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Abstract

Background: The identification of functional regions contained in a given multiple sequence alignment constitutes
one of the major challenges of comparative genomics. Several studies have focused on the identification of
conserved regions and motifs. However, most of existing methods ignore the relationship between the functional
genomic regions and the external evidence associated with the considered group of species (e.g., carcinogenicity
of Human Papilloma Virus). In the past, we have proposed a method that takes into account the prior knowledge
on an external evidence (e.g., carcinogenicity or invasivity of the considered organisms) and identifies genomic
regions related to a specific disease.

Results and conclusion: We present a new algorithm for detecting genomic regions that may be associated with
a disease. Two new variability functions and a bipartition optimization procedure are described. We validate and
weigh our results using the Adjusted Rand Index (ARI), and thus assess to what extent the selected regions are
related to carcinogenicity, invasivity, or any other species classification, given as input. The predictive power of
different hit region detection functions was assessed on synthetic and real data. Our simulation results suggest that
there is no a single function that provides the best results in all practical situations (e.g., monophyletic or
polyphyletic evolution, and positive or negative selection), and that at least three different functions might be
useful. The proposed hit region identification functions that do not benefit from the prior knowledge (i.e.,
carcinogenicity or invasivity of the involved organisms) can provide equivalent results than the existing functions
that take advantage of such a prior knowledge. Using the new algorithm, we examined the Neisseria meningitidis
FrpB gene product for invasivity and immunologic activity, and human papilloma virus (HPV) E6 oncoprotein for
carcinogenicity, and confirmed some well-known molecular features, including surface exposed loops for
N. meningitidis and PDZ domain for HPV.

Background
Many bacteria and viruses adapt to changing environ-
mental conditions through several evolutionary mechan-
isms such as homologous recombination [1], nucleotide
substitutions, insertions-deletions [2], horizontal gene
transfer [3], etc. These mechanisms lead to the formation

of different polymorphic strands of the same group of
organisms, in which the variation on the DNA composi-
tion is spread randomly throughout the genomes. The
survival of these strands depends on their ability to over-
come the environmental changes [4]. One of the goals of
comparative genomics consists of finding the variation
among aligned genomic sequences in order to identify
functional regions. Several comparative genomic tools
allow the identification of genomic regions in an align-
ment that have evolutionnary patterns different from the
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neutral evolution. For instance, PhastCons [5] predicts,
from a given alignment and the related phylogenetic tree,
the genomic regions under negative selection. PAML
[6-8] allows the comparison of synonymous versus non-
synonymous mutations in an alignment in order to pre-
dict regions under selective pressure. RDP3 [9] and
TOPAL [10] are software packages including several
methods for detecting recombination. Most of these
methods and software do not take into consideration
external epidemiological evidence associated with many
bacterial and virus strands. Such an evidence can
allow the clustering of organisms based not only on the
similarity of their genomic sequences, but also, on their
association to different diseases. Hence, intra-specific and
inter-specific variation among carcinogenic and non-
carcinogenic human papilloma viruses can lead to the
identification of regions related to carcinogenicity. In our
previous works, we introduced a hit region identification
function using prior knowledge information [11] and
described the related validation framework based on
Monte-Carlo simulations [12]. Then, we extended the
latter study by presenting and testing four variants of the
hit region identification function, still using the available
prior knowledge [13]. In this paper, we present a new
algorithm for the identification of specific genomic
regions associated with an external disease. The intro-
duced algorithm uses a bipartition optimization proce-
dure to maximize a specific clustering function Q, based
on inter- and intra-group variability, for each window
position, over the given sequence alignment. It can be
applied with or without prior knowledge information
characterizing species in hand. Hit regions (i.e., putative
regions related to a disease) can be validated using ARI
[14] (a corrected-for-chance version of the Rand index
[15]) and organismal bipartitions are constructed using
the available epidemiological data. The new algorithm
has been applied to two independent datasets: The
human papilloma viruses and the Neisseria meningitidis
data. The obtained results suggest that genomic regions
with important biological features in both datasets can be
associated with either carcinogenicity or invasivity.

Dataset description
Neisseria meningitidis dataset
Neisseria meningitidis is a Gram negative bacterium
responsible for meningitis and septicemia. It has a rela-
tively small genome size of 2.2 Mbp. In March 2011, the
PubMLST database listed a total of 8,793 genetically dis-
tinct members of Neisseria organisms [16]. All these
facts make N. meningitidis well suited for testing com-
parative genomics methods [17]. Proteins expressed
under iron limitation (e.g. FrpB(FetA)) are considered as
potential vaccine components [18]. Bacteria grown
under iron starvation express several proteins, the most

abundant of them being FrpB, a 70kDa outer membrane
protein (OMP). It is expressed in large amounts in all
strains, and antibodies against this protein appear to be
bactericidal. A putative FrpB topology was first proposed
with a 26-stranded b-barrel [19], and later reassessed to
a plug domain and a 22-stranded b-barrel with 11 sur-
face-exposed loops [20]. These loops are accessible to
the host immune system, which produces natural anti-
bodies against these regions. In general, bacteria express
genetic sequence variability in order to evade this
defense mechanism.
The data we considered, were classified on the invasiv-

ity basis using a list of identified hyperinvasive meningo-
cocci [21]. We then built a list of unique FetA sequence
tags carried by the alleles of these organisms. Using local
BLAST operations [22], we searched for the presence of
these tags in the distinct sequences belonging to the
selected multiple sequence alignment (MSA), first exam-
ined in [13]. We classified as belonging to the invasive
category (subset X) any allele that contained at least one
of the selected invasive tags. All the other alleles were
put in the non-invasive category (subset Y). We anno-
tated the MSA with the information regarding surface-
exposed loops, beta-sheets and periplasmic loops [20].
Translating indexes from the amino-acid sequences to
DNA sequences were also computed. Each single value
of the hit region identification function Q (the Q-type
functions will be used to identify genetic regions that
may be related to a disease) corresponds to an interval of
a certain length (i.e., 9 or 20 nucleotides in this study)
and depends on the starting position of the sliding win-
dow used in our algorithm.

Human papilloma virus dataset
Human papilloma viruses (HPV) have a causal role in
cervical cancer with almost half a million new cases
occurring each year [23-25]. About a hundred of HPV
types have been identified, and the whole genomes of
more than eighty of them have been sequenced (see the
latest Universal Virus Database report by International
Committee on Taxonomy of Viruses (ICTV)). A typical
HPV genome is a double-stranded, circular DNA gen-
ome of size close to 8 Kbp, with a small set of genes
(L1, L2, E1, E2, E4, E5, E6 and E7). In this study, we
focused on the gene E6, which is predominantly linked
to cancer due to the binding of its product to the p53
tumor suppressor protein. It contains a PDZ domain-
binding motif (-X-T-X-V) at its carboxy terminus,
which is essential for targeting the PDZ proteins for
proteasomal degradation. Such proteins include hDlg,
hScrib, MAGI-1, MAGI-2, MAGI-3 and MUPP1 [26].
The interaction between E6 and hDlg, or the other PDZ
domain-containing proteins, may be an underlying
mechanism in the development of HPV-associated
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cancers [27]. The gene E6 was also shown to contain
two stable folded domains, E6N and E6C [28,29]. Mod-
els of these domains have been built in the absence of
complete crystallographic data [30].
To define carcinogenic types, we used the epidemiolo-

gical data from a large international survey on HPV in
cervical cancer and from a multicenter case-control
study conducted on 3,607 women with histologically
confirmed cervical cancer [31,32]. More than 89% of
them had squamous cell carcinoma (i.e., Squam cancer)
and about 5% had adenosquamous carcinoma (i.e.,
Adeno cancer). More than a half of the infection cases
were due to the types 16 and 18 of HPV, which are
later referred to as High-Risk HPV [33]. In this study,
we examined the content of the gene E6 for 83 different
HPV types.
We fixed the window size to 20 nucleotides for HPV

datasets in order to be consistent with our previous
works [11,12], where we conducted simulations with
windows of different sizes and used the size of 20 bp to
present the results. In the same way, we considered the
window size of 9 nucleotides for the N. meningitidis
dataset to be consistent with another our study [13].

Methods
Description of the algorithm
The new algorithm takes as input a MSA established for
a set of organisms. Assume that this set of organisms is
partitioned into two different subsets according to a boo-
lean criterion (e.g., invasivity vs. non-invasivity or carci-
nogenicity vs. non-carcinogenicity). The corresponding
subsets are denoted X (invasive/carcinogenic) and Y
(non-invasive/non-carcinogenic), respectively. The region
of interest is scanned using a non-overlapping sliding
window, as shown in Figure 1, of a fixed width (20 sites
for HPV and 9 sites for N. meningitidis). For each win-
dow position, we carry out a bipartition optimization
algorithm in order to search for maximum values of the
hit region identification function. A specific version of
the Q-type function (see below) can be taken as the

algorithm parameter. We denote by Q′ a specific version
of the Q-type function computed under condition that
the subsets bipartition is unknown (i.e., prior knowledge).
The complete algorithmic scheme is presented in Algo-
rithm 1 in Additional file 1 .
Clustering using the Q-type functions
To perform the clustering of our data into two groups A
and B, we first calculate the intragroup variability of the
sequences from the group A, denoted by V(A), the group
B, denoted by V(B), and, finally, the intergroup variability
D(A, B), as described in Equations 1, 2 and 3. These mea-
sures are defined as the means of the squared Hamming
distances, dist, among the sequence fragments (bounded
by the sliding window position) of the taxa from the
group A only, from the group B only, and between the
sequence fragments from the distinct groups A and B:
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In [11-13] four different hit region identification func-
tions, Q1, Q2, Q3 and Q4, which could be summarized
by the following equation, were defined:

Q D A B k V A l V B= − × − ×( , ) ( ) ( ), (4)

where the [k, l] combinations are as follows:
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The function Q4 (Equation 5), along with new versions
of the hit region identification function, denoted by Q5

(Equation 6) and Q6 (Equation 7), will be tested and dis-
cussed in this study:

Q D A B4 = ( , ), (5)

Q V A V B5 = −| |( ) ( ), (6)

Q V A V B6 = | |( ) / ( ). (7)

Measuring the agreement between the reference and the
optimal calculated bipartitions using the Adjusted Rand
Index (ARI)
The Adjusted Rand Index [14] has become a criterion of
choice for measuring agreement between two partitions

Figure 1 Sliding window procedure Sliding window of a fixed
width was used to scan the HPV gene E6. The sequences in black
belong to the set X (carcinogenic HPV; in this example HPV 16 and
18), all the other sequences belong to the set Y (non-carcinogenic
HPV). The HPV type is indicated in the left column.
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in clustering analysis [34]. Having a calculated biparti-
tion U″ = A|B and a reference bipartition U′ = X|Y, for
all 2

n( ) pairs of elements, one can compute how many
of them fall into the same group and how many in dif-
ferent groups. One can then calculate ARI [35] accord-
ing to Equation 8. ARI is the corrected-for-chance
version of the Rand index [15]. It ranges between -1 and
1, and expresses the level of concordance between two
bipartitions [14]. The values of ARI close to 1 indicate
an almost perfect concordance between the two com-
pared bipartitions, whereas the values close to -1 indi-
cate a complete discordance between them:

ARI
a d a b a c c d b d
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where 2
n a b c d( ) = + + + , a is the number of pairs

that are in the same group in the bipartitions U″ and U
′, b is the number of pairs that are in the same group in
the bipartition U″ and in different groups in the biparti-
tion U′, c is the number of pairs that are in different
groups in the bipartition U″ and in the same group in U
′, and d is the number of pairs that are in different
groups in the bipartitions U″ and U′.
Validation of the obtained hit regions using the Adjusted
Rand Index
We define a new function Q″ reflecting the quality of
the reference bipartition, as follows:

′′ = × ′Q ARI Q . (9)

The difference between Q′ and Q″ indicates the level
of concordance of the reference bipartition U′ with the
selected function Q. Throughout the paper, Q will
denote the hit identification function using prior knowl-
edge information, Q′ – not using any prior knowledge
information and Q″ – using prior knowledge informa-
tion and based on ARI.
Bipartition optimization
For each window position, we generated a fixed number
of random initial bipartitions. For each such a biparti-
tion, we moved elements from one subset to the other
and back again in cycles, each time accepting the move
that maximized the objective function Q, until no
further improvement was possible. Once a local maxima
was reached, we compared it to the best current value
obtained for all starting random bipartitions tested so
far. ARI was used to compare the level of concordance
of the obtained bipartition (i.e., the one that was maxi-
mizing the given function Q) with the reference biparti-
tion (carcinogenic vs. non-carcinogenic taxa for HPV
and invasive vs. non-invasive taxa for N. meningitidis)
given as a parameter to the algorithm.

Time complexity
The time complexity of the new algorithm carried out
with an overlapping sliding window of a fixed width,
and advancing one alignment site by step, is O(l × n2 ×
w × r), where l is the length of the MSA, n the number
of considered species, r the number of random initial
partition generations and w the window width. In order
to ensure this complexity, we have to limit the optimiza-
tion cycle to a constant number of iterations.

Simulation study
In order to validate the hit region identification functions

′Q5 , ′Q5 and ′Q6 , we conducted a Monte-Carlo simula-
tion study involving two major evolutionary mechanisms:
Positive selection (PS) and Lineage specific selection
(LSS). Two cases of group selection were also tested: The
cases of the monophyletic and polyphyletic clustering.
An approach involving the computation of p-values was
implemented to asses the predictive ability of each of the
three functions for each combination of evolutionary
parameters. The following procedure was carried out. A
phylogenetic tree T with 16 leaves was first generated
using the algorithm described by Kuhner and Felsenstein
[36]. The edge lengths of T were generated using an
exponential distribution. Following the approach of
Guindon and Gascuel [37], we added some noise to the
tree edges in order to provide a deviation from the mole-
cular clock hypothesis. The random trees yielded by this
procedure had depth of O(log(16)). The tree was then
rooted by midpoint. For the monophyletic test, the left
and right sub-trees, denoted by T1 and T2, were deter-
mined, depending on the position of the root. For the
polyphyletic test, two sets of leaves were randomly cho-
sen and the corresponding sub-trees, denoted by T3 and
T4, were extracted.
In the PS simulations, we used the original lengths of

the edges of the subtrees T1 and T2 (i.e., monophyletic
case), and T3 and T4 (i.e., polyphyletic case), while all
edge lengths of T were gradually multiplied by the scal-
ing factor a, varying from 0.05 to 1 (with the step of
0.05).
In the LSS simulations, all edge lengths of T were

multiplied by 0.5 (thus simulating neutral evolution),
while all edge lengths of T1 and T3 were multiplied by
the scaling factor a1 = 0.5 + 0.025x, and all edge lengths
of T2 and T4 by a2 = 0.5 – 0.025x, where x was varying
from 1 to 19.
Second, we executed the SeqGen program [38] to gener-

ate random MSAs of nucleotide sequences along the
edges of the phylogenetic trees constructed at the first
step. The SeqGen program was used with the Jukes-Can-
tor model of sequence evolution [39]. DNA sequences
with 440 bp were generated for each tree T. In addition,
MSAs of the length 20 bp were generated for each of the
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trees T1, T2, T3 and T4. Two different variants of MSA
were produced to simulate monophyletic and polyphyletic
evolution. In the sequence alignment generated for the
original tree T, we inserted those generated for the trees
T1 and T2 in the monophyletic case, and those generated
for the trees T3 and T4 in the polyphyletic case. The loca-
tion of the inserted sequence blocks was known.
Thus, depending on the scaling factor parameters, for

the PS case we simulated a variable homogeneous
region inside a conserved context, and for the LSS case
a more divergent region inside a neutral context. Third,
we scanned the resulting sequence alignment using a
sliding window of size 20 bp with the step of 1. We cal-
culated the value of the hit region identification func-
tions ′Q4 , ′Q5 and ′Q6 for each fixed position of the
window and assessed the proportion of their values that
were higher than the reference value corresponding to
the inserted region.
These steps were repeated over 100 different replicates

and the distributions of the best (in each case) function
over each combination of testing parameters were repre-
sented using quartiles.

Results and discussion
We proposed a new algorithm for finding genomic
regions that may be related to a disease along with two
new hit region identification functions Q5 and Q6. Both
new functions along with the best existing function Q4

were tested in simulations. The functions yielding the
best results for each case were illustrated in Figure 2:
Monophyletic evolution (case a: PS, case b: LSS) and
Figure 3: Polyphyletic evolution (case a: PS, case b: LSS).
The remaining results for the ′Q4 , ′Q5 and ′Q6 func-
tions are presented in Additional file 1. Figures 2 and 3
clearly show that the hit zone identification in the
monophyletic case is much easier than in polyphyletic
case. We can suggest that in order to be recognized, the
hit region has to have a different evolutionary speed
than the context in which it resides. The polyphyletic
lineage specific case represents the hardest evolutionary
situation. Also, one can notice that different Q-type
functions, ′Q4 , ′Q5 or ′Q6 , should be used in different
practical situations.
The procedure for the identification of hit regions was

carried out to detect the variability zones in the FrpB
gene of N. meningitidis as well as the regions potentially
responsible for cancer in the gene E6 of HPV. In both
cases, we also carried out the ARI validation.

Neisseria meningitidis analysis
We scanned the MSA of the FrpB gene using the new
algorithm with a sliding window of size 9 nucleotides.
We compared the obtained results to the putative

topology model of the FrpB protein described in [20]
(see Figure 4a). The results are presented in Figure 4b
and c.
Remarkably, all surface exposed loops confirmed by

enzyme-linked immunosorbent assay (i.e., L2, L3, L4, L5
and L10) [20] were properly detected using the functions

′Q4 and ′Q5 . It is worth noting that our algorithm was
able to find the loop L4, which is hidden between the
loops L5 and L3. The model loops L1, L8 and L9 were
found at their predicted positions. The loops L2 and L11
were found at different positions, while the loops L6 and
L7 were missed regardless of the availability of the prior
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Figure 2 p-values obtained for monophyletic evolution hit
region detection (a) Positive selection - Variable hit region inside
conserved context. Quartile distribution of p-values obtained for the
function ′Q5 . Abscissa represents scaling factor of the conserved
context in which the variable hit region resides. Values close to 0
represent conservation (maximum discrimination), while values close
to 1 represent variability (identical to context). Variable hit region is
always maintained at a scaling factor of 1. Ordinate represents p-
values in log-scale. Horizontal dashed line represents the
significance threshold of 0.05. (b) Lineage specific selection -
Heterogeneous hit region inside neutral context. Quartile
distribution of p-values obtained for the function ′Q5 . Abscissa
represents the difference in scaling factors among the two lineages
present in the hit region. Values close to 0 represent homogeneous
evolutionnary speed (similar to the neutral context in which it
resides), while values close to 1 represent divergence among these
lineages. Context is always maintained at a scaling factor of 0.5,
simulating neutral evolution. Horizontal dashed line represents the
significance threshold of 0.05. In the case of lineage specific
selection, the value of the Q′-tgpe functions corresponding to 1 on
the abscissa scale cannot be computed because it involves a sub-
tree with 0 edge lengths.
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knowledge information (see Figure 4b and c). As protein
models gradually improve and more crystallographic data
become available, it will be interesting to reassess these
results in the future. Both presented Q′-type functions
(Equations 5-6) overlap along the alignment, with the
exception of the largest loop (L5) and the second largest
loop (L3), where the amino acid variability is largely con-
fined. The function ′Q4 correlates best with surface
exposed loops structure. This suggests that the diver-
gences in shape between the functions ′Q4 and ′Q5
might be used to detect immunologic activity. It is
known that bactericidal antibodies are directed against
variable regions situated in the largest loops of proteins
[40]. Note that the organisms compared here were strains
of the same bacterium; their genetic variant being alleles

and evolutionary distances between them being very
small. On such a small timescale, underlining evolution-
ary processes are usually not very diverse. It would be
also interesting to verify whether similar conclusions
could be made for other outer membrane proteins.

Human Papilloma Virus analysis
We performed a scan of the MSA of the gene E6 for 83
HPV organisms (using non-overlapping windows of size
20 nucleotides). Each time the species bipartition was
known, High-Risk HPV against all other HPV types in
Figure 5a, Squam-Risk HPV against all other HPV types
in Figure 6a, and Adeno-Risk HPV against all other
HPV types in Figure 6b, it was incorporated in the com-
putational procedure as shown in Algorithm 1. The
comparative results for the High Risk HPV subset pro-
vided by the new algorithm without prior knowledge of
carcinogenic taxa and those yielded by the former one
[11], are presented in Figure 5 using annotations for
HPV-16. Figure 5a illustrates the results obtained using
the functions Q4 and Q5 using a prior knowledge on the
species carcinogenicity.
According to the new algorithm, see Figure 5b, the

PDZ domain is ranked first in the annotated part of the
alignment. A detailed view of the terminal aligned
region, within the index interval 680-740, shows a small
left shift in the peak positions of the function ′Q4 5 ( )b ,
but inside the same C-terminal tail domain. On the left
side, flanking the PDZ domain, one can find the E6C
domain which is related to the DNA binding [30]. One
can notice that the function peaks (see Figure 5a and
5b) of ′Q4 are almost in the same positions than those
found using Q4, exception being a region at the begin-
ning of the alignment (i.e., at the beginning of the E6N
domain). As for N. meningitidis loops, it would be inter-
esting to study in greater details the regions recognized
by both tested functions, ′Q4 and ′Q5 .
We can conclude, by comparing Figures 5a and 5b,

that the new functions, ′Q4 and ′Q5 , provide almost
identical hit region recovery than the existing functions
Q4 and Q5, which take advantage of a prior knowledge
on the species carcinogenicity.
The Q″ function validation was also carried out for

HPV data. The results are presented in Figure 6. Here,
the PDZ domain ranks first for both tested datasets,
related to the Squam and Adeno cancers (Figures 6a
and 6b). The peaks were found at almost the same posi-
tions as in Figure 5, with the exception that only some
of the peaks shown in Figure 5 are present here. The
function ′′Q4 seems to be less variable than the function

′′Q5 . For the Squam dataset, there is one peak in the
E6C domain, absent in the Adeno dataset, with a high
monophyletic signal and unknown annotation.
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(b)

Figure 3 p-values obtained for polyphyletic evolution hit
region detection (a) Positive selection - Variable hit region inside
conserved context. Quartile distribution of p-values obtained for the
function ′Q4 . Variable hit region is always maintained at a scaling
factor of 1. Abscissa represents scaling factor of the conserved
context in which the variable hit region resides. Values close to 0
represent conservation (maximum discrimination), while values close
to 1 represent variability (identical to context). Ordinate represents
p-values in log-scale. Horizontal dashed line represents the
significance threshold of 0.05. (b) Lineage specific selection -
Heterogeneous hit region inside neutral context. Quartile
distribution of p-values obtained for the function ′Q6 . Context is
always maintained at a scaling factor of 0.5, simulating neutral
evolution. Abscissa represents difference in scaling factors among
the two lineages present in the hit region. Values close to 0
represent homogeneous evolutionnary speed (similar to the neutral
context in which it resides), while values close to 1 represent
divergence among these lineages, and from the neutral context.
Horizontal dashed line represents significance threshold of 0.05.
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Figure 4 N. meningitidis FrpB protein variability zone detection (a) Topology model of the FrpB protein of N. meningitidis strain H44/76.
Topology of the b-barrel. Surface-exposed loops (L) and b-strands are numbered. Residues are framed according to their predicted secondary
structure: Amino acid residues in b-strands are depicted by diamonds. Amino acid residues present in exposed loops and periplasmic turns are
depicted by circles (reproduced from Kortekaas et al., 2007) [20]. (b)-(c) Variability zone detection by the hit region identification Q′-tgpe
functions, achieved without prior knowledge of invasive taxa (case b), and Q″-type functions, using this prior knowledge along with the ARI
coefficient (case c). Functions ′Q4 and ′′Q4 are depicted by a dashed line and functions ′Q5 and ′′Q5 are depicted by a continuous line. A non-
overlapping sliding window of size 9 nucleotides was used during the scan of the gene FrpB MSA. The abscissa axis represents the window
position along the nucleotide MSA. 11 gray zones correspond to extracellular loops. Annotations start at the solid vertical line (near the 400
abscissa mark).
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On the other hand, the peak located at the index 660,
and corresponding to the window positions 660-680,
includes two putative Zn2+-ligating Cys residues whose
absence in mutants results in a dramatic loss in the p53
degradation activity [28].
By analyzing Figures 4, 5 and 6, one can notice that in

some situations prior knowledge information brings an
important advantage to the method (see the case of
Figure 4c when the use of the prior knowledge along
with the ARI coefficient allows for getting rid of some
false positive hits; for instance, the false positive picks
found using Q′-tgpe functions around the indices 1225
and 1500 presented in Figure 4b were not found by the
Q″-type functions presented in Figure 4c as well as the
case of an almost perfect PDZ domain recovery pro-
vided by the Q″-type functions as shown in Figures 6a
and 6b), but in the other cases, the new algorithm is
capable of correct recovering hit regions without any

prior knowledge (e.g., see the cases of the loops L1, L3,
L5, L8, L9 and L10 for the N. meningitidis dataset).

Conclusion
We described a new algorithm for finding genomic
regions that may be associated with a disease. It is cap-
able of detecting hit regions without prior knowledge on
the carcinogenicity or invasivity of related organisms.
This is an important improvement over previous works
in the field [11-13]. We also showed as the Adjusted
Rand Index [14,34,35] can be incorporated in the hit
detection procedure. The discussed algorithm can be
directly used to study organisms that have an ambivalent
behavior and are, thus, more difficult to classify. For
instance, some strains of Neisseria Meningitidis show a
hyperinvasive behavior during epidemics, but are non-
invasive, otherwise. The behavior of some other organ-
isms, like human papilloma viruses (HPV), is more con-
sistent. Such organisms can be clearly classified with
respect to their level of carcinogenicity. Species biparti-
tions, established according to a carcinogenicity or inva-
sivity criterion, suggested in the literature are important
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Figure 5 Hit region identification functions for High-Risk HPV
(a) Functions obtained using prior knowledge on the taxa
carcinogenicity. The hit region identification functions Q4, depicted
by a dashed line, Q5, depicted by a continuous line, and Q6,
depicted by a dotted line, for the High-Risk HPV (HPV-16 and 18)
[11,12], during the scan of the gene E6. (b) Functions computed
without prior knowledge on the taxa carcinogenicity. The hit region
identification functions Q’4, depicted by a dashed line, Q’5, depicted
by a continuous line, and Q’6, depicted by a dotted line, during the
scan of the gene E6. The abscissa axis represents the window
position along the nucleotide multiple sequence alignment. The
PDZ-doirmm is highlighted in gray. Annotations for the N and C-
terminal arms, E6N and E6C domains are represented for HPV16
coordinates, from (Nominé et al., 2006) [30]. Zn2+-ligating Cys
residues annotations reproduced from Lipari et al., 2001 [28].
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Figure 6 Q″-type functions, depending on ARI (a) Squam HPV
dataset. (b) Adeno HPV dataset. Variation of the function Q”4,
depicted by a dashed line, Q”5, depicted by a continuous line, and
Q”6, depicted by a dotted line, obtained with the non-overlapping
sliding window of width 20 nucleotides during the scan of the
gene E6. The abscissa axis represents the window position along
the nucleotide MSA. The PDZ-domain is highlighted in gray.
Annotations for the N and C-terminal arms, E6N and E6C domains
are represented for HPV16 coordinates, from (Nominé et al., 2006)
[30]. Zn2+-ligating Cys residues annotations reproduced from Lipari
et al., 2001 [28].
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for the identification of genomic regions responsible for a
related disease. We showed, however, that a successful
identification of these regions can be accomplished with-
out any prior knowledge of the species classification (Fig-
ure 5). Considering, in parallel, several hit region
identification functions can provide more insight into the
structure of genomic regions (Figures 4, 5 and 6). Simula-
tion results suggest that there is no a unique function
that provides the best overall results in all practical situa-
tions (e.g., the case of monophyletic or polyphyletic evo-
lution and positive or negative selection), and that at
least three different functions might be useful (Figures 2
and 3). It is worth noting that the monophyletic scenarios
are easier to detect than the polyphyletic ones. The func-
tion Q5 allows for a better detection of monophyletic sce-
narios, while in the polyphyletic case, the functions Q4

and Q6 provide the best results in the positive selection
context and in the lineage specific selection context,
respectively. The application of the described functions
to the HPV gene E6 allows one to retrace the hit regions
that are well-known to be related to carcinogenicity
[26-28,30].
Furthermore, the results given by these functions while

analyzing the FetA sequences of Neisseria meningitidis
suggest a large overlap between the regions with surface-
exposed loops and those detected by the hit region identi-
fication functions (Figure 4). All these results indicate the
ability of the proposed algorithm to identify regions with
bipartite evolutionary signatures according to different
patterns of evolution. Each time the species bipartition
was known, High-Risk HPV against all other HPV types in
Figure 5a, Squam-Risk HPV against all other HPV types in
Figure 6a, and Adeno-Risk HPV against all other HPV
types in Figure 6b, it was incorporated in the computa-
tional procedure as shown in Algorithm 1. In the future, it
will be important to assess the correlation between differ-
ent non-overlapping detected hit regions present in the
given alignment. It would be also interesting to compare
the performance of the introduced bi-clustering algorithm
with the existing bi-clustering methods currently used in
bioinformatics, including SAMBA [41], Crossing Minimi-
zation [42] and cMonkey [43]. Another possibility consists
of using a k-means [44] type of algorithms that can suggest
partitioning of the given dataset in several, and not neces-
sarily in two, classes when the exact number of classes is
unknown. For instance, in the case of HPV data, one
could consider the three following HPV classes: High-Risk
HPV (types 16 and 18), Low-Risk HPV (types 6, 11, 26, 31,
33, 35, 39, 45, 51, 52, 53, 55, 56, 58, 59, 66, 73, 81, 82 and
83) and No-Risk HPV (all other HPV types).
It is worth noting that the presented algorithm, like

most of the comparative genomics methods, relies on the
assumption of the alignment correctness. Thus, it will be

also important to analyze the impact of alignment errors
on the results of the proposed hit detection procedure.

Additional material

Additional file 1: Algorithm 1. Algorithm for computing genomic
regions responsible for carcinogenicity or invasivity.p-values
obtained for hit region detection using the remaining (i.e., not
presented in Figs 2 and 3) Q′-type functions (a),(b),(c),(d)
Monophyletic evolution - (e),(f),(g),(h) Polyphyletic evolution (a),(c),(e),(g)
Positive selection - Variable hit region inside conserved context. Quartile
distribution of p-values obtained for the functions

′Q e5( ) , ′Q c6( ) , ′Q e5( ) , and ′Q g6( ) . Abscissa represents scaling
factor of the conserved context in which the variable hit region resides.
Values close to 0 represent conservation (maximum discrimination), while
values close to 1 represent variability (identical to context). Variable hit
region is always maintained at a scaling factor of 1. Ordinate represents
p-values in log-scale. Horizontal dashed line represents the significance
threshold of 0.05. (b),(d),(f),(h) Lineage specific selection - Heterogeneous
hit region inside neutral context. Quartile distribution of p-values
obtained for the functions ′Q b4( ) , ′Q d6( ) , ′Q f5( ) , and ′Q h4( ) .
Abscissa represents the difference in scaling factors among the two
lineages present in the hit region. Values close to 0 represent
homogeneous evolutionnary speed (similar to the neutral context in
which it resides), while values close to 1 represent divergence among
these lineages. Context is always maintained at a scaling factor of 0.5,
simulating neutral evolution. Horizontal dashed line represents the
significance threshold of 0.05. In the case of lineage specific selection,
the value of the Q′-type functions corresponding to 1 on the abscissa
scale cannot be computed because it involves a sub-tree with 0 edge
lengths.
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