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  Abstract
  Stiffness of large arteries has been long recognized as a significant determinant of pulse pres-
sure. However, it is only in recent decades, with the accumulation of longitudinal data from 
large and varied epidemiological studies of morbidity and mortality associated with cardio-
vascular disease, that it has emerged as an independent predictor of cardiovascular risk. This 
has generated substantial interest in investigations related to intrinsic causative and associ-
ated factors responsible for the alteration of mechanical properties of the arterial wall, with 
the aim to uncover specific pathways that could be interrogated to prevent or reverse arte-
rial stiffening. Much has been written on the haemodynamic relevance of arterial stiffness in 
terms of the quantification of pulsatile relationships of blood pressure and flow in conduit 
arteries. Indeed, much of this early work regarded blood vessels as passive elastic conduits, 
with the endothelial layer considered as an inactive lining of the lumen and as an interface to 
flowing blood. However, recent advances in molecular biology and increased technological 
sophistication for the detection of low concentrations of biochemical compounds have eluci-
dated the highly important regulatory role of the endothelial cell affecting vascular function. 
These techniques have enabled research into the interaction of the underlying passive me-
chanical properties of the arterial wall with the active cellular and molecular processes that 
regulate the local environment of the load-bearing components. This review addresses these 
emerging concepts.   Copyright © 2013 S. Karger AG, Basel
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  Introduction

  The concept of ‘hardening of arteries’ arose from the early autopsy observations showing 
predominantly atheromatous calcified plaques and obstructive lesions in the intima of blood 
vessels  [1] . The more recent description of ‘arterial stiffening’ relates to alterations of medial 
properties leading to reduced distensibility of the arterial wall, and so decreasing the buff-
ering capacity of arteries to pulsatile cardiac ejection  [2, 3] . The obstructive condition is 
generally considered to be due to atherosclerosis, usually defined as accumulation of lipid 
and calcium deposits, whereas medial degeneration is due to alterations of load-bearing 
components, a condition often referred to as arteriosclerosis  [4, 5] . Both conditions are 
inherent in the fundamental determinants of cardiovascular risk: vascular obstruction 
causing limb or organ ischaemia and arterial stiffness, particularly of the aorta, leading to 
increased pulse pressure, conditions that increase in severity with age  [6] . The intrinsic 
importance of vascular function has been recognized for the past centuries, as exemplified by 
the famous dictum of Thomas Sydenham (1624–1688) that  ‘a man is as old as his arteries   ...  ’ . 
Recent theories of ageing suggest that it is the changes which occur in the vasculature that 
essentially determine the fate of the entire organism  [6–9] . Notwithstanding the over-
whelming research effort that has taken place in the fields of vascular biology and hyper-
tension, they still remain the most significant factors for cardiovascular disease, and although 
much has been learned, many of the underlying mechanisms and effective strategies for 
arresting or preventing the development of vascular degeneration still remain elusive.

  Because of the intermittent ejection of blood from the ventricles into the aorta and 
pulmonary artery and the metabolic requirement of a steady flow in the microcirculation for 
efficient tissue perfusion, the distensibility of large arteries is an important and fundamental 
determinant of the relationship between pulsatile pressure and flow  [2] . The loss of elasticity 
of the artery wall leads to stiffening of the conduit vessels, reducing arterial storage capacity 
as well as increasing the speed of the propagating pulse along the vessel wall. That is, for a 
given ventricular stroke volume, arterial stiffness is a major determinant of pulse pressure 
due to the combined influence on the capacitive effects of the artery wall to absorb the 
pulsatile energy and the wave propagation effects that influence peripheral wave reflection. 
These factors form the underlying mechanisms of the gradual increase in systolic pressure 
with age, especially after the 5th decade  [10] , leading to the development of isolated systolic 
hypertension in the elderly and to an increased cardiovascular risk  [10–12] . These mecha-
nisms also have a dominant role in the significance of pulse pressure  [13]  and the emergence 
of arterial pulse wave velocity (PWV) as an increasingly powerful independent predictor of 
cardiovascular morbidity and mortality  [14–16]  and significant reclassifier of cardiovascular 
risk  [17] . Studies in subjects with diabetes and glucose intolerance suggest that aortic PWV, 
as an index of global arterial stiffness, may indeed be an integrated index of vascular function 
 [18] . The early work by many investigators of the past six decades in quantifying the rela-
tionship between pulsatile pressure and flow in arteries has laid the basic biophysical foun-
dations of the functional haemodynamics  [2] . However, the mechanisms of what alter physical 
properties of the vessel wall leading to arterial stiffening are still not as well established.

  The emerging field of molecular biology over the past two decades, in combination with 
the biophysical principles in arterial haemodynamics, is enabling investigations into the 
underlying factors that translate structural changes and modifications of artery wall constit-
uents to functional correlates. These are seen as increased PWV and arterial pulse pressure, 
both highly significant factors of cardiovascular risk and end-organ damage. The artery wall 
constituents can be altered by passive stimuli, such as increased mechanical stress due to 
distending pressure. These lead to structural disorganization, fatiguing effects, and fragmen-
tation of elastic fibres  [3, 8, 19] . Alterations can also result from active changes mediated 
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through a cascade of biochemical cellular signalling processes affecting the integrity of the 
extracellular matrix (ECM), translating to altered arterial functional properties. Molecular 
probes are making it possible to uncover pathways involved in the interaction between 
cellular processes and the ECM in the artery wall  [20]  through biochemical and mechano-
transduction signalling  [21, 22] , thus opening up avenues for active interrogation of these 
pathways for direct regulation of arterial stiffness. This review addresses the fundamental 
definition of the material stiffness of the artery wall in terms of physical mechanical quan-
tities and describes the related underlying biological factors associated with the alteration of 
wall properties leading to arterial stiffening.

  Definition of Arterial Stiffness

  The functional effects of arterial stiffness involve alteration of fundamental mechanical 
behaviour of the material properties of the artery wall as well as the effect of wall properties 
on changes of geometry and wall tension. The material properties are defined in terms of the 
fractional deformation (strain) due to an applied force per unit area (stress). The ratio of 
uniaxial stress to uniaxial strain is defined as the elastic (Young’s) modulus ( E ), describing 
the stiffness of the material. For an isotropic material,  E  is constant in all directions. However, 
since arteries are essentially non-isotropic,  E  does not have the same value for circumfer-
ential or axial deformation. Conventionally, due to tethering, the deformation produced by 
the intra-arterial pressure ( P ) is considered to be mainly in the circumferential direction with 
a change in diameter ( D ). Due to the cylindrical structure, the stress and strain can be repre-
sented by  P  and the fractional change in diameter ( ΔD / D ), respectively. Hence, for a constant 
length, the volume elastic modulus (or Peterson’s elastic modulus,  E  p ) is defined as  E  p   = 
P / (ΔD / D).  The important aspect of  E  p  as a stiffness parameter is that pressure and diameter 
are measurable quantities and can be obtained non-invasively. For a linear elastic material, 
the relation of stress and strain is constant, and the material has a single value of the elastic 
modulus. However, the material properties of the artery wall change with applied force, 
hence the value of the elastic modulus depends on pressure and consequently the state of 
distension. This is described as the incremental elastic modulus ( E  inc ), which is the tangent of 
the stress-strain curve at any specific point:  E  inc   = ΔP /( ΔD / D ).

  For any circular elastic structure, the circumferential wall tension ( T ) is related to the 
internal pressure by the law of Laplace ( T = P  ·  D /2), assuming the wall thickness ( h ) is much 
smaller than  D.  This allows the computation of the material stiffness property since the 
circumferential stress ( S ) is  T  ·  h,  hence  ΔS = ΔP  ·  D /2 h . The incremental stress  ΔS  will cause 
an incremental circumferential strain equivalent to  ΔD / D . Thus,  E  inc   = ΔP  ·  D  2 /(2 hΔD ). From 
the relationship between PWV and square root of bulk elastic modulus ( ΔP /( ΔD / D ) and blood 
density (ρ)  [2] , the Moens-Korteweg relation is obtained, which relates PWV to the wall 
stiffness and geometry of the arterial cylindrical structure:  PWV =  ( E  inc  ·  h / Dρ ) 1/2  .  This 
suggests that for a uniform arterial segment, PWV can be used as a surrogate of arterial 
stiffness, with the assumption that the relative wall thickness ( h / D ) remains constant.

  The basic concepts outlined above have been developed and treated in early fundamental 
studies of arterial mechanics using isolated arterial segments assessing static and dynamic 
properties  [23] , pressure dependency of elastic properties  [24, 25]  and effect of smooth 
muscle activation  [26] . Recent studies and reviews have addressed the various indices of 
arterial stiffness that can be derived from measured quantities, essentially pressure and 
diameter  [27–29] . These studies provide extensive tabulated formulas and definitions.
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  Surrogate Measures of Arterial Stiffness
  Arterial stiffness is explicitly defined in terms of mechanical parameters of arterial prop-

erties (stress/strain relationships). However, these are not readily measured in vivo, and so 
various surrogate parameters are employed. These have been extensively treated in previous 
studies and reviews, including the inherent assumptions, confounding factors and limitations 
 [27–33] .

  Load-Bearing Components

  The main load-bearing components in large conduit arteries are elastin and collagen, 
with a much lower contribution by smooth muscle in the muscular arteries. Due to the 
anatomical arrangement of the elastin and collagen fibres, elastin engages at low distension 
(hence at low pressure) and collagen at higher distension (and pressure)  [34] . However, 
although the lamella unit is proposed as being the fundamental structural element of elastin 
in the media of the artery wall  [35] , there is significant variation in human arteries compared 
to other species  [36] . In addition, there is substantial variation in the isotropic properties  [25]  
and the contribution to wall stiffness of elastin and collagen along the aortic trunk  [37, 38] . 
The adaptation seen with a change in function is evident as the design of load-bearing compo-
nents is optimized to minimize the amount of collagen recruitment, and thus stiffness, as it is 
a necessary function in diving mammals  [39] .

  Arterial Stiffness Dependence on Distending Pressure

  An inherent feature of the mechanical properties of arteries is that the wall becomes 
stiffer with distending pressure  [24] . This is due to the increased amount of recruitment of 
stiffer collagen fibres with increasing distension. That is, the relationship of stress (pressure) 
and strain (diameter) is non-linear, with concavity toward the distension axis, such that there 
is diminishing distension with increasing force. This property is essential for the efficient 
mechanical operation of arteries as conduits for blood, such that, with the maintaining of 
residual stress, the vessels do not collapse and so always ensure patency for blood flow. That 
is, the wall tension ( T ) as balanced by the transmural pressure ( P ) and radius ( r ) ( T = P  ·  r , as 
determined by Laplace’s law) has a single operating point on the pressure-diameter curve. 
Indeed, the non-linear elastic behaviour of arteries has been described as a fundamental 
evolutionary property of the arterial design for all vertebrates and invertebrates with closed 
circulatory systems  [40] .

  Haemodynamic Effects of Arterial Stiffness

  Arterial stiffness is a major determinant of vascular impedance, hence affecting the rela-
tionship between arterial pressure and flow  [2] . Since flow is determined by the local spatial 
( x ) pressure ( p ) gradient ( dp / dx ) and the relationship between time ( t ) derivative ( dp / dt ) 
and  dp / dx  is  dx / dt  (that is, wave velocity), the effect is that local wave velocity becomes a 
determinant of the instantaneous relationship between pressure and flow. For elastic 
conduits, the wave velocity is related to the stiffness of the wall, so changes in stiffness will 
modulate the pressure-flow relationships. This is then expressed as changes in the frequency 
spectrum of arterial impedance  [2] .
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  Effects on Blood Storage (Compliance): Determinant of Pulse Pressure
  In a closed circulatory system, blood is stored in distensible compartments, with the 

venous system being responsible for buffering slow and relatively large changes in volume. 
However, the arteries, with the residual wall stress and elastic walls, are also able to buffer 
rapid changes in blood volume, such as occur during a single cardiac cycle. Hence, the value 
of the elastic modulus of the artery wall is such that there is sufficient recoil so that the volume 
taken up during systole is returned during diastole, hence buffering the pressure due to 
pulsatile ejection. Thus, increases in arterial stiffness will generate higher pulse pressure ( PP ) 
for similar stroke volumes ( SV ). Since the  SV  is the volume taken up by arterial distension and 
that flowing through the peripheral resistance ( R ), the ratio  SV / PP  is related to the total 
arterial compliance ( C ). In terms of arterial design, arterial stiffness is matched to obtain a 
value of  C  so as to optimize blood volume in the arterial compartment. For example, for 
maximal damping of  PP , a large value of  C  would be required for a given  SV , that is, a highly 
distensible system. However, this would store large volumes with a slow time constant ( RC ) 
for recoil, and so would result in an inefficient circulation because of high inertia due to the 
large blood mass to be displaced. These concepts are quantified in terms of the lumped 
parameter Windkessel ( RC ) model of the arterial system and extended to a three-element 
model by the addition of the characteristic impedance ( Zc )  [41] . The model has been recently 
used to compute the intrinsic reservoir pressure due to the increase in aortic volume asso-
ciated with cardiac ejection  [42] .

  Effects of Wave Propagation: Pulse Wave Velocity – Surrogate Measure of Arterial 
Stiffness
  Although the Windkessel model is adequate for lumped parameter estimation, it does not 

account for the finite time travel of the arterial pulse  [41] . This requires a spatially distributed 
system which is described in terms of wave propagation characteristics. Arterial stiffness 
affects PWV through the constitutive relation of wall stiffness, vessel geometry and blood 
density (Moens-Korteweg equation). In the large conduit arteries, the small ratio of wall 
thickness in relation to diameter ( h / D ) makes changes in the material stiffness of the artery 
highly correlated with measured PWV. This is manifest by the similar non-linear dependency 
of PWV on distending pressure. Hence, the measurement of pulse propagation time over a 
known distance to compute PWV has been found to be a robust surrogate of arterial stiffness, 
in the absence of any confounding arterial malformation such as significant stenosis  [29] .

  Arterial Stiffness as Manifestation of Vascular Ageing
  The most significant parameters that alter stiffness of conduit arteries are age  [43]  and 

associated processes  [8] . This has a complex association with the overall burden of vascular 
disease  [6] , in different populations  [44]  and with associated cardiovascular risk  [9] . Indeed, 
recent reviews on the subject have focused on the association between vascular ageing and 
the broad spectrum of co-existing conditions associated with cardiovascular disease, such as 
hypertension, diabetes and metabolic syndrome and the management strategies of vascular 
ageing  [45] .

  Mechanisms of Arterial Stiffness

  Stiffening of arteries is generally associated with changes in mechanical properties of
the arterial wall. That is, alterations of stress/strain characteristics due to modification of 
properties of load-bearing structural components. The underlying mechanisms responsible 
for such modifications involve a complex interaction between the material properties of 
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connective tissue and cell signalling pathways that alter the intrinsic and combined function 
of elastin, collagen, proteoglycans and glycoproteins of the ECM of the artery wall. A number 
of reviews have addressed these issues  [3, 32, 46] , with the suggestion that the specific mech-
anisms can interact by way of positive or negative feedback pathways, depending on the 
extent of the stimulus  [47] . 

  Essentially, the underlying mechanisms can be considered as those related to elementary 
material properties, that is, ‘passive’ mechanisms, and those that are regulated by cellular and 
molecular signalling where pathways can be interrogated, that is, ‘active’ mechanisms ( fig. 1 ).

  Passive Mechanisms

  Mechanical Properties Related to Intra-Arterial Distending
  The interaction of loading function of the wall components that bear the wall tension due 

to the distending pressure produces non-linear wall mechanical properties such that the wall 
becomes stiffer with increased distension. That is, the stiffness becomes pressure dependent 
 [24] . This is an important and intrinsic property of arterial design  [40, 48] . Since an increase 
in distending pressure leads to an increase in stiffness, which then can potentiate a further 
increase in pulse pressure, this property constitutes a potential positive feedback mechanism 
in relation to the relevance of arterial stiffness to cardiovascular risk, given the importance 
of systolic pressure, especially in age-related isolated systolic hypertension.

  Effects of Mechanical Fatigue and Fracture of Elastin Structures
  All structural proteins in biology have elastic characteristics, with some rubber-like 

proteins (e.g. elastin, resilin) functioning with high resilience, large deformability (strains) 
and low stiffness, resulting in the ability to store elastic strain energy  [49] . In arteries, this is 
a characteristic of both elastin and collagen, although elastin is much more extensible at lower 
strains than collagen. However, just as the efficiency of resilin determines the performance 
of insect wings during their lifetime  [50] , the efficiency of elastin is also a significant deter-
minant of the overall stiffness of the arterial wall throughout life. From evolutionary consid-
erations, it is reasonable to assume that the range of properties of elastic proteins will 
predispose elastic structures that are subjected to repetitive strains to a high resistance to 
fracture.

  Due to the pulsatile nature of the circulatory design, arteries are subjected to continuous 
and repetitive strain throughout life. In human tissue, radiocarbon prevalence data show a 
range of half-life of 40–174 years (mean 74 years)  [51] , making elastin the protein in the 
human body with the longest longevity. Having such a stable form with minimal turnover, the 
question is whether it can be subjected to the mechanical degradation effects of fatigue due 
to repetitive and unceasing strain throughout life. Such concepts are advanced as a mech-
anism of arterial stiffness due to elastin degradation, given the 30 million cycles per year to 
which the arteries are exposed  [3] , and so passive elastin degradation occurs with age, as 
distinct from active enzymatic processes [due to matrix metalloproteinase (MMP) activity] 
 [8] . Evidence of an increased degree of disorganization and fracture of aortic elastin asso-
ciated with the total number of cardiac cycles throughout life was found in a cross-sectional 
study of several species with a wide range of body size, heart rate and life span  [19] . This is 
complemented by structural alterations due to embryonic abnormalities affecting the 
structure of elastin throughout life, with an increased predisposition to elevated arterial 
stiffness and associated cardiovascular risk  [52] . This finding has been recently confirmed in 
the aorta of mice with elastin haploinsufficiency, where increased aortic stiffness precedes 
blood pressure elevation during postnatal development  [53] . Other evidence of possible 
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  Fig. 1.  Components of passive and active mechanisms related to arterial stiffness as described in the text and 
that combine to affect pulse pressure, assuming a regulated stroke volume. The active mechanisms are main-
ly causative for the development of arterial stiffness and the passive properties are the result of arterial stiff-
ening. There are complex feedback relationships between the components, some of which can be interro-
gated by altering the cellular signalling pathways. Passive pathways can be affected by alteration of haemo-
dynamic parameters such as wave reflection.
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effects of fatigue on aortic elastin is obtained from the association of fragmentation and 
reduction of interlamellar fibres and the formation of aortic dissecting aneurysms  [54] . 
Recent investigations in the role of elastin in arterial stiffness of large arteries have suggested 
means of reversing alterations to elastic fibres as a therapeutic treatment for hypertension 
 [55] .

  Effects of Heart Rate
  The cardiovascular risk associated with elevated heart rate has been shown to be compa-

rable to that associated with increased arterial pressure, where a 20% increase in cardiac 
death is associated with both a rise in heart rate of 10 beats/min and an increase in systolic 
pressure of 10 mm Hg  [56] . Although the underlying causes are mainly related to increased 
sympathetic activity, there is also evidence that elevated heart rate is independently asso-
ciated with an increased progression of arterial stiffness as measured by aortic PWV  [57] . 
Underlying mechanisms for this association have been investigated in experimental condi-
tions in paced human subjects  [30, 58]  as well as in rat models  [59, 60]  and where interven-
tions were controlled for changes in arterial pressure  [31] . The effect has been suggested to 
be due to the viscoelastic properties of the arterial wall  [61, 62] .

  Active Mechanisms

  Mechanisms of arterial stiffness associated with cellular and molecular processes have 
the potential for pharmacological interrogation of biochemical pathways. However, whereas 
the mechanical, structural and haemodynamic correlates of arterial stiffness that constitute 
the passive mechanisms are well established  [2] , the biochemical pathways that constitute 
possible active mechanisms and that lead to increased functional stiffness of the artery wall 
are not as well defined, although there is increasing interest across a range of fields in eluci-
dating specific molecules that may play a significant role  [63] . There is evidence that similar 
mechanisms are involved in vascular ageing  [6, 8]  and inflammation  [64, 65] . Although 
specific proof in humans is yet to be fully established, there is increasing evidence in experi-
mental animals, comprising mainly rats and mice models, of the modification of the ECM 
through cellular, molecular, neurogenic and neuroendocrine pathways, some of which may 
be potentiated by genetic mechanisms.

  Cellular Mechanisms
  In the artery wall, the cellular mechanisms related to arterial stiffness are mediated by 

endothelial cells and smooth muscle cells. The description below does not relate to the effect 
of the cells per se on the wall stiffness, but rather to the pathways associated with the modi-
fication of the structural integrity of the arterial media leading to modifications of functional 
stiffness of the arterial conduit.

  Role of the Endothelial Cell in Arterial Stiffness
  The interface of the endothelial cell layer with flowing blood predisposes the function of 

the endothelial cell to haemodynamic forces which have been shown to potentiate gene 
expression at the level of transcription  [66] . Haemodynamic forces are associated with modi-
fication of the artery wall through phenotypic alterations of endothelial and smooth muscle 
cells through complex mechanotransduction receptor mechanisms  [22] . Genetic expression 
has also been shown to be affected by the amount of pulsatility contributing to oscillatory 
shear. In cultured bovine aortic endothelial cells, the mRNA expression of endothelin-1 (ET-1) 
and endothelial nitric oxide synthase (eNOS) has been shown to depend on both time and 
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amplitude of mechanical force  [67] . These studies showed that, compared to unidirectional 
sheer, oscillatory shear stress combined with pressure upregulates transient expression of 
ET-1 while at the same time downregulating eNOS. Since arterial stiffness is associated with 
pulse pressure, this mechanism could constitute a potential positive feedback mechanism 
where downregulation of eNOS and upregulation of ET-1 could further increase wall stiffness, 
leading to an increase in oscillatory sheer stress and so amplifying the effect of wall stiffness. 
Although limited, there is in vitro experimental evidence of this from cells cultured in tubes 
of different compliance, where it was demonstrated that increased wall stiffness is associated 
with reduced endothelial Akt-dependent eNOS phosphorylation  [68] .

  The association between endothelial-dependent reduction of nitric oxide (NO) and 
increased arterial stiffness has been demonstrated in vivo in the iliac artery of sheep  [69]  and 
humans  [70] . These experiments were conducted in a segment of vessel where the local 
effects of altered endothelial function could be quantified independent of effects of intra-
arterial distending pressure. Similar experiments demonstrated the effects of ET-1 in poten-
tiating elevation of large artery stiffness which can be reversed by blockade of the ET(A) 
receptor  [71] . Natriuretic peptides have also been shown to affect local iliac artery stiffness 
in the sheep via the NPRA receptor  [72] .

  Role of the Vascular Smooth Muscle Cell in Arterial Stiffness
  In addition to the important role of vascular smooth muscle in the regulation of vascular 

tone affecting peripheral resistance, the contractile properties of the vascular smooth muscle 
cells have a measurable effect on mechanics of the arterial wall of large conduit arteries  [62, 
73, 74]  with suggestions of regulation of energetics of viscous damping  [75] . There is a large 
body of literature spanning some five decades on the biology of smooth muscle cell pheno-
typic modulation, where the cell exits in a number of phenotypic states which depend on 
specific adaptive functional demands  [76] .

  In relation to arterial stiffness, an important phenotypic change is the functional transdif-
ferentiation leading to osteogenesis causing deposition of calcium in the media of the arterial 
wall  [77] . The increase in arterial calcium deposition has been related to decreased bone 
mineral density  [78] . Recent evidence from the Baltimore Longitudinal Study of Aging shows 
that in women there is an inverse relationship between arterial stiffness and cortical bone 
area, independent of age and blood pressure  [79] . The compounding effect of calcification is 
that fracture of elastin fibres is associated with the signalling pathway for smooth muscle cell 
transdifferentiation  [78]  and that the downstream effect is elastocalcinosis resulting in 
increased wall stiffness  [80, 81] .

  In experimental investigations, an increase in arterial stiffness mediated through calcifi-
cation is associated with administration of vitamin D and nicotine  [80, 82] . Vitamin D has also 
been found to be an independent correlate of arterial stiffness in patients with peripheral 
arterial disease  [83] . Elevated calcification is also a hallmark of chronic kidney disease in 
Lewis polycystic kidney (LPK) rat models. LPK rats showed a 6- to 8-fold increase in aortic 
calcification with a 33% increase in aortic PWV and a 20% reduction in elastin density  [84] . 
Although vascular calcification is potentiated by phenotypic changes in the vascular smooth 
muscle cell, tissue transglutaminase 2 (TG2) has been shown to be necessary for programming 
of chrono-osseous smooth muscle cell differentiation in response to increased bone morpho-
genic protein  [85] . Recent studies have also identified other pathways affecting smooth 
muscle cells to potentiate vascular calcification. Calpain-1 has been shown to regulate MMP-2 
activity affecting age-related calcification and fibrosis  [86] . A mineralocorticoid receptor, 
usually thought to be present in the kidney, has recently been identified in the vascular 
smooth muscle, suggesting a possible regulatory role of smooth muscle function  [87] .
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  Molecular Mechanisms
  Extracellular Matrix
  Molecular mechanisms that alter the stiffness of the ECM of the artery wall are connected 

with ageing, involving changes in the structural proteins, elastin and collagen that are manifest 
as protein side chain modification and intermolecular cross-linking  [7] . Whereas cross-
linking involves enzymatic changes during developmental phases, ageing involves non-enzy-
matic processes with glucose, leading to advanced glycation end product (AGE) formation. In 
arteries, AGE formation in the ECM leads to increased stiffness, and it has been shown that 
non-enzymatic breaking of AGE cross-links can improve arterial compliance and reduce pulse 
pressure in the elderly as well as cardiac function  [88, 89] . Recent studies have questioned 
whether existing cross-links are actually cleaved by AGE breaking agents such as alagebrium 
(ALT-711), although these agents can act as inhibitors of metal-catalysed AGEs  [90] . ECM 
remodelling is also modulated by the expression of MMPs due to effects of haemodynamics, 
oxidative stress and inflammation  [91] . The role of cardiotropin-1, a member of interleukin-6, 
in promoting fibrosis in the ECM leading to increased arterial stiffness has also recently been 
described  [92] .

  Protein Post-Translational Modification: S-Nitrosylation
  The process of S-nitrosylation involves post-translational modification mediated by NO 

through cyclic GMP-independent pathways, where the protein cysteine thiol undergoes 
covalent modification by an NO group and generates an S-nitrosothiol  [93] . The S-nitrosyl-
ation process of the tissue TG2 protein has been shown to be involved in the calcium-
dependent TG2-mediated modification of the vascular ECM through formation of collagen 
cross-linking, affecting wall stiffness  [94] . The endothelial production of NO produces acyclic 
redox-dependent S-nitrosylation and denitrosylation of TG2  [93] . The reduced S-nitrosyl-
ation (and therefore increased denitrosylation) of TG2 that takes place with reduced 
production or bioavailability of NO (e.g. due to endothelial dysfunction) causes exterior-
ization of the protein to the extracellular space. Increased activity of matrix TG2 has been 
shown to be associated with increased aortic PWV in TG2 knockout mouse models  [20] . 
Studies in ageing rats and TG2 and eNOS knockout mice models have shown that a reduction 
in the bioavailability of NO as occurs with ageing, inflammation and endothelial dysfunction 
in general is associated with cellular mechanisms contributing to arterial stiffness  [95] .

  Neurogenic Mechanisms 
  Investigations addressing the neurogenic influence of stiffness of large arteries through 

the effect of smooth muscle tone have been varied and have produced inconsistent results in 
terms of quantifying the intrinsic neurogenic effect on smooth muscle as separate from the 
passive mechanical stretch effect due to concomitant pressure changes. Studies simulating 
the neurogenic effect by administration of neurotransmitter substances have demonstrated 
increased aortic PWV in anaesthetized dogs  [96]  and wall stiffness changes measured by 
pressure/diameter relations in conscious dogs  [97]  and vagotomized cats  [98] . Studies in rats 
have also been confined to measurement at specific sites (carotid and femoral arteries) and 
have not explicitly addressed the effect on the aortic trunk  [99, 100]  in terms of functional 
stiffness determining pulse pressure. Recent studies in humans have shown an independent 
association between aortic PWV and muscle sympathetic nerve activity  [101, 102] .

  Neuroendocrine Mechanisms
  Early studies on cardiovascular effects of angiotensin-converting enzyme (ACE) inhi-

bition suggested a role of angiotensin II in cardiac and vascular remodelling independent of 
the passive effects of arterial pressure  [103] . The remodelling of the ECM affecting arterial 
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stiffness involves ACE inhibition preventing medial accumulation of collagen mediated by 
inhibition of angiotensin II through the AT1 receptor  [104] . Recent studies have associat -
 ed the age-related changes in the arterial wall with angiotensin II signalling in complex path-
ways involving calpain-1, transforming growth factor-beta1, MMP-2 and MMP-9, monocyte 
chemoattractant protein-1, NADPH-oxidase and reactive oxygen species. Increased angio-
tensin II signalling has also been shown to induce the accumulation of collagen and AGEs as 
well as elastin degradation  [105] .

  In models of chronic kidney disease (LPK rat), it was shown that the increase in aortic 
stiffness was associated with a 6-fold increase in aortic calcium content  [84] . ACE inhibition 
by perindopril in the LKP rats reduced the accumulation of aortic calcium during devel-
opment as well as the degree of elastin degradation and collagen content. In spontaneously 
hypertensive rats, early ACE inhibition for a brief period of only 4 weeks was associated with 
persistent reduction of isobaric wall stiffness  [106] .

  Direct angiotensin receptor blockade (ARB) is associated with haemodynamic effects 
consistent with reduced arterial stiffness and peripheral wave reflection  [107] . ARB also 
potentiates the reduction of arterial stiffness in combination with ACE inhibition in chronic 
disease  [108]  and is associated with blockade of the angiotensin II type 1 receptor. However, 
recent studies which have addressed the type 2 receptor have shown that chronic stimulation 
was associated with reduced aortic stiffening and lower collagen accumulation. This occurred 
without preventing hypertension in rats in which NO synthase was inhibited. The effects of 
type 2 receptor stimulation were additive to angiotensin II type 1 receptor blockade  [109] .

  Genetic Associations

  The use of high-density array single nucleotide polymorphism technology is enabling
the identification of gene variants associated with markers of vascular function. Perusal of 
genome-wide association studies is uncovering groups of genes affecting NO pathways, 
MMPs, matrix elastin structure, endothelin receptors and inflammatory molecules  [110] . 
Specific associations with carotid-femoral PWV have been found in a gene locus associated 
with gene enhancers related to increased stiffness as measured by PWV  [111] . Studies in 
specific populations, such as African-Americans, have not yet yielded specific genes, although 
it is estimated that some 20% of the variance in arterial stiffness is inherited. Although 
genome-wide association study techniques would seem to identify relatively week genetic 
associations with arterial stiffness, studies of congenic strains of rats for identification of 
quantitative trait loci for arterial stiffness and blood pressure have shown that, although not 
finding specific associations, the female blood pressure quantitative trait locus has been 
narrowed to a range of less than 7 Mbp in chromosome 5  [112] .

  Conclusions

  The relevance of arterial stiffness as a fundamental property of the relationship of 
pulsatile blood pressure and flow and wave propagation phenomena has been firmly estab-
lished from investigations in the physical sciences. Clinical and epidemiological evidence 
suggests the emergence of arterial stiffness as a powerful factor in cardiovascular risk. It is 
therefore of importance to elucidate the underlying mechanical and biological mechanisms 
that lead to the degeneration of arterial properties resulting in an increase in pulse pressure, 
manifest predominantly as elevated systolic pressure, a significant risk factor for cardiovas-
cular morbidity and mortality. In a similar way that early interdisciplinary research produced 
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coherent biophysical explanations of pulsatile blood flow in arteries, the improved under-
standing of the cellular, molecular and potentially neurogenic mechanisms will emerge from 
similar interaction of investigators from the broad field of physical sciences and molecular 
biology. However, due to the complex and numerous interacting cellular and molecular 
processes inherent in evolutionary survival, this will present a greater challenge to uncover 
the relevant parameters and signalling pathways that translate to functional correlates of 
arterial stiffness, such as alterations in PWV, vascular storage capacity and dynamic changes 
in arterial pressure. Data to date suggest the existence of signalling pathways that form 
dynamic systems involving positive and negative feedback mechanisms that act on arterial 
stiffness. This systems approach has the potential to lend itself to uncovering integrated 
mechanisms and parameters, making use of the emerging fields of extensive databases and 
bioinformatics techniques of database mining in genomics and proteomics, combined with 
physical measurements such as arterial blood pressure and PWV.
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