taking as a reference to the traffic patterns presented in [1], we have identified three types
of packets:

1. Small-sized packets: with a payload flits in the order of the units. As an example, the mapped
FFT-1024 complex algorithm generates packets between five and seven flits payload.

2. Medium-sized packets: which have a payload in the order of tens of flits. Such as those generated by
the mapped FPPPP algorithm.

3. Large-sized packets – We observe this size in the mapping of the H264 video encoding algorithm.
The generated packets have a payload of between two and three hundred flits.

Our system implemented the RR, LTY, TDMA, WRR, WRRM, and SuDO arbitration policies in the
arbiter unit. In a simulation, only runs the police that CRC indicates. Depending on the arbitration policy
selected, the CRC associates to each master a weight. We show the policy origin and the purpose of the
associated weights in Table 3.

Table 3. Origin of the implementation and meaning of the weight for each policy.

Policy Origin Associated Weight Meaning

RR Williams and Towles [6]
The value associated with each of the
masters has no meaning with this policy

LTY Lahiri et al. [41] Number of tickets assigned to each master
TDMA Our implementation Number of slots assigned to each master
WRR Williams and Towles [6] Weight in number of cycles for each master

WRRM Williams and Towles [6] Weight in number of cycles for each master
SuDO Based on the architecture presented in this document Budget in number of cycles for each master



Micromachines 2020, 11, 1063 16 of 27

Today, it is common for SoCs to run different task-dependent applications while meeting QoS
requirements simultaneously. Wich implies that the arbitration system must provide two capabilities: one,
to operate, the ability to avoid starvation and deadlock; two, to achieve QoS, the ability to regulate the
utilization of the bus, allowing each processing element a differentiated use of it.

As far as we know, the study of the behavior of arbitration policies in scenarios involving
task-dependent applications has been little studied [2]. From our perspective, it is necessary to evaluate
the behavior of arbitration policies regarding their capacity to regulate resource utilization. In our case,
the bus-based interconnection system. Since controlling the utilization of a resource will depend on the
ability to meet the QoS requirements established for the applications.

In the tests, we use two traffic patterns obtained from the suite presented in [1]. The first pattern
generates the traffic for the FFT-1024_complex application; this pattern has a high amount of tasks (16,384)
with (25,600) communication links; the size of the messages that generate the tasks are in the order of the
units (between 5 and 7 flits). The second pattern produced traffic for the FPPPP application; it has a small
number of tasks (334) with (1145) communication links; the size of the messages that generate the tasks is
in the order of tens (between 50 and 60 flits). Both patterns perform a process of 20 iterations.

We selected these patterns because the FFT-1024_complex application generates intense
communication with small packets, while the FPPPP application generates moderate communication with
medium-sized packets. Also, these patterns were selected over the other patterns in the suite because,
in the tests we performed, they are the ones that generate the highest volume of traffic. A mapping
process was carried out on eight processing elements for both patterns because, in our tests with this
mapping, we have the best processor/performance ratio. When we run the standalone mode applications,
FFT-1024_complex mapping on eight processors achieved a 29.13 bits/cycle performance, and FPPPP
mapping on eight processors achieved a performance of 15.95 bits/cycle. To perform the evaluation,
we use the previously established metrics: Ttotal , Thapp(i), Thoverall , Uapp(i), and Uoverall .

Section 4 indicates the difficulty that some traditional arbitration policies have to control the utilization
of the bus, especially when running heterogeneous task-dependent applications. The following are
the results of simulating LTY, TDMA, and WRR arbitration policies in a scenario running one FPPPP
application and two FFT-1024_complex applications with a 1/2/2 weight ratio. Figure 7 shows that
the WRR policy does not generate results because it reaches a deadlock state after running for a period.
Figure 7a shows that the TDMA arbitration policy performs a bus distribution that tends to obtain the
established weight ratio. However, it translates into an extended idle bus (36.7%). This cost significantly
impacts the overall throughput of the system Thoverall , as shown in Figure 7b. The lottery policy cannot
control the utilization of the bus to obtain the ratio established in the weights; in Figure 7a, we can see that
the highest percentage of utilization is in FPPPP, which is the application that generates larger transactions.
The simulation shows that the two FFT-1024_complex applications had greater access to the bus because
they had a more significant number of tickets, but this does not reflect greater bus utilization. In all the
tests we conducted with heterogeneous application-dependent scenarios, the behavior of these policies is
similar to that shown in Figure 7. In the following tests, to present more concretes results, we eliminated
these policies.

Next, we propose a couple of scenarios running applications with dependent tasks. It is of our interest
to know to what extent an arbitration policy allows a differentiated resource utilization. We are also
interested in observing how this differentiated utilization impacts the overall performance of the system
and application execution time.



Micromachines 2020, 11, 1063 17 of 27

(a) Bus utilization percentage Ub

(b) Application throughput Thapp and overall throughput Thoverall

Figure 7. Some problems detected on traditional politics running in a scenario heterogeneous dependent
applications. LTY has a deficient bandwidth control. TDMA degrades bus utilization. WRR generates
starvation and deadlock issues.

6.1. Scenario 1: Masters Running Different Task-Dependent Applications

In the first test, the proposed scenario runs three applications with dependent tasks, one application is
FPPPP, and the other two applications are FFT-1024_complex. The applications run using the RR, WRRM,
and SuDO arbitration policies. For WRRM, the weight ratio is 1/1/1; for SuDO, the budget has a weight
ratio of 1/1/1. This ratio assumes that the processors of three applications have the same possibility of
access to the bus.

Figure 8a shows that the three policies distribute bus utilization relatively equally. For the three
arbitration policies tested, the application that obtains the most considerable portion of the bus utilization
Uapp is FPPPP, since the FPPPP application is the one that generates the largest transactions. The overall
performance Thoverall , is similar to all three policies, as seen in Figure 8b being slightly higher for
Round-Robin. As for the total running time Ttotal , RR presents a slightly running time, as shown in
Figure 8c.



Micromachines 2020, 11, 1063 18 of 27

(a) Bus utilization percentage Ub

(b) Application throughput Thapp and overall throughput Thoverall

(c) Total running time Ttotal

Figure 8. SuDO outperforms other arbitration policies regarding bandwidth control in systems with masters
running different task-dependent applications.

In the next test, only run the WRRM and SuDO arbitration policies. In this test, we want to see
if an application can make a differentiated utilization of the bus. We set the weighting ratio at 1/1/3,
which would mean a theoretically expected bus utilization of 20% for the FPPPP application, 20% for one
of the FFT-1024_complex applications, and 60% for the other FFT-1024_complex application. It can be
seen in Figure 8a that WRRM cannot correctly regulate bus utilization. Although the FFT-1024_complex
application with the highest weight ratio has increased its bus utilization Uapp, this is very far from
the desired ratio. We can see that the percentage of utilization gained is at the expense of the other
FFT-1024_complex application. SuDO presents a distribution more following the established ratio of
weights; However, it is still far from the desired proportion. We can see that the gain is at the expense of
the FPPPP application. In terms of performance, we show in Figure 8b that the use of the SuDO arbiter
does not affect the overall performance of the system Thoverall , achieving SuDO get the highest one. As for
the total running time Ttotal , WRRM presents the shortest time, as shown in Figure 8c.



Micromachines 2020, 11, 1063 19 of 27

The third test performed in this scenario sets the weight ratio to 1/2/2. We expect a bus utilization
percentage of 20% for the FPPPP application and 40% for each FFT-1024 complex application. The results
show that the best distribution of bus utilization Ttotal , according to the established relationship, is achieved
with the SuDO arbitration policy, as shown in Figure 8a. The overall performance, Thoverall , is slightly
higher for SuDO, as seen in Figure 8b. However, the total running time Ttotal is higher in SuDO than in
WRRM, as shown in Figure 8c.

The set of tests that we performed shows that the policy that makes the best control of the bus
utilization and the bandwidth is SuDO.

6.2. Scenario 2: Masters Running Equal Applications with Dependent Tasks

Another common scenario in SoCs is having different instances of the same application running
simultaneously. In this case, we use three instances of the FFT-1024_complex traffic pattern for eight
processors. The selection of this application is because the tests we have carried out show that the
performance of the system is more compromised when small packets travel in the interconnection system.
We run the tests for the same arbitration policies outlined in the previous scenario.

For this scenario, the first test takes as arbitration policies Round Robin, WRRM, and SuDO. The
established weight/budget ratio is 1/1/1.

The Figure 9a shows that regardless of the arbitration policy used, each of the three applications
obtains the same bus utilization Uapp. The overall performance Thoverall and the total execution time Ttotal
is practically the same in all three policies, as shown in Figure 9b,c.

The second test in this scenario runs with the WRRM and SuDO arbitration policies. We set the
weighting ratio at 1/1/3. Figure 9a shows that WRRM cannot properly regulate bus utilization Uapp; we
can see a considerable percentage of idle bus time. SuDO presents a better distribution of bus utilization
according to the established ratio. Applications that have the same ratio get the same percentage of bus
utilization. The overall system performance Thoverall is slightly higher in SuDO, as shown in Figure 9b.
Figure 9c shows that WRRM has a lower total running time Ttotal .

The last test establishes a 1/2/2 weight ratio, which means that one of the FFT-1024 complex
applications has 20% of the bus utilization percentage while the other two FFT-1024_complex applications
have 40% each. Figure 9a shows that the SuDO arbitration policy better distributes the bus utilization
Uapp. WRRM presents a slightly higher overall performance, Thoverall , than SuDO, as shown in Figure 9b.
The total running time Ttotal is lower in WRRM, approximately 11%, as shown in Figure 9c.



Micromachines 2020, 11, 1063 20 of 27

(a) bus utilization percentage Ub

(b) Application throughput Thapp ans overall throughput Thoverall

(c) Total running time Ttotal

Figure 9. SuDO outperforms other arbitration policies regarding bandwidth control in systems with masters
running equal task-dependent applications.

The tests conducted in this scenario show that the policy that makes the best control of the utilization
of the bus is SuDO.

Table 4 summarizes the results obtained in the tests carried out in this work.



Micromachines 2020, 11, 1063 21 of 27

Table 4. Summary of results achieved with the tests carried out. All three scenarios run with three
task-dependent applications. Each of the applications mapped on eight processors, a total of 24 processors
working in the system. The purpose of the tests is to observe the behavior of different arbitration policies
behavior regarding their ability to control the bus bandwidth/utilization for the given weights.

Applications in the Scenario Policies/Support Weights Results

One FPPPP type application,
two FFT-1024_complex type
applications.

Policies:
LTY, TDMA, and WRR.
Weight ratio:
(1/2/2)
FPPPP=1, FFT-1024=2

LTY fails to control the bus bandwidth
utilization for each application.
TDMA achieves bandwidth control at the
cost of a notable reduction in performance.
WRR generates a deadlock.

One FPPPP type application,
two FFT-1024_complex type
applications.

Policies:
RR, WRRM, and SuDO
Weights ratios:
(1/1/1)
FPPPP=1, FFT-1024=1
(1/3/3)
FPPPP=1, FFT-1024=3
(1/2/2)
FPPPP=1, FFT-1024=2

RR does not control bus bandwidth
utilization of each application.
WRRM achieves coarse-grained
bandwidth control, but produces a bias
towards processors with larger packet
sizes.
SuDO achieves a fine-grained bandwidth
control if an application have a low
packet injection rate, others applications
share the unused allocated bandwidth.

Three FFT-1024_complex
type applications.

Policies:
RR, WRRM, and SuDO
(1,1,1)
(1/3/3)
(1/2/2).

RR does not control bus bandwidth
utilization of each application.
WRRM achieves coarse-grained
bandwidth control, but produces a bias
towards processors with larger packet
sizes.
SuDO achieves a fine-grained bandwidth
control if an application have a low
packet injection rate, others applications
share the unused allocated bandwidth.

The tests we have performed show that more than the number of processors in the system,
the arbitration policy’s behavior is more influenced by the packet injection rate of each application.
For example, in scenarios with task-dependent applications, when we mapped an application in a few
processors, the packet exchange is more intensive. In this case, the results are similar to the scenarios tested
in this work. When there is a scenario whose applications are not bus-intensive, there is less contention,
so the behavior of any arbiter cannot be easily observed no matter how many processors the applications
are mapped (few or many).

We test different applications with different transaction sizes. But we observed that FPPPP and
FFT-1024_complex are the ones that stress out the system higher. Other applications utilize less the
bus; then, we fail to perceive the bandwidth control. Our policy assigns bandwidth to a master, but the
arbiter transferred the rest to other masters that needed it if it uses less. In other words, our arbitration
policy limits the maximum bandwidth assigned to a master, but the master can use less in a given period.
Therefore, to observe more precise bandwidth control, the paper’s scenarios comprise various applications
with different transaction sizes that increase bus utilization. Although we used only three applications,
they employed eight masters each. Therefore, we use a total of 24 masters in the test. We consider that
these scenarios are enough to get reliable conclusions as the bus utilization is adequate to express the
possible issues associated with bandwidth control.



Micromachines 2020, 11, 1063 22 of 27

6.3. Hardware Implementation Evaluation

We implement the hardware architecture of the arbitration policies in the Verilog Hardware
Description Language. For the synthesis process, Xilinx’s SoC, Zynq 7020, was used as a reference.
The number of masters that are supported by the arbitrators is eight. Table 5 shows the results of the
resources used, maximum operating frequency, and energy consumed. The implementation that uses
the least amount of resources is Round-Robin, 32 slice registers, and 66 LUTs. WRRM policy consumes
280 slice registers. Most of these in the registers that serve to keep track of the support weights. In the
SuDO arbiter case, the number of slice registers increases to 360 because, in this policy, there is a need to
keep track of the time debt that a master has. In unit terms, a cell of the RR type consumes three slice
registers. A section of WRRM consumes thirty, while a cell SuDO consumes forty slice registers. As for
the maximum operating frequency, Round-Robin gets the highest maximum operating frequency. SuDO
has the poorest maximum operating frequency; the leading cause is the comparator trees that SuDO uses
to find the element with the highest budget or lower debt. These trees make the propagation time high,
which considerably decreases the maximum operating frequency. In terms of total power and dynamic
power consumption, Round-Robin has a lower consumption. WRRM and SuDO have practically the same
consumption characteristics.

The implementation of the proposed policy obtains an excellent compromise between complexity and
performance. Table 5 shows the resources used by [44], which offers a different solution -a traffic regulator
for every master- for the problem of bandwidth control. It is important to note that the resources shown in
Table 5 for [44] are required by each master, which increases the resources used for solutions with multiple
masters or cores. Every master added increases one fold the digital logic needed. In contrast, our solution
employs fewer resources as we only modify the arbiter in the bus controller. We established that the price
paid compared to traditional policies is moderately high; however, compared with the state-of-the-art
solutions for bandwidth control, the proposed implementation is less resource-intensive, as Table 5 shows.

Table 5. Resources, operation frequency and power consumption for the hardware implementation of
arbitration policies. * Denotes a different approach—a traffic regulator—for bandwidth control.

Policy # Used Slice Registers # Used LUTs Max. Operating Total On-Chip Dynamic
Available 106400 Available 53200 Frequency MHz Power mW Power mW

Freq. 100MHz

Round-Robin 32–0.03% 66–0.12% 235.07 106 2
WRRM 280–0.26% 527–0.99% 190.11 115 10

SuDO 360–0.34% 1136–2.13% 80.38 114 10
ABE * [44] 582–0.54% 1131–2.12% — 114 —

7. Discussion

Tests conducted on scenarios with task-dependent applications show that SuDO is the policy that
allows better control of the bus. When we set the support values to 1/1/1, the behavior of the three tested
arbitration policies is very similar in the two scenarios.

When there is a ratio with different weights, WRRM can not maintain this ratio. This behavior is
because WRRM allows a processing element to use the bus even though it has already consumed the
quota, making this element more resource-intensive. Suppose a processing element frequently requests the
bus. In that case, it gets it, in the interest of better overall system performance, but the policy has no control
over how much extra bus utilization occurred. This behavior prevents having a fine-grained control of
bus utilization. In both scenarios, we can see that the gain in bus utilization that has the application with
a higher weight relationship does so at the expense of only one of the other applications. This issue is



Micromachines 2020, 11, 1063 23 of 27

a consequence of giving the bus to any processing element that requests it even if it has consumed its
budget to obtain a higher bus utilization. As shown in scenario 2, the 1/1/3 WRRM ratio has an idle bus
percentage of 15%.

In the case of SuDO, the results show that although it does not achieve the desired weight ratio, there
is a tendency to achieve it. The main reason why this happens is that applications do not request the bus
at a fixed weight ratio because the mapping process tried that the most significant task dependency is
between tasks within the same processing element. Given the above, a processing element during specific
periods does not request access to the bus. We can use the packet injection rate as a measure to adjust the
budget values.

Regarding the overall performance, we can see that taking control of the bus utilization does not
significantly impact the arbitration policies evaluated in the scenarios proposed. SuDO, in most of the tests
with differentiated weights, presents a slightly higher performance. The price to be paid for achieving a
better distribution of bus utilization is the total running time of the applications. In this sense, SuDO in all
tests presents a higher execution time of the task that takes longer to execute, approximately 10%.

We can implement our SuDO policy in other interconnection systems such as crossbar switches
and routers. Here we explain such extension in routers, but switches benefit from SuDO policy in the
same manner. Figure 10 shows a Network-on-Chip with a 3 × 3 tile mesh topology and a typical router
architecture from [45]. The router architecture presented has its input channels at the left and its output
channels at the right. The switch fabric connects inputs with their respective output selected with the
routing logic. But the arbitration logic controls which input channels use the switch fabric. RR is a
typical arbitration policy to guarantee fair access; however, SuDO policy can control in a precise manner
the bandwidth allocation to every input channel and avoid starvation. Several dataflows from diverse
processor elements in different mesh network coordinates can converge in a link; therefore, they share the
link’s bandwidth. SuDO can use the budget to control the share of bandwidth assigned to every flow. We
can manage every link’s bandwidth share in every router in the pathway of a dataflow. This procedure
will produce a smooth and more predictive behavior of the NoC-based system.

Figure 10. A typical Network-on-Chip architecture. A 3 × 3 2D Mesh topology with its internal tile
architecture. Arbitration logic controls the switch fabric and input channels showed in the router’s
microarchitecture [45].

8. Conclusions and Future Work

In a scenario with multiple applications with dependent tasks where it is necessary to make a
fine-grained control of the bandwidth allocation in a bus, it is better to use the SuDO policy since it is



Micromachines 2020, 11, 1063 24 of 27

the one that has presented better results in the experiments carried out. While our arbitration policy
guarantees bandwidth for each master if they do not need it – unlike the bandwidth waste of TDMA–,
and opportunistically assigns the bus to the arbiter who needs it. To maintain fine-grained control of
bandwidth allocation, SuDO has a debt monitor for each particular master. So both features: supervised
debt and opportunistic sharing, give us a proper synergy to have fine-grained control of the bandwidth
without wasting the bus utilization. However, the packet injection rate of the application causes that
applications cannot reach the established weight ratio. It is necessary to adjust the bandwidth through the
budget values to the packet injection rate of every master.

We have observed that one arbitration policy is more suitable than another depending on the type of
scenario presented. For example, in a scenario with task-dependent applications where we do not desire
to regulate the bus utilization, the policy that best fits is the Round-Robin policy because it is lightweight
and avoids starvation and deadlock.

There are several aspects to follow as future work.
The ratio of support weights to the bus utilization percentage that a processing element tries to achieve

is not straightforward. One of the reasons already mentioned is a limited packet injection rate of the
application. This behavior suggests the possibility of coupling a regulator that monitors and dynamically
adjusts in runtime the support weights about the request ratio of the processing elements.

On the other hand, there is a lack of studies where applications themselves generate heterogeneous
packets. We believe that it is necessary to study and characterize this traffic type to fine-tune the
bus utilization.

This work focuses on the behavior of the SuDO policy. The optimization of the hardware
implementation in terms of maximum operating frequency, resource utilization, and energy consumption
is desirable. The policy presented here can directly apply the effective bandwidth regulation of output
ports in switches and routers. Furthermore, since the SuDO policy guarantees the differentiated allocation
of bus bandwidth, it can simplify the mathematical analysis to measure SoCs, buses, switches, and
Networks-on-Chip performance.

Author Contributions: Conceptualization, S.I.-D. and R.S.-A.; methodology, R.S.-A.; software, S.I.-D.; validation, M.B.,
M.O.-L. and R.S.-A.; formal analysis, S.I.-D.; investigation, S.I.-D.; data curation, M.B. and M.O.-L.; writing—original
draft preparation, S.I.-D., R.S.-A. and J.R.G.-R.; writing—review and editing, S.I.-D., R.S.-A., J.R.G.-R., M.O.-L. and M.B.;
visualization, S.I.-D., J.R.G.-R., M.O.-L. and M.B.; supervision, R.S.-A. and M.O.-L. and M.B.; project administration,
M.B. and R.S.-A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liu, W.; Xu, J.; Wu, X.; Ye, Y.; Wang, X.; Zhang, W.; Nikdast, M.; Wang, Z. A NoC Traffic Suite Based on Real
Applications. In Proceedings of the 2011 IEEE Computer Society Annual Symposium on VLSI, Chennai, India,
4 July 2011; pp. 66–71.

2. Poletti, F.; Bertozzi, D.; Benini, L.; Bogliolo, A. Performance Analysis of Arbitration Policies for SoC
Communication Architectures. Des. Autom. Embed. Syst. 2003, 8, 189–210. [CrossRef]

3. Benini, L.; Bertozzi, D. Network-on-chip architectures and design methods. IEEE Proc. -Comput. Digit. Tech.
2005, 152, 261–272. [CrossRef]

4. Ahmed, K.E.; Rizk, M.R.; Farag, M.M. Overloaded CDMA crossbar for network-on-chip. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 2017, 25, 1842–1855. [CrossRef]

5. Ben Slimane, M.; Ben Hafaiedh, I.; Robbana, R. Formal-Based Design and Verification of SoC Arbitration
Protocols: A Comparative Analysis of TDMA and Round-Robin. IEEE Des. Test 2017, 34, 54–62. [CrossRef]

http://dx.doi.org/10.1023/B:DAEM.0000003962.54165.5c
http://dx.doi.org/10.1049/ip-cdt:20045100
http://dx.doi.org/10.1109/TVLSI.2017.2664660
http://dx.doi.org/10.1109/MDAT.2017.2713352


Micromachines 2020, 11, 1063 25 of 27

6. Dally, W.; Towles, B. Principles and Practices of Interconnection Networks; Morgan Kaufmann Publishers Inc.:
San Francisco, CA, USA, 2003.

7. Agarwal, A.; Iskander, C.; Shankar, R. Survey of network on chip (NoC) architectures & contributions. J. Eng.
Comput. Archit. 2009, 3.

8. Pagani, M.; Rossi, E.; Biondi, A.; Marinoni, M.; Lipari, G.; Buttazzo, G. A Bandwidth Reservation Mechanism
for AXI-Based Hardware Accelerators on FPGAs. In Proceedings of the 31st Euromicro Conference on Real-Time
Systems (ECRTS 2019); Quinton, S., Ed.; Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: Tuttgart, Germany,
2019; pp. 1–24. [CrossRef]

9. Ben Achballah, A.; Ben Othman, S.; Ben Saoud, S. Problems and challenges of emerging technology
networks-on-chip: A review. Microprocess. Microsyst. 2017, 53, 1–20. [CrossRef]

10. Bjerregaard, T.; Mahadevan, S. A survey of research and practices of network-on-chip. ACM Comput. Surv.
2006, 38, 71–121. [CrossRef]

11. Benini, L.; De Micheli, G. Networks on chips: A new SoC paradigm. Computer 2002, 35, 70–78. [CrossRef]
12. Wang, J.; Li, Y.; Peng, Q.; Tan, T. A dynamic priority arbiter for Network-on-Chip. In Proceedings of the

2009 IEEE International Symposium on Industrial Embedded Systems, Lausanne, Switzerland, 8–10 July 2009;
pp. 253–256. [CrossRef]

13. Xilinx. SmartConnect v1.0 LogiCOREo IP Product Guide, Vivado Design Suite, PG247, 3 February 2020. Available
online: https://www.xilinx.com/support/documentation/ip_documentation/smartconnect/v1_0/pg247-
smartconnect.pdf (accessed on 30 November 2020).

14. Park, H.; Choi, K. Adaptively weighted round-robin arbitration for equality of service in a many-core
network-on-chip. IET Comput. Digit. Tech. 2015, 10, 37–44. [CrossRef]

15. Yang, Y.; Wu, R.; Zhang, L.; Zhou, D. An asynchronous adaptive priority round-robin arbiter based on
four-phase dual-rail protocol. Chin. J. Electron. 2015, 24, 1–7. [CrossRef]

16. Rahmati, D.; Sarbazi-Azad, H. Classified Round Robin: A Simple Prioritized Arbitration to Equip Best Effort
NoCs With Effective Hard QoS. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 257–269.
[CrossRef]

17. Shah, H.; Raabe, A.; Knoll, A. Priority division: A high-speed shared-memory bus arbitration with bounded
latency. In Proceedings of the 2011 Design, Automation Test in Europe, Grenoble, France, 14–18 March 2011;
pp. 1–4.

18. Chen, C.-H.; Lee, G.-W.; Huang, J.-D.; Jou, J.-Y. A real-time and bandwidth guaranteed arbitration algorithm
for SoC bus communication. In Proceedings of the Asia and South Pacific Conference on Design Automation,
Yokohama, Japan, 24–27 January 2006.

19. Lin, B.; Lee, G.; Huang, J.; Jou, J. A Precise Bandwidth Control Arbitration Algorithm for Hard Real-Time SoC
Buses. In Proceedings of the 2007 Asia and South Pacific Design Automation Conference, okohama, Japan,
23–26 January 2007; pp. 165–170.

20. Slijepcevic, M.; Hernandez, C.; Abella, J.; Cazorla, F.J. Design and implementation of a fair credit-based
bandwidth sharing scheme for buses. In Proceedings of the the 2017 Design, Automation and Test in Europe;
Institute of Electrical and Electronics Engineers Inc.: Grenoble, France, 2017; pp. 926–929. [CrossRef]

21. Li, H.; Zhang, M.; Zheng, W.; Li, D. An Adaptive Arbitration Algorithm for SoC Bus. In Proceedings of 2007
the International Conference on Networking, Architecture, and Storage (NAS 2007), Guilin, China, 5 May 2007;
pp. 245–246.

22. Akesson, B.; Steffens, L.; Strooisma, E.; Goossens, K. Real-Time Scheduling Using Credit-Controlled
Static-Priority Arbitration. In Proceedings of the 2008 14th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, Kaohsiung, Taiwan, 25–27 August 2008; pp. 3–14.

23. Akesson, B.; Steffens, L.; Goossens, K. Efficient Service Allocation in Hardware Using Credit-Controlled
Static-Priority Arbitration. In Proceedings of the 2009 15th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, Beijing, China, 5 October 2009; pp. 59–68.

24. Peng, H.K.; Lin, Y.L. An optimal warning-zone-length assignment algorithm for real-time and multiple-QoS
on-chip bus arbitration. ACM Trans. Embed. Comput. Syst. 2010, 9. [CrossRef]

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2019.24
http://dx.doi.org/10.1016/j.micpro.2017.07.004
http://dx.doi.org/10.1145/1132952.1132953
http://dx.doi.org/10.1109/2.976921
http://dx.doi.org/10.1109/SIES.2009.5196222
https://www.xilinx.com/support/documentation/ip_documentation/smartconnect/v1_0/pg247-smartconnect.pdf
https://www.xilinx.com/support/documentation/ip_documentation/smartconnect/v1_0/pg247-smartconnect.pdf
http://dx.doi.org/10.1049/iet-cdt.2015.0049
http://dx.doi.org/10.1049/cje.2015.01.001
http://dx.doi.org/10.1109/TCAD.2017.2693263
http://dx.doi.org/10.23919/DATE.2017.7927122
http://dx.doi.org/10.1145/1721695.1721701


Micromachines 2020, 11, 1063 26 of 27

25. Gupta, P.; McKeown, N. Designing and implementing a fast crossbar scheduler. IEEE Micro 1999, 19, 20–28.
[CrossRef]

26. Shin, E.S.; Mooney, V.J.; Riley, G.F. Round-robin Arbiter Design and Generation. In Proceedings of the 15th
International Symposium on System Synthesis, Kyoto, Japan, 5 July 2002; pp. 243–248.

27. Zheng, S.Q.; Yang, M. Algorithm-hardware codesign of fast parallel round-robin arbiters. IEEE Trans. Parallel
Distrib. Syst. 2007, 18, 84–95. [CrossRef]

28. Lee, Y.L.; Jou, J.M.; Chen, Y.Y. A High-Speed and Decentralized Arbiter Design for NoC. In Proceedings of the
2009 IEEE/ACS International Conference on Computer Systems and Applications, Rabat, Morocco, 5 March
2009; pp. 350–353.

29. Oveis-Gharan, M.; Khan, G.N. Index-based round-robin arbiter for NoC routers. In Proceedings of the
IEEE Computer Society Annual Symposium on VLSI, ISVLSI, Montpellier, France, 7–10 July 2015; pp. 62–67.
[CrossRef]

30. Monemi, A.; Ooi, C.Y.; Palesi, M.; Marsono, M.N. Ping-lock round robin arbiter. Microelectron. J. 2017, 63, 81–93.
[CrossRef]

31. Xu, Y.; Li, L.; Gao, M.; Zhang, B.; Jiang, Z.; Du, G.; Zhang, W. An Adaptive Dynamic Arbiter for Multi-Processor
SoC. In Proceedings of the 2006 8th International Conference on Solid-State and Integrated Circuit Technology,
Shanghai, China, 8 May 2006; pp. 1993–1996.

32. Jun, M.; Bang, K.; Lee, H.; Chang, N.; Chung, E. Slack-based Bus Arbitration Scheme for Soft Real-time
Constrained Embedded Systems. In Proceedings of the 2007 Asia and South Pacific Design Automation
Conference, Yokohama, Japan, 23–26 January 2007; pp. 159–164.

33. Lara, E.; Debon, G.; Goerl, R.; Villa, P.; Schramm, D.; Poehls, L.B.; Vargas, F. A New Approach to Guarantee
Critical Task Schedulability in TDMA-Based Bus Access of Multicore Architecture. In Proceedings of the 2019
IEEE Latin American Test Symposium (LATS), Santiago, Chile, 11–13 March 2019; pp. 1–6.

34. Hwang, S.Y.; Kang, D.S.; Park, H.J.; Jhang, K.S. Implementation of a self-motivated arbitration scheme for the
multilayer AHB busmatrix. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2010, 18, 818–830. [CrossRef]

35. Sousa, E.; Gangadharan, D.; Hannig, F.; Teich, J. Runtime Reconfigurable Bus Arbitration for Concurrent
Applications on Heterogeneous MPSoC Architectures. In Proceedings of the 17th Euromicro Conference on
Digital System Design, Verona, Italy, 7 October 2014; pp. 74–81.

36. Xu, Z.; Zhang, S.; Ni, W.; Yang, Y.; Bu, J. Design and implementation of a dynamic weight arbiter for
networks-on-chip. In Proceedings of the ICIST 2014—Proceedings of 2014 4th IEEE International Conference
on Information Science and Technology, Shenzhen, China, 5 May 2014; pp. 354–357. [CrossRef]

37. Amin, M.; Abdullah, A. A Bus Arbitration Scheme with an Efficient Utilization and Distribution. Int. J. Adv.
Comput. Sci. Appl. 2017, 8, 113–118. [CrossRef]

38. Richardson, T.D.; Nicopoulos, C.; Park, D.; Narayanan, V.; Xie, Y.; Das, C.; Degalahal, V. A hybrid SoC
interconnect with dynamic TDMA-based transaction-less buses and on-chip networks. In Proceedings of the
19th International Conference on VLSI Design held jointly with 5th International Conference on Embedded
Systems Design (VLSID’06), Hyderabad, India, 7 May 2006; p. 8

39. Burgio, P.; Ruggiero, M.; Esposito, F.; Marinoni, M.; Buttazzo, G.; Benini, L. Adaptive TDMA bus allocation and
elastic scheduling: A unified approach for enhancing robustness in multi-core RT systems. In Proceedings of
the 2010 IEEE International Conference on Computer Design, Qinhuangdao, China, 10 May 2010; pp. 187–194.

40. Lee, M.M.; Kim, J.; Abts, D.; Lee, J.W. Approximating Age-Based Arbitration in On-Chip Networks. In
Proceedings of the 2010 19th International Conference on Parallel Architectures and Compilation Techniques
(PACT), Vienna Austria, 6 September 2010; pp. 575–576.

41. Lahiri, K.; Raghunathan, A.; Lakshminarayana, G. The LOTTERYBUS on-chip communication architecture.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2006, 14, 596–608. [CrossRef]

42. García Morales, L.; Aedo Cobo, J.; Bagherzadeh, N. A new approach to the Population-Based Incremental
Learning algorithm using virtual regions for task mapping on NoCs. J. Syst. Archit. 2019, 97, 443–454.
[CrossRef]

http://dx.doi.org/10.1109/40.748793
http://dx.doi.org/10.1109/TPDS.2007.253283
http://dx.doi.org/10.1109/ISVLSI.2015.27
http://dx.doi.org/10.1016/j.mejo.2017.03.004
http://dx.doi.org/10.1109/TVLSI.2009.2015665
http://dx.doi.org/10.1109/ICIST.2014.6920401
http://dx.doi.org/10.14569/IJACSA.2017.080318
http://dx.doi.org/10.1109/TVLSI.2006.878210
http://dx.doi.org/10.1016/j.sysarc.2019.01.013


Micromachines 2020, 11, 1063 27 of 27

43. Sandoval-Arechiga, R.; Vazquez-Avila, J.L.; Parra-Michel, R.; Flores-Troncoso, J.; Ibarra-Delgado, S. Shifting the
Network-on-Chip Paradigm towards a Software Defined Network Architecture. In Proceedings of the 2015
International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV,
USA, 5 July 2015; pp. 869–870.

44. Restuccia, F.; Pagani, M.; Biondi, A.; Marinoni, M.; Buttazzo, G. Is your bus arbiter really fair? Restoring
fairness in axi interconnects for FPGA SOCs. ACM Trans. Embed. Comput. Syst. 2019, 18. [CrossRef]

45. Marculescu, R.; Ogras, U.Y.; Peh, L.S.; Jerger, N.E.; Hoskote, Y. Outstanding research problems in NoC design:
System, microarchitecture, and circuit perspectives. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2009,
28, 3–21. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/3358183
http://dx.doi.org/10.1109/TCAD.2008.2010691
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	 Quality of Service Metrics
	Most Used Arbitration Policies for Bandwidth Control

	System Model
	Bandwidth Control Problems with Common Arbitration Policies
	Supervised Debt Opportunistic Arbitration: A Novel Policy
	Architecture
	SuDO Policy Considerations

	Results
	Scenario 1: Masters Running Different Task-Dependent Applications
	Scenario 2: Masters Running Equal Applications with Dependent Tasks
	Hardware Implementation Evaluation

	Discussion
	Conclusions and Future Work
	References

