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ABSTRACT
Peroxisome-proliferator-activated receptors (PPARs) are nuclear hormone 

receptors including PPARα, PPARδ and PPARγ, which play an important role in 
regulating cancer cell proliferation, survival, apoptosis, and tumor growth. Activation 
of PPARs by endogenous or synthetic compounds regulates tumor progression 
in various tissues. Although each PPAR isotype suppresses or promotes tumor 
development depending on the specific tissues or ligands, the mechanism is still 
unclear. In this review, we summarized the regulative mechanism of PPARs on cancer 
progression.

INTRODUCTION

As the nuclear hormone receptor, peroxisome-
proliferator-activated receptors (PPARs) consist of 
PPARα, PPARδ and PPARγ, which are ligand-activated 
transcription factors. Ligand binding and activation of 
PPARs heterodimerize with retinoid X receptor (RXRs) 
and regulate gene transcription. Although PPARs/RXRs 
bind to the peroxisome-proliferator response element 
(PPRE, consensus sequence 5′-AGGTCA N AGGTCA-3′, 
N being any nucleotide) of target gene promoter regions, 
the each PPAR isotype consensus PPRE motif is different 
[1–5]. PPARs play a critical role in regulation of obesity, 
diabetes, atherosclerosis and cancer [6–9]. Even though 
the PPARs family contains PPARα, PPARγ and PPARδ, 
they serve as different functions in tumor development. 
Increasing evidences show that PPARα [2, 10–12] or 
PPARγ [7, 8, 13] inhibits tumor progression, which acts as 
tumor suppressors, while some reports show that PPARα 
is associated with tumor progression [14–16]. In contrast, 
PPARδ promotes tumor development [3, 6, 17]. PPARδ 
is associated with ulcerative colitis (UC) and Crohn›s 
disease (CD), which is involved in the progression of 
colorectal cancer (CRC) [18, 19]. Endogenous or synthetic 
ligands can activate PPARδ resulting in inflammation and 
cancer depending on the specific ligands and tissue types  
[20–22]. Therefore, PPARs can be activated by 

endogenous or synthetic ligands, subsequently PPARs 
dependently or independently regulate tumor progression 
depending on the conditions. In this review, we discussed 
the progress of PPARs on tumor development. 

PPARα

Lack of PPARα expressions are associated with 
shorter breast cancer-specific survival [23]. Our previous 
investigation shows that PPARα induces Bcl2 degradation 
leading to increased SW480 colonic cancer cell apoptosis 
in response to chemotherapeutic agents [10]. Glut1 plays 
a critical role in glucose uptake to regulate cancer cell 
metabolism, which is widely expressed in most types of 
cancer cells [24, 25]. PPARα can directly inhibit Glut1 
transcription by binding Glut1 potential PPRE motif [2]. 
The synthetic ligands of PPARα including fenofibrate, 
clofibrate and wyeth14,643 suppress cell proliferation 
by inducing apoptosis and cell cycle arrest involved 
in inhibition of NFκB [26] and activation of caspase-3  
[26, 27]. More importantly, the combination of 
wyeth-14,643 and bezafibrate significantly suppresses lung 
cancer cell growth [12]. In addition, N-Acetyl-Cysteine 
(NAC)/PPARα signaling suppresses Non-small cell lung 
cancer (NSCLC) cell growth involved in increased the 
expression of p53 [28]. Although fenofibrate promotes 
breast cancer cell apoptosis via NFκB-mediated activation 
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of caspase-3 and expression of Bad, which is independent 
of PPARα activity [27], clofibrate or wyeth14,643 induces 
hepatocarcinoma HepG2 cell apoptosis [29] and inhibits 
tumor progression [11] in a PPARα-dependent manner. 
Moreover, fenofibrate suppresses Huh7 hepatocarcinoma 
cell proliferation by increasing C-terminal modulator 
protein (CTMP) expression [27]. In addition to the 
inhibition of PPARα on tumor progression, PPARα-/- mice 
inhibit tumorigenesis involved in increased endogenous 
angiogenesis inhibitor thrombospondin-1(TSP-1) [14]. 
Endogenous PPARα ligand arachidonic acid (AA) 
enhances breast cancer cell proliferation by up-regulation 
of cyclin E levels [30]. Nesterified fatty acids (NEFAs) 
activate PPARα-mediated hepatocarcinogenesis [31]. 
Therefore, PPARα antagonist MK886 and NXT629 inhibit 
chronic lymphocytic leukemia (CLL) cell proliferation 
[15, 16]. Other reports show that clofibrate promotes 
ovarian and prostate cancer progression independent of 
PPARα [32]. These findings suggest that different agonists 
play diversity functions on tumor progression, sometimes 
they serves as reverse roles, which depends on the tissue 
types or PPARα ligands (Figure 1). The discrepancy 
is associated with the dose of ligands or types of these 
ligands. Therefore, it is necessary to synthesize the 
suitable ligands for cancer treatment, which will provide a 
new drug target for cancer treatment.

PPARδ

Increasing literatures show that aberrant expression 
of PPARδ is associated with pro-inflammatory response 

and tumor progression [3, 17]. Consistent with this, 
overexpression of PPARδ causes AOM-induced colon 
tumorigenesis [33], and ultraviolet (UV)-induced PPARδ 
expression leads to Src activation and EGFR/ERK 
signaling-mediated skin cancer in mice. In contrast, 
PPARδ-/- mice inhibit DSS-induced colonic inflammation 
and colitis-associated tumor growth [20], which is 
associated with inhibition of VEGF expression [34]. Since 
14-3-3ε interacts with Bad leading to inhibition of cell 
apoptosis [35], PPARδ activation by PGI2, COX-2-derived 
prostacyclin, directly induces 14-3-3ε gene expression 
[36]. COX-2 inhibitors (COXIBs, indomethacin, SC-236 
and isoliquiritigenin) suppress PPARδ signaling-mediated 
cell proliferation and tumorigenesis [17]. Wnt/β-catenin/
signaling promotes tumorigenesis by inducing PPARδ 
expression [18, 37], which is associated with PPARδ-
mediated cyclin E1 and VEGF expression [38–40]. In 
contrast, APC inhibits PPARδ transcription activity 
[18, 41]. PPARδ induces VEGF expression leading to 
PPARδ activation by VEGF/PI3K/Akt pathway [40, 42, 
43], suggesting that activation of PPARδ undergoes a 
feedback loop [20, 40]. In contrast, PPARδ-mediated 
tumor development is inhibited by nitric oxide donating 
aspirin (NO-ASA) [44]. In addition to PPARδ-mediated 
tumor progression, PPARδ ligand GW0742 reduces colon 
or breast cancer event [45, 46], this event is reversed in 
PPARδ-/- mice [47]. PPARδ promotes HARS-induced 
senescence leading to inhibition of tumorigenesis [48]. 
Consistent with this, silence of PPARδ results in cell 
proliferation and tumor growth [49]. Clinical observations 
show that although PPARδ protein levels are lower 

Figure 1: Effect of PPARα ligands on tumor progression. Agonists regulate different types of tumor progression in a PPARα 
dependent or independent manner. In addition, PPARα destructs Bcl2 function leading to increased chemotherapy sensitivity of cancer 
cells.
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Figure 3: PPARγ negatively regulates tumor progression. Agonists regulate tumor progression in a PPARγ dependent or 
independent manner, which are involved in inhibition of NFκB, c-Myc, Bcl2, VEGF, bFGF, STAT3. In addition, EGFR can terminate 
PPARγ antitumor function.

Figure 2: PPARδ promotes tumor development. Agonists of PPARδ promote inflammation and tumor development by inducing 
cyclin D1, IL-8, VEGF, COX-2 expression, which is inhibited by the inhibitors of COX-2 such as indomethacin, SC-236, isoliquiritigenin.
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in human colon adenocarcinomas [50], high PPARδ 
protein levels are benefit of colorectal cancer patients 
[51]. However, increasing evidences show that PPARδ 
promotes tumor growth [17, 20, 21, 34, 39, 40]. Taken 
together, PPARδ regulates tumor progression involved in 
multiple signaling pathways (Figure 2). It needs to further 
determine the physical mechanism of PPARδ on tumor 
development.

PPARγ

PPARγ plays an important role in inflammation, 
glucose metabolism and cancer [7–9]. While some 
clinical observations show that PPARγ expression levels 
are high in advanced prostate cancer (APC) tissues, 
ovarian, prostate and testicular carcinoma tissues [52–55], 
it is unclear whether the high levels of PPARγ correlate 
with favorite outcome in cancer patients. However, other 
clinical observations show that high PPARγ protein 
levels are benefit of colonic cancer, cervical carcinoma, 
follicular thyroid tumor, and esophageal cancer [9]. 
Consistent with this, overexpression of PPARγ inhibits 
cell proliferation and tumor growth, but this is reversed 
in PPARγ silenced cancer cells or activated EGFR 
signaling [7–9, 13]. PPARγ natural ligand 15-Deoxy-
Δ-Prostaglandin J2(15d-PGJ2) induces cell apoptosis 
involved in inhibition of NFκB (nuclear factor-κB) [56]. 
In addition, some synthetic ligands such asrosiglitazone, 
troglitazone and ciglitazone suppress cell proliferation by 
inducing apoptosis, that is involved in reduced c-Myc, 
Bcl2, VEGF, and bFGF expression [9]. Moreover, 
ciglitazone increases the effective of cisplatin on human 
ovarian cancer treatment [57]. However, ciglitazone and 
troglitazone suppress ovarian cancer cell proliferation as 
well as rosiglitazone induces MCF-7 breast cancer cell or 
pancreatic cancer cell apoptosis independent of PPARγ 
activity [58–60]. In addition, 15d-PGJ2 and rosiglitazone 
independent of PPARγ inhibit Janus Kinase (JAK)- signal 
transducer and activator of transcription (STAT) pathway 
[61]. These findings suggest that although some ligands 
show anti-tumor activity, they are independent of PPARγ 
activity with different mechanism (Figure 3). In addition, 
overexpression or silence of PPARγ suggests that it indeed 
inhibits tumor growth [7–9]. Therefore, there is a need to 
develop and test selective PAPRγ ligands.

Potential therapeutic targets for cancer

Increasing literatures show that PPARα or PPARγ 
can inhibit tumor progression by multiple pathways, 
which can be the potential therapeutic targets for cancer 
treatment, while some agonists suppress tumor progression 
in a PPARα/γ- independent manner (Figure 1, Figure 3). 
In contrast, PPARδ can promote tumor progression, so the 
antagonists of PPARδ may be the potential therapeutic 
targets for cancer treatment (Figure 2). Taken together, 

there is a need to develop and test selective PPARs ligands 
because of some agonists or antagonists independent of 
PPARs activity on effect of tumor development. 
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